Properties

Label 3381.2.a.bc
Level $3381$
Weight $2$
Character orbit 3381.a
Self dual yes
Analytic conductor $26.997$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3381,2,Mod(1,3381)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3381, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3381.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3381 = 3 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3381.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.9974209234\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.7997584.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 7x^{4} + 5x^{3} + 12x^{2} - 4x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 483)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - q^{3} + (\beta_{2} + 1) q^{4} + (\beta_{5} + \beta_{3}) q^{5} + \beta_1 q^{6} - \beta_{3} q^{8} + q^{9} + ( - \beta_{4} - 2 \beta_{3} - 2 \beta_1 + 1) q^{10} + ( - 2 \beta_{4} - 2) q^{11}+ \cdots + ( - 2 \beta_{4} - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} - 6 q^{3} + 3 q^{4} + 3 q^{5} + q^{6} - 3 q^{8} + 6 q^{9} - 3 q^{10} - 14 q^{11} - 3 q^{12} - 3 q^{15} - 7 q^{16} + 15 q^{17} - q^{18} - q^{19} + 17 q^{20} - 6 q^{22} - 6 q^{23} + 3 q^{24}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 7x^{4} + 5x^{3} + 12x^{2} - 4x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 4\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} - 7\nu^{3} + 10\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} + 2\nu^{4} + 5\nu^{3} - 8\nu^{2} - 4\nu + 2 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 4\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{5} + \beta_{4} + \beta_{3} + 4\beta_{2} + \beta _1 + 11 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2\beta_{4} + 7\beta_{3} + 18\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.27267
1.83264
0.593528
−0.289957
−1.36549
−2.04340
−2.27267 −1.00000 3.16503 4.15120 2.27267 0 −2.64772 1.00000 −9.43432
1.2 −1.83264 −1.00000 1.35859 −0.943490 1.83264 0 1.17548 1.00000 1.72908
1.3 −0.593528 −1.00000 −1.64772 −3.15120 0.593528 0 2.16503 1.00000 1.87033
1.4 0.289957 −1.00000 −1.91593 2.32621 −0.289957 0 −1.13545 1.00000 0.674501
1.5 1.36549 −1.00000 −0.135449 −1.32621 −1.36549 0 −2.91593 1.00000 −1.81092
1.6 2.04340 −1.00000 2.17548 1.94349 −2.04340 0 0.358585 1.00000 3.97133
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( +1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3381.2.a.bc 6
7.b odd 2 1 3381.2.a.bd 6
7.c even 3 2 483.2.i.f 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
483.2.i.f 12 7.c even 3 2
3381.2.a.bc 6 1.a even 1 1 trivial
3381.2.a.bd 6 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3381))\):

\( T_{2}^{6} + T_{2}^{5} - 7T_{2}^{4} - 5T_{2}^{3} + 12T_{2}^{2} + 4T_{2} - 2 \) Copy content Toggle raw display
\( T_{5}^{6} - 3T_{5}^{5} - 15T_{5}^{4} + 35T_{5}^{3} + 52T_{5}^{2} - 70T_{5} - 74 \) Copy content Toggle raw display
\( T_{11}^{6} + 14T_{11}^{5} + 52T_{11}^{4} - 24T_{11}^{3} - 320T_{11}^{2} - 128T_{11} + 256 \) Copy content Toggle raw display
\( T_{13}^{6} - 31T_{13}^{4} + 52T_{13}^{3} + 47T_{13}^{2} - 4T_{13} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + T^{5} - 7 T^{4} + \cdots - 2 \) Copy content Toggle raw display
$3$ \( (T + 1)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - 3 T^{5} + \cdots - 74 \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + 14 T^{5} + \cdots + 256 \) Copy content Toggle raw display
$13$ \( T^{6} - 31 T^{4} + \cdots - 1 \) Copy content Toggle raw display
$17$ \( T^{6} - 15 T^{5} + \cdots - 18 \) Copy content Toggle raw display
$19$ \( T^{6} + T^{5} - 65 T^{4} + \cdots - 4 \) Copy content Toggle raw display
$23$ \( (T + 1)^{6} \) Copy content Toggle raw display
$29$ \( T^{6} + 6 T^{5} + \cdots - 4768 \) Copy content Toggle raw display
$31$ \( T^{6} + 11 T^{5} + \cdots - 72 \) Copy content Toggle raw display
$37$ \( T^{6} + 5 T^{5} + \cdots + 424 \) Copy content Toggle raw display
$41$ \( T^{6} - 18 T^{5} + \cdots + 52928 \) Copy content Toggle raw display
$43$ \( T^{6} + 37 T^{5} + \cdots - 19796 \) Copy content Toggle raw display
$47$ \( T^{6} - 3 T^{5} + \cdots - 4768 \) Copy content Toggle raw display
$53$ \( T^{6} + 15 T^{5} + \cdots + 73928 \) Copy content Toggle raw display
$59$ \( T^{6} + 2 T^{5} + \cdots - 76192 \) Copy content Toggle raw display
$61$ \( T^{6} + 12 T^{5} + \cdots + 99648 \) Copy content Toggle raw display
$67$ \( T^{6} + 10 T^{5} + \cdots + 33799 \) Copy content Toggle raw display
$71$ \( T^{6} + 21 T^{5} + \cdots - 3208 \) Copy content Toggle raw display
$73$ \( T^{6} + 8 T^{5} + \cdots + 55359 \) Copy content Toggle raw display
$79$ \( T^{6} + 17 T^{5} + \cdots - 120548 \) Copy content Toggle raw display
$83$ \( T^{6} - 12 T^{5} + \cdots - 2224 \) Copy content Toggle raw display
$89$ \( T^{6} - 18 T^{5} + \cdots + 5224 \) Copy content Toggle raw display
$97$ \( T^{6} + 2 T^{5} + \cdots + 1152 \) Copy content Toggle raw display
show more
show less