Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3381,2,Mod(1,3381)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3381, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3381.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 3381.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 6.6.7997584.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 483) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.27267 | −1.00000 | 3.16503 | 4.15120 | 2.27267 | 0 | −2.64772 | 1.00000 | −9.43432 | ||||||||||||||||||||||||||||||||||||
1.2 | −1.83264 | −1.00000 | 1.35859 | −0.943490 | 1.83264 | 0 | 1.17548 | 1.00000 | 1.72908 | |||||||||||||||||||||||||||||||||||||
1.3 | −0.593528 | −1.00000 | −1.64772 | −3.15120 | 0.593528 | 0 | 2.16503 | 1.00000 | 1.87033 | |||||||||||||||||||||||||||||||||||||
1.4 | 0.289957 | −1.00000 | −1.91593 | 2.32621 | −0.289957 | 0 | −1.13545 | 1.00000 | 0.674501 | |||||||||||||||||||||||||||||||||||||
1.5 | 1.36549 | −1.00000 | −0.135449 | −1.32621 | −1.36549 | 0 | −2.91593 | 1.00000 | −1.81092 | |||||||||||||||||||||||||||||||||||||
1.6 | 2.04340 | −1.00000 | 2.17548 | 1.94349 | −2.04340 | 0 | 0.358585 | 1.00000 | 3.97133 | |||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3381.2.a.bc | 6 | |
7.b | odd | 2 | 1 | 3381.2.a.bd | 6 | ||
7.c | even | 3 | 2 | 483.2.i.f | ✓ | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
483.2.i.f | ✓ | 12 | 7.c | even | 3 | 2 | |
3381.2.a.bc | 6 | 1.a | even | 1 | 1 | trivial | |
3381.2.a.bd | 6 | 7.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|
|