Properties

Label 3381.2.a.bc
Level 33813381
Weight 22
Character orbit 3381.a
Self dual yes
Analytic conductor 26.99726.997
Analytic rank 11
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3381,2,Mod(1,3381)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3381, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3381.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3381=37223 3381 = 3 \cdot 7^{2} \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3381.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 26.997420923426.9974209234
Analytic rank: 11
Dimension: 66
Coefficient field: 6.6.7997584.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x57x4+5x3+12x24x2 x^{6} - x^{5} - 7x^{4} + 5x^{3} + 12x^{2} - 4x - 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 483)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2q3+(β2+1)q4+(β5+β3)q5+β1q6β3q8+q9+(β42β32β1+1)q10+(2β42)q11++(2β42)q99+O(q100) q - \beta_1 q^{2} - q^{3} + (\beta_{2} + 1) q^{4} + (\beta_{5} + \beta_{3}) q^{5} + \beta_1 q^{6} - \beta_{3} q^{8} + q^{9} + ( - \beta_{4} - 2 \beta_{3} - 2 \beta_1 + 1) q^{10} + ( - 2 \beta_{4} - 2) q^{11}+ \cdots + ( - 2 \beta_{4} - 2) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6qq26q3+3q4+3q5+q63q8+6q93q1014q113q123q157q16+15q17q18q19+17q206q226q23+3q24+14q99+O(q100) 6 q - q^{2} - 6 q^{3} + 3 q^{4} + 3 q^{5} + q^{6} - 3 q^{8} + 6 q^{9} - 3 q^{10} - 14 q^{11} - 3 q^{12} - 3 q^{15} - 7 q^{16} + 15 q^{17} - q^{18} - q^{19} + 17 q^{20} - 6 q^{22} - 6 q^{23} + 3 q^{24}+ \cdots - 14 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6x57x4+5x3+12x24x2 x^{6} - x^{5} - 7x^{4} + 5x^{3} + 12x^{2} - 4x - 2 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν23 \nu^{2} - 3 Copy content Toggle raw display
β3\beta_{3}== ν34ν \nu^{3} - 4\nu Copy content Toggle raw display
β4\beta_{4}== (ν57ν3+10ν)/2 ( \nu^{5} - 7\nu^{3} + 10\nu ) / 2 Copy content Toggle raw display
β5\beta_{5}== (ν5+2ν4+5ν38ν24ν+2)/2 ( -\nu^{5} + 2\nu^{4} + 5\nu^{3} - 8\nu^{2} - 4\nu + 2 ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+3 \beta_{2} + 3 Copy content Toggle raw display
ν3\nu^{3}== β3+4β1 \beta_{3} + 4\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β5+β4+β3+4β2+β1+11 \beta_{5} + \beta_{4} + \beta_{3} + 4\beta_{2} + \beta _1 + 11 Copy content Toggle raw display
ν5\nu^{5}== 2β4+7β3+18β1 2\beta_{4} + 7\beta_{3} + 18\beta_1 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.27267
1.83264
0.593528
−0.289957
−1.36549
−2.04340
−2.27267 −1.00000 3.16503 4.15120 2.27267 0 −2.64772 1.00000 −9.43432
1.2 −1.83264 −1.00000 1.35859 −0.943490 1.83264 0 1.17548 1.00000 1.72908
1.3 −0.593528 −1.00000 −1.64772 −3.15120 0.593528 0 2.16503 1.00000 1.87033
1.4 0.289957 −1.00000 −1.91593 2.32621 −0.289957 0 −1.13545 1.00000 0.674501
1.5 1.36549 −1.00000 −0.135449 −1.32621 −1.36549 0 −2.91593 1.00000 −1.81092
1.6 2.04340 −1.00000 2.17548 1.94349 −2.04340 0 0.358585 1.00000 3.97133
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
77 +1 +1
2323 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3381.2.a.bc 6
7.b odd 2 1 3381.2.a.bd 6
7.c even 3 2 483.2.i.f 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
483.2.i.f 12 7.c even 3 2
3381.2.a.bc 6 1.a even 1 1 trivial
3381.2.a.bd 6 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(3381))S_{2}^{\mathrm{new}}(\Gamma_0(3381)):

T26+T257T245T23+12T22+4T22 T_{2}^{6} + T_{2}^{5} - 7T_{2}^{4} - 5T_{2}^{3} + 12T_{2}^{2} + 4T_{2} - 2 Copy content Toggle raw display
T563T5515T54+35T53+52T5270T574 T_{5}^{6} - 3T_{5}^{5} - 15T_{5}^{4} + 35T_{5}^{3} + 52T_{5}^{2} - 70T_{5} - 74 Copy content Toggle raw display
T116+14T115+52T11424T113320T112128T11+256 T_{11}^{6} + 14T_{11}^{5} + 52T_{11}^{4} - 24T_{11}^{3} - 320T_{11}^{2} - 128T_{11} + 256 Copy content Toggle raw display
T13631T134+52T133+47T1324T131 T_{13}^{6} - 31T_{13}^{4} + 52T_{13}^{3} + 47T_{13}^{2} - 4T_{13} - 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6+T57T4+2 T^{6} + T^{5} - 7 T^{4} + \cdots - 2 Copy content Toggle raw display
33 (T+1)6 (T + 1)^{6} Copy content Toggle raw display
55 T63T5+74 T^{6} - 3 T^{5} + \cdots - 74 Copy content Toggle raw display
77 T6 T^{6} Copy content Toggle raw display
1111 T6+14T5++256 T^{6} + 14 T^{5} + \cdots + 256 Copy content Toggle raw display
1313 T631T4+1 T^{6} - 31 T^{4} + \cdots - 1 Copy content Toggle raw display
1717 T615T5+18 T^{6} - 15 T^{5} + \cdots - 18 Copy content Toggle raw display
1919 T6+T565T4+4 T^{6} + T^{5} - 65 T^{4} + \cdots - 4 Copy content Toggle raw display
2323 (T+1)6 (T + 1)^{6} Copy content Toggle raw display
2929 T6+6T5+4768 T^{6} + 6 T^{5} + \cdots - 4768 Copy content Toggle raw display
3131 T6+11T5+72 T^{6} + 11 T^{5} + \cdots - 72 Copy content Toggle raw display
3737 T6+5T5++424 T^{6} + 5 T^{5} + \cdots + 424 Copy content Toggle raw display
4141 T618T5++52928 T^{6} - 18 T^{5} + \cdots + 52928 Copy content Toggle raw display
4343 T6+37T5+19796 T^{6} + 37 T^{5} + \cdots - 19796 Copy content Toggle raw display
4747 T63T5+4768 T^{6} - 3 T^{5} + \cdots - 4768 Copy content Toggle raw display
5353 T6+15T5++73928 T^{6} + 15 T^{5} + \cdots + 73928 Copy content Toggle raw display
5959 T6+2T5+76192 T^{6} + 2 T^{5} + \cdots - 76192 Copy content Toggle raw display
6161 T6+12T5++99648 T^{6} + 12 T^{5} + \cdots + 99648 Copy content Toggle raw display
6767 T6+10T5++33799 T^{6} + 10 T^{5} + \cdots + 33799 Copy content Toggle raw display
7171 T6+21T5+3208 T^{6} + 21 T^{5} + \cdots - 3208 Copy content Toggle raw display
7373 T6+8T5++55359 T^{6} + 8 T^{5} + \cdots + 55359 Copy content Toggle raw display
7979 T6+17T5+120548 T^{6} + 17 T^{5} + \cdots - 120548 Copy content Toggle raw display
8383 T612T5+2224 T^{6} - 12 T^{5} + \cdots - 2224 Copy content Toggle raw display
8989 T618T5++5224 T^{6} - 18 T^{5} + \cdots + 5224 Copy content Toggle raw display
9797 T6+2T5++1152 T^{6} + 2 T^{5} + \cdots + 1152 Copy content Toggle raw display
show more
show less