Defining parameters
Level: | \( N \) | \(=\) | \( 340 = 2^{2} \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 340.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(108\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(340, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 60 | 6 | 54 |
Cusp forms | 48 | 6 | 42 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(340, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
340.2.c.a | $6$ | $2.715$ | 6.0.37161216.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta _{1}-\beta _{4})q^{3}+\beta _{4}q^{5}+(\beta _{1}+\beta _{4})q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(340, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(340, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 2}\)