Properties

Label 340.2.c
Level $340$
Weight $2$
Character orbit 340.c
Rep. character $\chi_{340}(101,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $1$
Sturm bound $108$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 340 = 2^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 340.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(108\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(340, [\chi])\).

Total New Old
Modular forms 60 6 54
Cusp forms 48 6 42
Eisenstein series 12 0 12

Trace form

\( 6 q - 14 q^{9} + 4 q^{15} - 2 q^{17} + 16 q^{19} - 24 q^{21} - 6 q^{25} - 12 q^{33} - 8 q^{35} - 16 q^{43} + 32 q^{47} + 2 q^{49} + 4 q^{51} + 44 q^{53} + 16 q^{55} - 8 q^{59} - 8 q^{67} + 32 q^{69} + 20 q^{77}+ \cdots - 52 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(340, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
340.2.c.a 340.c 17.b $6$ $2.715$ 6.0.37161216.1 None 340.2.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}-\beta _{4})q^{3}+\beta _{4}q^{5}+(\beta _{1}+\beta _{4})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(340, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(340, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 2}\)