Properties

Label 342.2.a.e
Level $342$
Weight $2$
Character orbit 342.a
Self dual yes
Analytic conductor $2.731$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [342,2,Mod(1,342)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(342, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("342.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 342 = 2 \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 342.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.73088374913\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} + q^{4} - q^{7} + q^{8} + 6 q^{11} + 5 q^{13} - q^{14} + q^{16} - 3 q^{17} + q^{19} + 6 q^{22} - 3 q^{23} - 5 q^{25} + 5 q^{26} - q^{28} - 9 q^{29} - 4 q^{31} + q^{32} - 3 q^{34} + 2 q^{37}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 1.00000 0 0 −1.00000 1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 342.2.a.e 1
3.b odd 2 1 38.2.a.a 1
4.b odd 2 1 2736.2.a.n 1
5.b even 2 1 8550.2.a.m 1
12.b even 2 1 304.2.a.c 1
15.d odd 2 1 950.2.a.d 1
15.e even 4 2 950.2.b.b 2
19.b odd 2 1 6498.2.a.f 1
21.c even 2 1 1862.2.a.b 1
24.f even 2 1 1216.2.a.m 1
24.h odd 2 1 1216.2.a.e 1
33.d even 2 1 4598.2.a.p 1
39.d odd 2 1 6422.2.a.h 1
57.d even 2 1 722.2.a.e 1
57.f even 6 2 722.2.c.c 2
57.h odd 6 2 722.2.c.e 2
57.j even 18 6 722.2.e.e 6
57.l odd 18 6 722.2.e.f 6
60.h even 2 1 7600.2.a.n 1
228.b odd 2 1 5776.2.a.m 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.2.a.a 1 3.b odd 2 1
304.2.a.c 1 12.b even 2 1
342.2.a.e 1 1.a even 1 1 trivial
722.2.a.e 1 57.d even 2 1
722.2.c.c 2 57.f even 6 2
722.2.c.e 2 57.h odd 6 2
722.2.e.e 6 57.j even 18 6
722.2.e.f 6 57.l odd 18 6
950.2.a.d 1 15.d odd 2 1
950.2.b.b 2 15.e even 4 2
1216.2.a.e 1 24.h odd 2 1
1216.2.a.m 1 24.f even 2 1
1862.2.a.b 1 21.c even 2 1
2736.2.a.n 1 4.b odd 2 1
4598.2.a.p 1 33.d even 2 1
5776.2.a.m 1 228.b odd 2 1
6422.2.a.h 1 39.d odd 2 1
6498.2.a.f 1 19.b odd 2 1
7600.2.a.n 1 60.h even 2 1
8550.2.a.m 1 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(342))\):

\( T_{5} \) Copy content Toggle raw display
\( T_{7} + 1 \) Copy content Toggle raw display
\( T_{11} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 1 \) Copy content Toggle raw display
$11$ \( T - 6 \) Copy content Toggle raw display
$13$ \( T - 5 \) Copy content Toggle raw display
$17$ \( T + 3 \) Copy content Toggle raw display
$19$ \( T - 1 \) Copy content Toggle raw display
$23$ \( T + 3 \) Copy content Toggle raw display
$29$ \( T + 9 \) Copy content Toggle raw display
$31$ \( T + 4 \) Copy content Toggle raw display
$37$ \( T - 2 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T - 8 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T - 3 \) Copy content Toggle raw display
$59$ \( T + 9 \) Copy content Toggle raw display
$61$ \( T + 10 \) Copy content Toggle raw display
$67$ \( T - 5 \) Copy content Toggle raw display
$71$ \( T - 6 \) Copy content Toggle raw display
$73$ \( T + 7 \) Copy content Toggle raw display
$79$ \( T + 10 \) Copy content Toggle raw display
$83$ \( T - 6 \) Copy content Toggle raw display
$89$ \( T - 12 \) Copy content Toggle raw display
$97$ \( T + 10 \) Copy content Toggle raw display
show more
show less