Properties

Label 342.2.b.a
Level $342$
Weight $2$
Character orbit 342.b
Analytic conductor $2.731$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [342,2,Mod(341,342)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(342, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("342.341");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 342 = 2 \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 342.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.73088374913\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + \beta q^{5} + 2 q^{7} - q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} + q^{4} + \beta q^{5} + 2 q^{7} - q^{8} - \beta q^{10} + \beta q^{11} - 2 q^{14} + q^{16} + \beta q^{17} + (3 \beta + 1) q^{19} + \beta q^{20} - \beta q^{22} + \beta q^{23} + 3 q^{25} + 2 q^{28} + 6 q^{29} - q^{32} - \beta q^{34} + 2 \beta q^{35} + 6 \beta q^{37} + ( - 3 \beta - 1) q^{38} - \beta q^{40} + 6 q^{41} - 4 q^{43} + \beta q^{44} - \beta q^{46} - 5 \beta q^{47} - 3 q^{49} - 3 q^{50} + 6 q^{53} - 2 q^{55} - 2 q^{56} - 6 q^{58} - 4 q^{61} + q^{64} - 6 \beta q^{67} + \beta q^{68} - 2 \beta q^{70} - 12 q^{71} - 10 q^{73} - 6 \beta q^{74} + (3 \beta + 1) q^{76} + 2 \beta q^{77} - 6 \beta q^{79} + \beta q^{80} - 6 q^{82} - 11 \beta q^{83} - 2 q^{85} + 4 q^{86} - \beta q^{88} + 6 q^{89} + \beta q^{92} + 5 \beta q^{94} + (\beta - 6) q^{95} - 6 \beta q^{97} + 3 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + 4 q^{7} - 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{4} + 4 q^{7} - 2 q^{8} - 4 q^{14} + 2 q^{16} + 2 q^{19} + 6 q^{25} + 4 q^{28} + 12 q^{29} - 2 q^{32} - 2 q^{38} + 12 q^{41} - 8 q^{43} - 6 q^{49} - 6 q^{50} + 12 q^{53} - 4 q^{55} - 4 q^{56} - 12 q^{58} - 8 q^{61} + 2 q^{64} - 24 q^{71} - 20 q^{73} + 2 q^{76} - 12 q^{82} - 4 q^{85} + 8 q^{86} + 12 q^{89} - 12 q^{95} + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/342\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
341.1
1.41421i
1.41421i
−1.00000 0 1.00000 1.41421i 0 2.00000 −1.00000 0 1.41421i
341.2 −1.00000 0 1.00000 1.41421i 0 2.00000 −1.00000 0 1.41421i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
57.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 342.2.b.a 2
3.b odd 2 1 342.2.b.b yes 2
4.b odd 2 1 2736.2.f.b 2
12.b even 2 1 2736.2.f.a 2
19.b odd 2 1 342.2.b.b yes 2
57.d even 2 1 inner 342.2.b.a 2
76.d even 2 1 2736.2.f.a 2
228.b odd 2 1 2736.2.f.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
342.2.b.a 2 1.a even 1 1 trivial
342.2.b.a 2 57.d even 2 1 inner
342.2.b.b yes 2 3.b odd 2 1
342.2.b.b yes 2 19.b odd 2 1
2736.2.f.a 2 12.b even 2 1
2736.2.f.a 2 76.d even 2 1
2736.2.f.b 2 4.b odd 2 1
2736.2.f.b 2 228.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{29} - 6 \) acting on \(S_{2}^{\mathrm{new}}(342, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 2 \) Copy content Toggle raw display
$7$ \( (T - 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 2 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 2 \) Copy content Toggle raw display
$19$ \( T^{2} - 2T + 19 \) Copy content Toggle raw display
$23$ \( T^{2} + 2 \) Copy content Toggle raw display
$29$ \( (T - 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 72 \) Copy content Toggle raw display
$41$ \( (T - 6)^{2} \) Copy content Toggle raw display
$43$ \( (T + 4)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 50 \) Copy content Toggle raw display
$53$ \( (T - 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T + 4)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 72 \) Copy content Toggle raw display
$71$ \( (T + 12)^{2} \) Copy content Toggle raw display
$73$ \( (T + 10)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 72 \) Copy content Toggle raw display
$83$ \( T^{2} + 242 \) Copy content Toggle raw display
$89$ \( (T - 6)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 72 \) Copy content Toggle raw display
show more
show less