Properties

Label 343.2.a.b
Level 343343
Weight 22
Character orbit 343.a
Self dual yes
Analytic conductor 2.7392.739
Analytic rank 00
Dimension 33
CM discriminant -7
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [343,2,Mod(1,343)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(343, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("343.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 343=73 343 = 7^{3}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 343.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 2.738868789332.73886878933
Analytic rank: 00
Dimension: 33
Coefficient field: Q(ζ14)+\Q(\zeta_{14})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x22x+1 x^{3} - x^{2} - 2x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: N(U(1))N(\mathrm{U}(1))

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β2β1+1)q2+(β1+4)q4+(3β1+5)q83q9+(3β2+5β11)q11+(β26β1+6)q16+(3β2+3β13)q18++(9β215β1+3)q99+O(q100) q + ( - \beta_{2} - \beta_1 + 1) q^{2} + ( - \beta_1 + 4) q^{4} + ( - 3 \beta_1 + 5) q^{8} - 3 q^{9} + ( - 3 \beta_{2} + 5 \beta_1 - 1) q^{11} + (\beta_{2} - 6 \beta_1 + 6) q^{16} + (3 \beta_{2} + 3 \beta_1 - 3) q^{18}+ \cdots + (9 \beta_{2} - 15 \beta_1 + 3) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+3q2+11q4+12q89q9+5q11+11q169q189q22+3q2315q25+13q29+22q3233q36+17q37+13q43+2q4432q4615q50+15q99+O(q100) 3 q + 3 q^{2} + 11 q^{4} + 12 q^{8} - 9 q^{9} + 5 q^{11} + 11 q^{16} - 9 q^{18} - 9 q^{22} + 3 q^{23} - 15 q^{25} + 13 q^{29} + 22 q^{32} - 33 q^{36} + 17 q^{37} + 13 q^{43} + 2 q^{44} - 32 q^{46} - 15 q^{50}+ \cdots - 15 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of ν=ζ14+ζ141\nu = \zeta_{14} + \zeta_{14}^{-1}:

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν22 \nu^{2} - 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+2 \beta_{2} + 2 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
1.80194
0.445042
−1.24698
−2.04892 0 2.19806 0 0 0 −0.405813 −3.00000 0
1.2 2.35690 0 3.55496 0 0 0 3.66487 −3.00000 0
1.3 2.69202 0 5.24698 0 0 0 8.74094 −3.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
77 1 -1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by Q(7)\Q(\sqrt{-7})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 343.2.a.b 3
3.b odd 2 1 3087.2.a.a 3
4.b odd 2 1 5488.2.a.c 3
5.b even 2 1 8575.2.a.a 3
7.b odd 2 1 CM 343.2.a.b 3
7.c even 3 2 343.2.c.a 6
7.d odd 6 2 343.2.c.a 6
21.c even 2 1 3087.2.a.a 3
28.d even 2 1 5488.2.a.c 3
35.c odd 2 1 8575.2.a.a 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
343.2.a.b 3 1.a even 1 1 trivial
343.2.a.b 3 7.b odd 2 1 CM
343.2.c.a 6 7.c even 3 2
343.2.c.a 6 7.d odd 6 2
3087.2.a.a 3 3.b odd 2 1
3087.2.a.a 3 21.c even 2 1
5488.2.a.c 3 4.b odd 2 1
5488.2.a.c 3 28.d even 2 1
8575.2.a.a 3 5.b even 2 1
8575.2.a.a 3 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(343))S_{2}^{\mathrm{new}}(\Gamma_0(343)):

T233T224T2+13 T_{2}^{3} - 3T_{2}^{2} - 4T_{2} + 13 Copy content Toggle raw display
T3 T_{3} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T33T2++13 T^{3} - 3 T^{2} + \cdots + 13 Copy content Toggle raw display
33 T3 T^{3} Copy content Toggle raw display
55 T3 T^{3} Copy content Toggle raw display
77 T3 T^{3} Copy content Toggle raw display
1111 T35T2++167 T^{3} - 5 T^{2} + \cdots + 167 Copy content Toggle raw display
1313 T3 T^{3} Copy content Toggle raw display
1717 T3 T^{3} Copy content Toggle raw display
1919 T3 T^{3} Copy content Toggle raw display
2323 T33T2++293 T^{3} - 3 T^{2} + \cdots + 293 Copy content Toggle raw display
2929 T313T2++601 T^{3} - 13 T^{2} + \cdots + 601 Copy content Toggle raw display
3131 T3 T^{3} Copy content Toggle raw display
3737 T317T2+43 T^{3} - 17 T^{2} + \cdots - 43 Copy content Toggle raw display
4141 T3 T^{3} Copy content Toggle raw display
4343 T313T2++223 T^{3} - 13 T^{2} + \cdots + 223 Copy content Toggle raw display
4747 T3 T^{3} Copy content Toggle raw display
5353 T319T2+113 T^{3} - 19 T^{2} + \cdots - 113 Copy content Toggle raw display
5959 T3 T^{3} Copy content Toggle raw display
6161 T3 T^{3} Copy content Toggle raw display
6767 T3+23T2+533 T^{3} + 23 T^{2} + \cdots - 533 Copy content Toggle raw display
7171 T3+T2++377 T^{3} + T^{2} + \cdots + 377 Copy content Toggle raw display
7373 T3 T^{3} Copy content Toggle raw display
7979 T3+25T2++41 T^{3} + 25 T^{2} + \cdots + 41 Copy content Toggle raw display
8383 T3 T^{3} Copy content Toggle raw display
8989 T3 T^{3} Copy content Toggle raw display
9797 T3 T^{3} Copy content Toggle raw display
show more
show less