Properties

Label 3467.1.b.a.3466.4
Level $3467$
Weight $1$
Character 3467.3466
Self dual yes
Analytic conductor $1.730$
Analytic rank $0$
Dimension $9$
Projective image $D_{19}$
CM discriminant -3467
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3467,1,Mod(3466,3467)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3467, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3467.3466");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3467 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3467.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.73025839880\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\Q(\zeta_{38})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 8x^{7} + 7x^{6} + 21x^{5} - 15x^{4} - 20x^{3} + 10x^{2} + 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{19}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{19} - \cdots)\)

Embedding invariants

Embedding label 3466.4
Root \(1.35456\) of defining polynomial
Character \(\chi\) \(=\) 3467.3466

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.803391 q^{3} +1.00000 q^{4} -0.354563 q^{9} -1.75895 q^{11} -0.803391 q^{12} +0.490971 q^{13} +1.00000 q^{16} +1.09390 q^{17} -1.97272 q^{23} +1.00000 q^{25} +1.08824 q^{27} -0.165159 q^{29} +1.57828 q^{31} +1.41312 q^{33} -0.354563 q^{36} +1.89163 q^{37} -0.394442 q^{39} +1.89163 q^{41} -0.165159 q^{43} -1.75895 q^{44} -0.803391 q^{48} +1.00000 q^{49} -0.878826 q^{51} +0.490971 q^{52} +1.00000 q^{64} +1.09390 q^{67} +1.09390 q^{68} +1.58487 q^{69} +0.490971 q^{71} -1.97272 q^{73} -0.803391 q^{75} -1.75895 q^{79} -0.519722 q^{81} +0.132687 q^{87} +1.57828 q^{89} -1.97272 q^{92} -1.26798 q^{93} -1.35456 q^{97} +0.623658 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - q^{3} + 9 q^{4} + 8 q^{9} - q^{11} - q^{12} - q^{13} + 9 q^{16} - q^{17} - q^{23} + 9 q^{25} - 2 q^{27} - q^{29} - q^{31} - 2 q^{33} + 8 q^{36} - q^{37} - 2 q^{39} - q^{41} - q^{43} - q^{44}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3467\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(3\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(4\) 1.00000 1.00000
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) −0.354563 −0.354563
\(10\) 0 0
\(11\) −1.75895 −1.75895 −0.879474 0.475947i \(-0.842105\pi\)
−0.879474 + 0.475947i \(0.842105\pi\)
\(12\) −0.803391 −0.803391
\(13\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 1.00000
\(17\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(24\) 0 0
\(25\) 1.00000 1.00000
\(26\) 0 0
\(27\) 1.08824 1.08824
\(28\) 0 0
\(29\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(30\) 0 0
\(31\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(32\) 0 0
\(33\) 1.41312 1.41312
\(34\) 0 0
\(35\) 0 0
\(36\) −0.354563 −0.354563
\(37\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(38\) 0 0
\(39\) −0.394442 −0.394442
\(40\) 0 0
\(41\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(42\) 0 0
\(43\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(44\) −1.75895 −1.75895
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) −0.803391 −0.803391
\(49\) 1.00000 1.00000
\(50\) 0 0
\(51\) −0.878826 −0.878826
\(52\) 0.490971 0.490971
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(68\) 1.09390 1.09390
\(69\) 1.58487 1.58487
\(70\) 0 0
\(71\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(72\) 0 0
\(73\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(74\) 0 0
\(75\) −0.803391 −0.803391
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.75895 −1.75895 −0.879474 0.475947i \(-0.842105\pi\)
−0.879474 + 0.475947i \(0.842105\pi\)
\(80\) 0 0
\(81\) −0.519722 −0.519722
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0.132687 0.132687
\(88\) 0 0
\(89\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.97272 −1.97272
\(93\) −1.26798 −1.26798
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(98\) 0 0
\(99\) 0.623658 0.623658
\(100\) 1.00000 1.00000
\(101\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(108\) 1.08824 1.08824
\(109\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(110\) 0 0
\(111\) −1.51972 −1.51972
\(112\) 0 0
\(113\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.165159 −0.165159
\(117\) −0.174080 −0.174080
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 2.09390 2.09390
\(122\) 0 0
\(123\) −1.51972 −1.51972
\(124\) 1.57828 1.57828
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0.132687 0.132687
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 1.41312 1.41312
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.863592 −0.863592
\(144\) −0.354563 −0.354563
\(145\) 0 0
\(146\) 0 0
\(147\) −0.803391 −0.803391
\(148\) 1.89163 1.89163
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) −0.387855 −0.387855
\(154\) 0 0
\(155\) 0 0
\(156\) −0.394442 −0.394442
\(157\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(164\) 1.89163 1.89163
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −0.758948 −0.758948
\(170\) 0 0
\(171\) 0 0
\(172\) −0.165159 −0.165159
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.75895 −1.75895
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1.92411 −1.92411
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(192\) −0.803391 −0.803391
\(193\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 1.00000 1.00000
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(200\) 0 0
\(201\) −0.878826 −0.878826
\(202\) 0 0
\(203\) 0 0
\(204\) −0.878826 −0.878826
\(205\) 0 0
\(206\) 0 0
\(207\) 0.699455 0.699455
\(208\) 0.490971 0.490971
\(209\) 0 0
\(210\) 0 0
\(211\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(212\) 0 0
\(213\) −0.394442 −0.394442
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 1.58487 1.58487
\(220\) 0 0
\(221\) 0.537071 0.537071
\(222\) 0 0
\(223\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(224\) 0 0
\(225\) −0.354563 −0.354563
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1.41312 1.41312
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) −0.670704 −0.670704
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 3.46992 3.46992
\(254\) 0 0
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0.0585592 0.0585592
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −1.26798 −1.26798
\(268\) 1.09390 1.09390
\(269\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(270\) 0 0
\(271\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(272\) 1.09390 1.09390
\(273\) 0 0
\(274\) 0 0
\(275\) −1.75895 −1.75895
\(276\) 1.58487 1.58487
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) −0.559600 −0.559600
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0.490971 0.490971
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.196609 0.196609
\(290\) 0 0
\(291\) 1.08824 1.08824
\(292\) −1.97272 −1.97272
\(293\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1.91416 −1.91416
\(298\) 0 0
\(299\) −0.968550 −0.968550
\(300\) −0.803391 −0.803391
\(301\) 0 0
\(302\) 0 0
\(303\) 1.08824 1.08824
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(312\) 0 0
\(313\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −1.75895 −1.75895
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0.290505 0.290505
\(320\) 0 0
\(321\) −1.26798 −1.26798
\(322\) 0 0
\(323\) 0 0
\(324\) −0.519722 −0.519722
\(325\) 0.490971 0.490971
\(326\) 0 0
\(327\) 1.58487 1.58487
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) −0.670704 −0.670704
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) −1.26798 −1.26798
\(340\) 0 0
\(341\) −2.77611 −2.77611
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(348\) 0.132687 0.132687
\(349\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(350\) 0 0
\(351\) 0.534296 0.534296
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 1.57828 1.57828
\(357\) 0 0
\(358\) 0 0
\(359\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) −1.68222 −1.68222
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) −1.97272 −1.97272
\(369\) −0.670704 −0.670704
\(370\) 0 0
\(371\) 0 0
\(372\) −1.26798 −1.26798
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.0810881 −0.0810881
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.0585592 0.0585592
\(388\) −1.35456 −1.35456
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) −2.15795 −2.15795
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0.623658 0.623658
\(397\) −1.75895 −1.75895 −0.879474 0.475947i \(-0.842105\pi\)
−0.879474 + 0.475947i \(0.842105\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 1.00000 1.00000
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0.774890 0.774890
\(404\) −1.35456 −1.35456
\(405\) 0 0
\(406\) 0 0
\(407\) −3.32729 −3.32729
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.09390 1.09390
\(426\) 0 0
\(427\) 0 0
\(428\) 1.57828 1.57828
\(429\) 0.693802 0.693802
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 1.08824 1.08824
\(433\) −1.75895 −1.75895 −0.879474 0.475947i \(-0.842105\pi\)
−0.879474 + 0.475947i \(0.842105\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.97272 −1.97272
\(437\) 0 0
\(438\) 0 0
\(439\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(440\) 0 0
\(441\) −0.354563 −0.354563
\(442\) 0 0
\(443\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(444\) −1.51972 −1.51972
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(450\) 0 0
\(451\) −3.32729 −3.32729
\(452\) 1.57828 1.57828
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.75895 −1.75895 −0.879474 0.475947i \(-0.842105\pi\)
−0.879474 + 0.475947i \(0.842105\pi\)
\(458\) 0 0
\(459\) 1.19043 1.19043
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) −0.165159 −0.165159
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) −0.174080 −0.174080
\(469\) 0 0
\(470\) 0 0
\(471\) 1.58487 1.58487
\(472\) 0 0
\(473\) 0.290505 0.290505
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(480\) 0 0
\(481\) 0.928738 0.928738
\(482\) 0 0
\(483\) 0 0
\(484\) 2.09390 2.09390
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 1.08824 1.08824
\(490\) 0 0
\(491\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(492\) −1.51972 −1.51972
\(493\) −0.180666 −0.180666
\(494\) 0 0
\(495\) 0 0
\(496\) 1.57828 1.57828
\(497\) 0 0
\(498\) 0 0
\(499\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.609731 0.609731
\(508\) 0 0
\(509\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0.132687 0.132687
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(522\) 0 0
\(523\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.72648 1.72648
\(528\) 1.41312 1.41312
\(529\) 2.89163 2.89163
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.928738 0.928738
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.75895 −1.75895
\(540\) 0 0
\(541\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) −0.0810881 −0.0810881
\(560\) 0 0
\(561\) 1.54581 1.54581
\(562\) 0 0
\(563\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(572\) −0.863592 −0.863592
\(573\) −1.51972 −1.51972
\(574\) 0 0
\(575\) −1.97272 −1.97272
\(576\) −0.354563 −0.354563
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 1.08824 1.08824
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(588\) −0.803391 −0.803391
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 1.89163 1.89163
\(593\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.132687 0.132687
\(598\) 0 0
\(599\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(600\) 0 0
\(601\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(602\) 0 0
\(603\) −0.387855 −0.387855
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −0.387855 −0.387855
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(620\) 0 0
\(621\) −2.14680 −2.14680
\(622\) 0 0
\(623\) 0 0
\(624\) −0.394442 −0.394442
\(625\) 1.00000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) −1.97272 −1.97272
\(629\) 2.06925 2.06925
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) −1.51972 −1.51972
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0.490971 0.490971
\(638\) 0 0
\(639\) −0.174080 −0.174080
\(640\) 0 0
\(641\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −1.35456 −1.35456
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.89163 1.89163
\(657\) 0.699455 0.699455
\(658\) 0 0
\(659\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) −0.431478 −0.431478
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0.325812 0.325812
\(668\) 0 0
\(669\) −0.878826 −0.878826
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 1.08824 1.08824
\(676\) −0.758948 −0.758948
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −0.165159 −0.165159
\(689\) 0 0
\(690\) 0 0
\(691\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.06925 2.06925
\(698\) 0 0
\(699\) −0.394442 −0.394442
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −1.75895 −1.75895
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(710\) 0 0
\(711\) 0.623658 0.623658
\(712\) 0 0
\(713\) −3.11351 −3.11351
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.165159 −0.165159
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.05856 1.05856
\(730\) 0 0
\(731\) −0.180666 −0.180666
\(732\) 0 0
\(733\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.92411 −1.92411
\(738\) 0 0
\(739\) 0.490971 0.490971 0.245485 0.969400i \(-0.421053\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) −1.92411 −1.92411
\(749\) 0 0
\(750\) 0 0
\(751\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) −2.78770 −2.78770
\(760\) 0 0
\(761\) −1.97272 −1.97272 −0.986361 0.164595i \(-0.947368\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 1.89163 1.89163
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −0.803391 −0.803391
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.35456 −1.35456
\(773\) −1.75895 −1.75895 −0.879474 0.475947i \(-0.842105\pi\)
−0.879474 + 0.475947i \(0.842105\pi\)
\(774\) 0 0
\(775\) 1.57828 1.57828
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −0.863592 −0.863592
\(782\) 0 0
\(783\) −0.179733 −0.179733
\(784\) 1.00000 1.00000
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −0.165159 −0.165159
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −0.559600 −0.559600
\(802\) 0 0
\(803\) 3.46992 3.46992
\(804\) −0.878826 −0.878826
\(805\) 0 0
\(806\) 0 0
\(807\) 0.132687 0.132687
\(808\) 0 0
\(809\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) −1.26798 −1.26798
\(814\) 0 0
\(815\) 0 0
\(816\) −0.878826 −0.878826
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.57828 1.57828 0.789141 0.614213i \(-0.210526\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(822\) 0 0
\(823\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(824\) 0 0
\(825\) 1.41312 1.41312
\(826\) 0 0
\(827\) 1.89163 1.89163 0.945817 0.324699i \(-0.105263\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(828\) 0.699455 0.699455
\(829\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0.490971 0.490971
\(833\) 1.09390 1.09390
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.71755 1.71755
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −0.972723 −0.972723
\(842\) 0 0
\(843\) 0 0
\(844\) 1.89163 1.89163
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −3.73167 −3.73167
\(852\) −0.394442 −0.394442
\(853\) −0.165159 −0.165159 −0.0825793 0.996584i \(-0.526316\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −0.803391 −0.803391 −0.401695 0.915773i \(-0.631579\pi\)
−0.401695 + 0.915773i \(0.631579\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −0.157954 −0.157954
\(868\) 0 0
\(869\) 3.09390 3.09390
\(870\) 0 0
\(871\) 0.537071 0.537071
\(872\) 0 0
\(873\) 0.480278 0.480278
\(874\) 0 0
\(875\) 0 0
\(876\) 1.58487 1.58487
\(877\) 1.09390 1.09390 0.546948 0.837166i \(-0.315789\pi\)
0.546948 + 0.837166i \(0.315789\pi\)
\(878\) 0 0
\(879\) 0.645437 0.645437
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0.537071 0.537071
\(885\) 0 0
\(886\) 0 0
\(887\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0.914163 0.914163
\(892\) 1.09390 1.09390
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0.778124 0.778124
\(898\) 0 0
\(899\) −0.260667 −0.260667
\(900\) −0.354563 −0.354563
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0.480278 0.480278
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0.241052 0.241052
\(924\) 0 0
\(925\) 1.89163 1.89163
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0.490971 0.490971
\(933\) −0.394442 −0.394442
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0.645437 0.645437
\(940\) 0 0
\(941\) −1.75895 −1.75895 −0.879474 0.475947i \(-0.842105\pi\)
−0.879474 + 0.475947i \(0.842105\pi\)
\(942\) 0 0
\(943\) −3.73167 −3.73167
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.35456 −1.35456 −0.677282 0.735724i \(-0.736842\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(948\) 1.41312 1.41312
\(949\) −0.968550 −0.968550
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −0.233389 −0.233389
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.49097 1.49097
\(962\) 0 0
\(963\) −0.559600 −0.559600
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) −0.670704 −0.670704
\(973\) 0 0
\(974\) 0 0
\(975\) −0.394442 −0.394442
\(976\) 0 0
\(977\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(978\) 0 0
\(979\) −2.77611 −2.77611
\(980\) 0 0
\(981\) 0.699455 0.699455
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.325812 0.325812
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1.75895 −1.75895 −0.879474 0.475947i \(-0.842105\pi\)
−0.879474 + 0.475947i \(0.842105\pi\)
\(998\) 0 0
\(999\) 2.05856 2.05856
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3467.1.b.a.3466.4 9
3467.3466 odd 2 CM 3467.1.b.a.3466.4 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3467.1.b.a.3466.4 9 1.1 even 1 trivial
3467.1.b.a.3466.4 9 3467.3466 odd 2 CM