Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3467,2,Mod(1,3467)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3467, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3467.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 3467 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3467.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(27.6841343808\) |
Analytic rank: | \(1\) |
Dimension: | \(126\) |
Twist minimal: | yes |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −2.81889 | 1.88995 | 5.94612 | 0.0344178 | −5.32754 | 0.0210525 | −11.1236 | 0.571893 | −0.0970198 | ||||||||||||||||||
1.2 | −2.70199 | −2.09860 | 5.30076 | 4.30988 | 5.67040 | 1.11728 | −8.91864 | 1.40411 | −11.6453 | ||||||||||||||||||
1.3 | −2.65255 | −2.93902 | 5.03600 | −0.874862 | 7.79587 | −1.75901 | −8.05313 | 5.63781 | 2.32061 | ||||||||||||||||||
1.4 | −2.59942 | −0.00337391 | 4.75700 | 0.594552 | 0.00877021 | −0.0975981 | −7.16662 | −2.99999 | −1.54549 | ||||||||||||||||||
1.5 | −2.59264 | −3.37242 | 4.72177 | 0.980667 | 8.74347 | 0.391354 | −7.05657 | 8.37323 | −2.54251 | ||||||||||||||||||
1.6 | −2.58136 | −1.91872 | 4.66342 | 0.890273 | 4.95291 | −3.20311 | −6.87523 | 0.681498 | −2.29811 | ||||||||||||||||||
1.7 | −2.57298 | −0.267298 | 4.62023 | −2.52986 | 0.687753 | −4.69728 | −6.74181 | −2.92855 | 6.50927 | ||||||||||||||||||
1.8 | −2.53407 | −0.0627431 | 4.42150 | 1.25371 | 0.158995 | 4.70847 | −6.13625 | −2.99606 | −3.17699 | ||||||||||||||||||
1.9 | −2.52387 | −1.17627 | 4.36993 | −2.77279 | 2.96875 | 1.50723 | −5.98139 | −1.61639 | 6.99817 | ||||||||||||||||||
1.10 | −2.51087 | 2.31262 | 4.30446 | 0.617108 | −5.80669 | −3.50171 | −5.78621 | 2.34822 | −1.54948 | ||||||||||||||||||
1.11 | −2.44912 | 1.51788 | 3.99820 | 3.38472 | −3.71747 | −0.262313 | −4.89384 | −0.696042 | −8.28959 | ||||||||||||||||||
1.12 | −2.41383 | 2.94587 | 3.82656 | −1.24422 | −7.11083 | −1.16259 | −4.40901 | 5.67816 | 3.00333 | ||||||||||||||||||
1.13 | −2.34534 | −0.641042 | 3.50064 | 2.05340 | 1.50346 | 2.98302 | −3.51951 | −2.58907 | −4.81592 | ||||||||||||||||||
1.14 | −2.30915 | −2.10535 | 3.33217 | 0.0313740 | 4.86157 | 0.850976 | −3.07619 | 1.43250 | −0.0724474 | ||||||||||||||||||
1.15 | −2.25286 | 1.81709 | 3.07540 | 0.961173 | −4.09365 | −3.61685 | −2.42273 | 0.301811 | −2.16539 | ||||||||||||||||||
1.16 | −2.23448 | −2.02465 | 2.99292 | 2.52351 | 4.52405 | −3.87648 | −2.21866 | 1.09920 | −5.63873 | ||||||||||||||||||
1.17 | −2.20044 | −1.79291 | 2.84195 | −2.03691 | 3.94519 | 3.67495 | −1.85267 | 0.214519 | 4.48210 | ||||||||||||||||||
1.18 | −2.16722 | −0.211282 | 2.69686 | −1.75495 | 0.457895 | −1.86583 | −1.51026 | −2.95536 | 3.80337 | ||||||||||||||||||
1.19 | −2.13193 | 1.56803 | 2.54511 | −1.31271 | −3.34293 | 2.51209 | −1.16213 | −0.541279 | 2.79859 | ||||||||||||||||||
1.20 | −2.12058 | 1.70158 | 2.49684 | 2.03679 | −3.60832 | 3.50112 | −1.05359 | −0.104638 | −4.31916 | ||||||||||||||||||
See next 80 embeddings (of 126 total) |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3467\) | \( +1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3467.2.a.b | ✓ | 126 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
3467.2.a.b | ✓ | 126 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{126} + 11 T_{2}^{125} - 115 T_{2}^{124} - 1685 T_{2}^{123} + 5240 T_{2}^{122} + 124649 T_{2}^{121} + \cdots + 41591 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3467))\).