Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3467,2,Mod(1,3467)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3467, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3467.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 3467 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3467.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(27.6841343808\) |
Analytic rank: | \(0\) |
Dimension: | \(162\) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −2.77001 | 3.13539 | 5.67294 | −3.74377 | −8.68507 | −2.59894 | −10.1741 | 6.83070 | 10.3703 | ||||||||||||||||||
1.2 | −2.76339 | −1.19712 | 5.63632 | −3.83920 | 3.30811 | 0.396758 | −10.0486 | −1.56690 | 10.6092 | ||||||||||||||||||
1.3 | −2.75260 | −1.14455 | 5.57679 | 3.26674 | 3.15048 | −4.62962 | −9.84547 | −1.69001 | −8.99203 | ||||||||||||||||||
1.4 | −2.74906 | −0.534947 | 5.55732 | 1.27817 | 1.47060 | 0.611481 | −9.77929 | −2.71383 | −3.51376 | ||||||||||||||||||
1.5 | −2.73871 | 1.92051 | 5.50054 | 3.55276 | −5.25972 | 2.70752 | −9.58697 | 0.688350 | −9.72999 | ||||||||||||||||||
1.6 | −2.72511 | −2.47314 | 5.42623 | 0.222863 | 6.73958 | 4.75166 | −9.33686 | 3.11642 | −0.607327 | ||||||||||||||||||
1.7 | −2.62421 | 0.535292 | 4.88647 | −1.72546 | −1.40472 | −0.538039 | −7.57470 | −2.71346 | 4.52797 | ||||||||||||||||||
1.8 | −2.60847 | 1.45556 | 4.80412 | −1.44543 | −3.79678 | 2.62404 | −7.31448 | −0.881354 | 3.77036 | ||||||||||||||||||
1.9 | −2.60743 | 1.27566 | 4.79871 | −3.17859 | −3.32620 | 4.41798 | −7.29746 | −1.37269 | 8.28796 | ||||||||||||||||||
1.10 | −2.58030 | 1.97569 | 4.65793 | −3.02354 | −5.09786 | −2.06851 | −6.85824 | 0.903346 | 7.80162 | ||||||||||||||||||
1.11 | −2.55691 | 0.579978 | 4.53779 | 0.584541 | −1.48295 | −2.87828 | −6.48889 | −2.66363 | −1.49462 | ||||||||||||||||||
1.12 | −2.54044 | 3.12416 | 4.45382 | 2.16374 | −7.93673 | 4.31506 | −6.23377 | 6.76037 | −5.49685 | ||||||||||||||||||
1.13 | −2.54011 | 3.37616 | 4.45214 | 3.00973 | −8.57581 | −3.02513 | −6.22871 | 8.39846 | −7.64502 | ||||||||||||||||||
1.14 | −2.52384 | −2.22798 | 4.36975 | −3.18933 | 5.62305 | 0.565198 | −5.98088 | 1.96388 | 8.04935 | ||||||||||||||||||
1.15 | −2.43856 | 0.828699 | 3.94656 | 3.17241 | −2.02083 | −0.797262 | −4.74680 | −2.31326 | −7.73611 | ||||||||||||||||||
1.16 | −2.41030 | 2.99235 | 3.80954 | −2.37452 | −7.21245 | 3.58446 | −4.36154 | 5.95415 | 5.72329 | ||||||||||||||||||
1.17 | −2.38469 | −3.31861 | 3.68674 | 3.38333 | 7.91386 | −1.46940 | −4.02235 | 8.01318 | −8.06818 | ||||||||||||||||||
1.18 | −2.37064 | −2.10307 | 3.61993 | 0.834031 | 4.98562 | −2.35419 | −3.84026 | 1.42290 | −1.97719 | ||||||||||||||||||
1.19 | −2.33790 | −0.576512 | 3.46576 | 1.91248 | 1.34783 | 4.47693 | −3.42681 | −2.66763 | −4.47118 | ||||||||||||||||||
1.20 | −2.29213 | −2.38838 | 3.25387 | −2.03861 | 5.47448 | 2.45572 | −2.87404 | 2.70435 | 4.67276 | ||||||||||||||||||
See next 80 embeddings (of 162 total) |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3467\) | \( -1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3467.2.a.c | ✓ | 162 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
3467.2.a.c | ✓ | 162 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{162} - 9 T_{2}^{161} - 216 T_{2}^{160} + 2166 T_{2}^{159} + 22307 T_{2}^{158} + \cdots + 88\!\cdots\!56 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3467))\).