Properties

Label 3467.2.a.c
Level 34673467
Weight 22
Character orbit 3467.a
Self dual yes
Analytic conductor 27.68427.684
Analytic rank 00
Dimension 162162
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3467,2,Mod(1,3467)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3467, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3467.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3467 3467
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3467.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 27.684134380827.6841343808
Analytic rank: 00
Dimension: 162162
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 162q+9q2+24q3+189q4+32q5+9q6+23q7+27q8+196q9+50q10+12q11+69q12+144q13+11q14+17q15+223q16+33q17+39q18+25q99+O(q100) 162 q + 9 q^{2} + 24 q^{3} + 189 q^{4} + 32 q^{5} + 9 q^{6} + 23 q^{7} + 27 q^{8} + 196 q^{9} + 50 q^{10} + 12 q^{11} + 69 q^{12} + 144 q^{13} + 11 q^{14} + 17 q^{15} + 223 q^{16} + 33 q^{17} + 39 q^{18}+ \cdots - 25 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1 −2.77001 3.13539 5.67294 −3.74377 −8.68507 −2.59894 −10.1741 6.83070 10.3703
1.2 −2.76339 −1.19712 5.63632 −3.83920 3.30811 0.396758 −10.0486 −1.56690 10.6092
1.3 −2.75260 −1.14455 5.57679 3.26674 3.15048 −4.62962 −9.84547 −1.69001 −8.99203
1.4 −2.74906 −0.534947 5.55732 1.27817 1.47060 0.611481 −9.77929 −2.71383 −3.51376
1.5 −2.73871 1.92051 5.50054 3.55276 −5.25972 2.70752 −9.58697 0.688350 −9.72999
1.6 −2.72511 −2.47314 5.42623 0.222863 6.73958 4.75166 −9.33686 3.11642 −0.607327
1.7 −2.62421 0.535292 4.88647 −1.72546 −1.40472 −0.538039 −7.57470 −2.71346 4.52797
1.8 −2.60847 1.45556 4.80412 −1.44543 −3.79678 2.62404 −7.31448 −0.881354 3.77036
1.9 −2.60743 1.27566 4.79871 −3.17859 −3.32620 4.41798 −7.29746 −1.37269 8.28796
1.10 −2.58030 1.97569 4.65793 −3.02354 −5.09786 −2.06851 −6.85824 0.903346 7.80162
1.11 −2.55691 0.579978 4.53779 0.584541 −1.48295 −2.87828 −6.48889 −2.66363 −1.49462
1.12 −2.54044 3.12416 4.45382 2.16374 −7.93673 4.31506 −6.23377 6.76037 −5.49685
1.13 −2.54011 3.37616 4.45214 3.00973 −8.57581 −3.02513 −6.22871 8.39846 −7.64502
1.14 −2.52384 −2.22798 4.36975 −3.18933 5.62305 0.565198 −5.98088 1.96388 8.04935
1.15 −2.43856 0.828699 3.94656 3.17241 −2.02083 −0.797262 −4.74680 −2.31326 −7.73611
1.16 −2.41030 2.99235 3.80954 −2.37452 −7.21245 3.58446 −4.36154 5.95415 5.72329
1.17 −2.38469 −3.31861 3.68674 3.38333 7.91386 −1.46940 −4.02235 8.01318 −8.06818
1.18 −2.37064 −2.10307 3.61993 0.834031 4.98562 −2.35419 −3.84026 1.42290 −1.97719
1.19 −2.33790 −0.576512 3.46576 1.91248 1.34783 4.47693 −3.42681 −2.66763 −4.47118
1.20 −2.29213 −2.38838 3.25387 −2.03861 5.47448 2.45572 −2.87404 2.70435 4.67276
See next 80 embeddings (of 162 total)
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.162
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
34673467 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3467.2.a.c 162
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3467.2.a.c 162 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T21629T2161216T2160+2166T2159+22307T2158++88 ⁣ ⁣56 T_{2}^{162} - 9 T_{2}^{161} - 216 T_{2}^{160} + 2166 T_{2}^{159} + 22307 T_{2}^{158} + \cdots + 88\!\cdots\!56 acting on S2new(Γ0(3467))S_{2}^{\mathrm{new}}(\Gamma_0(3467)). Copy content Toggle raw display