Properties

Label 35.2.j
Level $35$
Weight $2$
Character orbit 35.j
Rep. character $\chi_{35}(4,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $4$
Newform subspaces $1$
Sturm bound $8$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 35.j (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(8\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(35, [\chi])\).

Total New Old
Modular forms 12 12 0
Cusp forms 4 4 0
Eisenstein series 8 8 0

Trace form

\( 4 q - 2 q^{4} - 2 q^{5} - 4 q^{6} - 4 q^{9} + O(q^{10}) \) \( 4 q - 2 q^{4} - 2 q^{5} - 4 q^{6} - 4 q^{9} - 4 q^{10} + 8 q^{14} + 8 q^{15} + 2 q^{16} + 12 q^{19} + 4 q^{20} - 10 q^{21} + 6 q^{24} + 6 q^{25} - 4 q^{26} - 28 q^{29} + 2 q^{30} - 4 q^{31} - 8 q^{34} - 16 q^{35} + 8 q^{36} - 4 q^{39} - 12 q^{40} + 20 q^{41} - 4 q^{45} + 6 q^{46} + 26 q^{49} + 16 q^{50} + 4 q^{51} + 10 q^{54} + 6 q^{56} + 20 q^{59} - 4 q^{60} - 14 q^{61} - 28 q^{64} + 8 q^{65} - 12 q^{69} - 10 q^{70} - 8 q^{71} - 16 q^{74} - 8 q^{75} - 24 q^{76} - 4 q^{79} + 2 q^{80} - 2 q^{81} + 8 q^{84} + 16 q^{85} - 14 q^{86} + 18 q^{89} + 16 q^{90} - 4 q^{91} + 12 q^{95} + 10 q^{96} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(35, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
35.2.j.a 35.j 35.j $4$ $0.279$ \(\Q(\zeta_{12})\) None 35.2.j.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}+(-\zeta_{12}+\zeta_{12}^{3})q^{3}-\zeta_{12}^{2}q^{4}+\cdots\)