Defining parameters
Level: | \( N \) | \(=\) | \( 35 = 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 35.j (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 35 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(8\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(35, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 12 | 12 | 0 |
Cusp forms | 4 | 4 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(35, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
35.2.j.a | $4$ | $0.279$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+\zeta_{12}q^{2}+(-\zeta_{12}+\zeta_{12}^{3})q^{3}-\zeta_{12}^{2}q^{4}+\cdots\) |