Properties

Label 350.2.j.a.249.2
Level $350$
Weight $2$
Character 350.249
Analytic conductor $2.795$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,2,Mod(149,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 350.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.79476407074\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 249.2
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 350.249
Dual form 350.2.j.a.149.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(-1.73205 - 1.00000i) q^{3} +(0.500000 - 0.866025i) q^{4} -2.00000 q^{6} +(1.73205 - 2.00000i) q^{7} -1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +(-1.50000 + 2.59808i) q^{11} +(-1.73205 + 1.00000i) q^{12} -5.00000i q^{13} +(0.500000 - 2.59808i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(-5.19615 - 3.00000i) q^{17} +(0.866025 + 0.500000i) q^{18} +(-0.500000 - 0.866025i) q^{19} +(-5.00000 + 1.73205i) q^{21} +3.00000i q^{22} +(-2.59808 + 1.50000i) q^{23} +(-1.00000 + 1.73205i) q^{24} +(-2.50000 - 4.33013i) q^{26} +4.00000i q^{27} +(-0.866025 - 2.50000i) q^{28} +6.00000 q^{29} +(2.00000 - 3.46410i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(5.19615 - 3.00000i) q^{33} -6.00000 q^{34} +1.00000 q^{36} +(9.52628 - 5.50000i) q^{37} +(-0.866025 - 0.500000i) q^{38} +(-5.00000 + 8.66025i) q^{39} +3.00000 q^{41} +(-3.46410 + 4.00000i) q^{42} +10.0000i q^{43} +(1.50000 + 2.59808i) q^{44} +(-1.50000 + 2.59808i) q^{46} +(2.59808 - 1.50000i) q^{47} +2.00000i q^{48} +(-1.00000 - 6.92820i) q^{49} +(6.00000 + 10.3923i) q^{51} +(-4.33013 - 2.50000i) q^{52} +(2.59808 + 1.50000i) q^{53} +(2.00000 + 3.46410i) q^{54} +(-2.00000 - 1.73205i) q^{56} +2.00000i q^{57} +(5.19615 - 3.00000i) q^{58} +(2.00000 + 3.46410i) q^{61} -4.00000i q^{62} +(2.59808 + 0.500000i) q^{63} -1.00000 q^{64} +(3.00000 - 5.19615i) q^{66} +(3.46410 + 2.00000i) q^{67} +(-5.19615 + 3.00000i) q^{68} +6.00000 q^{69} +12.0000 q^{71} +(0.866025 - 0.500000i) q^{72} +(-3.46410 - 2.00000i) q^{73} +(5.50000 - 9.52628i) q^{74} -1.00000 q^{76} +(2.59808 + 7.50000i) q^{77} +10.0000i q^{78} +(-5.00000 - 8.66025i) q^{79} +(5.50000 - 9.52628i) q^{81} +(2.59808 - 1.50000i) q^{82} +12.0000i q^{83} +(-1.00000 + 5.19615i) q^{84} +(5.00000 + 8.66025i) q^{86} +(-10.3923 - 6.00000i) q^{87} +(2.59808 + 1.50000i) q^{88} +(3.00000 + 5.19615i) q^{89} +(-10.0000 - 8.66025i) q^{91} +3.00000i q^{92} +(-6.92820 + 4.00000i) q^{93} +(1.50000 - 2.59808i) q^{94} +(1.00000 + 1.73205i) q^{96} +14.0000i q^{97} +(-4.33013 - 5.50000i) q^{98} -3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 8 q^{6} + 2 q^{9} - 6 q^{11} + 2 q^{14} - 2 q^{16} - 2 q^{19} - 20 q^{21} - 4 q^{24} - 10 q^{26} + 24 q^{29} + 8 q^{31} - 24 q^{34} + 4 q^{36} - 20 q^{39} + 12 q^{41} + 6 q^{44} - 6 q^{46}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) −1.73205 1.00000i −1.00000 0.577350i −0.0917517 0.995782i \(-0.529247\pi\)
−0.908248 + 0.418432i \(0.862580\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0 0
\(6\) −2.00000 −0.816497
\(7\) 1.73205 2.00000i 0.654654 0.755929i
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) −1.50000 + 2.59808i −0.452267 + 0.783349i −0.998526 0.0542666i \(-0.982718\pi\)
0.546259 + 0.837616i \(0.316051\pi\)
\(12\) −1.73205 + 1.00000i −0.500000 + 0.288675i
\(13\) 5.00000i 1.38675i −0.720577 0.693375i \(-0.756123\pi\)
0.720577 0.693375i \(-0.243877\pi\)
\(14\) 0.500000 2.59808i 0.133631 0.694365i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −5.19615 3.00000i −1.26025 0.727607i −0.287129 0.957892i \(-0.592701\pi\)
−0.973123 + 0.230285i \(0.926034\pi\)
\(18\) 0.866025 + 0.500000i 0.204124 + 0.117851i
\(19\) −0.500000 0.866025i −0.114708 0.198680i 0.802955 0.596040i \(-0.203260\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) 0 0
\(21\) −5.00000 + 1.73205i −1.09109 + 0.377964i
\(22\) 3.00000i 0.639602i
\(23\) −2.59808 + 1.50000i −0.541736 + 0.312772i −0.745782 0.666190i \(-0.767924\pi\)
0.204046 + 0.978961i \(0.434591\pi\)
\(24\) −1.00000 + 1.73205i −0.204124 + 0.353553i
\(25\) 0 0
\(26\) −2.50000 4.33013i −0.490290 0.849208i
\(27\) 4.00000i 0.769800i
\(28\) −0.866025 2.50000i −0.163663 0.472456i
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 2.00000 3.46410i 0.359211 0.622171i −0.628619 0.777714i \(-0.716379\pi\)
0.987829 + 0.155543i \(0.0497126\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 5.19615 3.00000i 0.904534 0.522233i
\(34\) −6.00000 −1.02899
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 9.52628 5.50000i 1.56611 0.904194i 0.569495 0.821995i \(-0.307139\pi\)
0.996616 0.0821995i \(-0.0261945\pi\)
\(38\) −0.866025 0.500000i −0.140488 0.0811107i
\(39\) −5.00000 + 8.66025i −0.800641 + 1.38675i
\(40\) 0 0
\(41\) 3.00000 0.468521 0.234261 0.972174i \(-0.424733\pi\)
0.234261 + 0.972174i \(0.424733\pi\)
\(42\) −3.46410 + 4.00000i −0.534522 + 0.617213i
\(43\) 10.0000i 1.52499i 0.646997 + 0.762493i \(0.276025\pi\)
−0.646997 + 0.762493i \(0.723975\pi\)
\(44\) 1.50000 + 2.59808i 0.226134 + 0.391675i
\(45\) 0 0
\(46\) −1.50000 + 2.59808i −0.221163 + 0.383065i
\(47\) 2.59808 1.50000i 0.378968 0.218797i −0.298401 0.954441i \(-0.596453\pi\)
0.677369 + 0.735643i \(0.263120\pi\)
\(48\) 2.00000i 0.288675i
\(49\) −1.00000 6.92820i −0.142857 0.989743i
\(50\) 0 0
\(51\) 6.00000 + 10.3923i 0.840168 + 1.45521i
\(52\) −4.33013 2.50000i −0.600481 0.346688i
\(53\) 2.59808 + 1.50000i 0.356873 + 0.206041i 0.667708 0.744423i \(-0.267275\pi\)
−0.310835 + 0.950464i \(0.600609\pi\)
\(54\) 2.00000 + 3.46410i 0.272166 + 0.471405i
\(55\) 0 0
\(56\) −2.00000 1.73205i −0.267261 0.231455i
\(57\) 2.00000i 0.264906i
\(58\) 5.19615 3.00000i 0.682288 0.393919i
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) 2.00000 + 3.46410i 0.256074 + 0.443533i 0.965187 0.261562i \(-0.0842377\pi\)
−0.709113 + 0.705095i \(0.750904\pi\)
\(62\) 4.00000i 0.508001i
\(63\) 2.59808 + 0.500000i 0.327327 + 0.0629941i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 3.00000 5.19615i 0.369274 0.639602i
\(67\) 3.46410 + 2.00000i 0.423207 + 0.244339i 0.696449 0.717607i \(-0.254762\pi\)
−0.273241 + 0.961946i \(0.588096\pi\)
\(68\) −5.19615 + 3.00000i −0.630126 + 0.363803i
\(69\) 6.00000 0.722315
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0.866025 0.500000i 0.102062 0.0589256i
\(73\) −3.46410 2.00000i −0.405442 0.234082i 0.283387 0.959006i \(-0.408542\pi\)
−0.688830 + 0.724923i \(0.741875\pi\)
\(74\) 5.50000 9.52628i 0.639362 1.10741i
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) 2.59808 + 7.50000i 0.296078 + 0.854704i
\(78\) 10.0000i 1.13228i
\(79\) −5.00000 8.66025i −0.562544 0.974355i −0.997274 0.0737937i \(-0.976489\pi\)
0.434730 0.900561i \(-0.356844\pi\)
\(80\) 0 0
\(81\) 5.50000 9.52628i 0.611111 1.05848i
\(82\) 2.59808 1.50000i 0.286910 0.165647i
\(83\) 12.0000i 1.31717i 0.752506 + 0.658586i \(0.228845\pi\)
−0.752506 + 0.658586i \(0.771155\pi\)
\(84\) −1.00000 + 5.19615i −0.109109 + 0.566947i
\(85\) 0 0
\(86\) 5.00000 + 8.66025i 0.539164 + 0.933859i
\(87\) −10.3923 6.00000i −1.11417 0.643268i
\(88\) 2.59808 + 1.50000i 0.276956 + 0.159901i
\(89\) 3.00000 + 5.19615i 0.317999 + 0.550791i 0.980071 0.198650i \(-0.0636557\pi\)
−0.662071 + 0.749441i \(0.730322\pi\)
\(90\) 0 0
\(91\) −10.0000 8.66025i −1.04828 0.907841i
\(92\) 3.00000i 0.312772i
\(93\) −6.92820 + 4.00000i −0.718421 + 0.414781i
\(94\) 1.50000 2.59808i 0.154713 0.267971i
\(95\) 0 0
\(96\) 1.00000 + 1.73205i 0.102062 + 0.176777i
\(97\) 14.0000i 1.42148i 0.703452 + 0.710742i \(0.251641\pi\)
−0.703452 + 0.710742i \(0.748359\pi\)
\(98\) −4.33013 5.50000i −0.437409 0.555584i
\(99\) −3.00000 −0.301511
\(100\) 0 0
\(101\) 6.00000 10.3923i 0.597022 1.03407i −0.396236 0.918149i \(-0.629684\pi\)
0.993258 0.115924i \(-0.0369830\pi\)
\(102\) 10.3923 + 6.00000i 1.02899 + 0.594089i
\(103\) 3.46410 2.00000i 0.341328 0.197066i −0.319531 0.947576i \(-0.603525\pi\)
0.660859 + 0.750510i \(0.270192\pi\)
\(104\) −5.00000 −0.490290
\(105\) 0 0
\(106\) 3.00000 0.291386
\(107\) −10.3923 + 6.00000i −1.00466 + 0.580042i −0.909624 0.415432i \(-0.863630\pi\)
−0.0950377 + 0.995474i \(0.530297\pi\)
\(108\) 3.46410 + 2.00000i 0.333333 + 0.192450i
\(109\) −2.00000 + 3.46410i −0.191565 + 0.331801i −0.945769 0.324840i \(-0.894690\pi\)
0.754204 + 0.656640i \(0.228023\pi\)
\(110\) 0 0
\(111\) −22.0000 −2.08815
\(112\) −2.59808 0.500000i −0.245495 0.0472456i
\(113\) 12.0000i 1.12887i −0.825479 0.564433i \(-0.809095\pi\)
0.825479 0.564433i \(-0.190905\pi\)
\(114\) 1.00000 + 1.73205i 0.0936586 + 0.162221i
\(115\) 0 0
\(116\) 3.00000 5.19615i 0.278543 0.482451i
\(117\) 4.33013 2.50000i 0.400320 0.231125i
\(118\) 0 0
\(119\) −15.0000 + 5.19615i −1.37505 + 0.476331i
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) 3.46410 + 2.00000i 0.313625 + 0.181071i
\(123\) −5.19615 3.00000i −0.468521 0.270501i
\(124\) −2.00000 3.46410i −0.179605 0.311086i
\(125\) 0 0
\(126\) 2.50000 0.866025i 0.222718 0.0771517i
\(127\) 19.0000i 1.68598i −0.537931 0.842989i \(-0.680794\pi\)
0.537931 0.842989i \(-0.319206\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 10.0000 17.3205i 0.880451 1.52499i
\(130\) 0 0
\(131\) −1.50000 2.59808i −0.131056 0.226995i 0.793028 0.609185i \(-0.208503\pi\)
−0.924084 + 0.382190i \(0.875170\pi\)
\(132\) 6.00000i 0.522233i
\(133\) −2.59808 0.500000i −0.225282 0.0433555i
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) −3.00000 + 5.19615i −0.257248 + 0.445566i
\(137\) −10.3923 6.00000i −0.887875 0.512615i −0.0146279 0.999893i \(-0.504656\pi\)
−0.873247 + 0.487278i \(0.837990\pi\)
\(138\) 5.19615 3.00000i 0.442326 0.255377i
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) −6.00000 −0.505291
\(142\) 10.3923 6.00000i 0.872103 0.503509i
\(143\) 12.9904 + 7.50000i 1.08631 + 0.627182i
\(144\) 0.500000 0.866025i 0.0416667 0.0721688i
\(145\) 0 0
\(146\) −4.00000 −0.331042
\(147\) −5.19615 + 13.0000i −0.428571 + 1.07222i
\(148\) 11.0000i 0.904194i
\(149\) 9.00000 + 15.5885i 0.737309 + 1.27706i 0.953703 + 0.300750i \(0.0972370\pi\)
−0.216394 + 0.976306i \(0.569430\pi\)
\(150\) 0 0
\(151\) −7.00000 + 12.1244i −0.569652 + 0.986666i 0.426948 + 0.904276i \(0.359589\pi\)
−0.996600 + 0.0823900i \(0.973745\pi\)
\(152\) −0.866025 + 0.500000i −0.0702439 + 0.0405554i
\(153\) 6.00000i 0.485071i
\(154\) 6.00000 + 5.19615i 0.483494 + 0.418718i
\(155\) 0 0
\(156\) 5.00000 + 8.66025i 0.400320 + 0.693375i
\(157\) −4.33013 2.50000i −0.345582 0.199522i 0.317156 0.948373i \(-0.397272\pi\)
−0.662738 + 0.748852i \(0.730606\pi\)
\(158\) −8.66025 5.00000i −0.688973 0.397779i
\(159\) −3.00000 5.19615i −0.237915 0.412082i
\(160\) 0 0
\(161\) −1.50000 + 7.79423i −0.118217 + 0.614271i
\(162\) 11.0000i 0.864242i
\(163\) 3.46410 2.00000i 0.271329 0.156652i −0.358162 0.933659i \(-0.616597\pi\)
0.629492 + 0.777007i \(0.283263\pi\)
\(164\) 1.50000 2.59808i 0.117130 0.202876i
\(165\) 0 0
\(166\) 6.00000 + 10.3923i 0.465690 + 0.806599i
\(167\) 9.00000i 0.696441i 0.937413 + 0.348220i \(0.113214\pi\)
−0.937413 + 0.348220i \(0.886786\pi\)
\(168\) 1.73205 + 5.00000i 0.133631 + 0.385758i
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0.500000 0.866025i 0.0382360 0.0662266i
\(172\) 8.66025 + 5.00000i 0.660338 + 0.381246i
\(173\) −2.59808 + 1.50000i −0.197528 + 0.114043i −0.595502 0.803354i \(-0.703047\pi\)
0.397974 + 0.917397i \(0.369713\pi\)
\(174\) −12.0000 −0.909718
\(175\) 0 0
\(176\) 3.00000 0.226134
\(177\) 0 0
\(178\) 5.19615 + 3.00000i 0.389468 + 0.224860i
\(179\) −1.50000 + 2.59808i −0.112115 + 0.194189i −0.916623 0.399753i \(-0.869096\pi\)
0.804508 + 0.593942i \(0.202429\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) −12.9904 2.50000i −0.962911 0.185312i
\(183\) 8.00000i 0.591377i
\(184\) 1.50000 + 2.59808i 0.110581 + 0.191533i
\(185\) 0 0
\(186\) −4.00000 + 6.92820i −0.293294 + 0.508001i
\(187\) 15.5885 9.00000i 1.13994 0.658145i
\(188\) 3.00000i 0.218797i
\(189\) 8.00000 + 6.92820i 0.581914 + 0.503953i
\(190\) 0 0
\(191\) −6.00000 10.3923i −0.434145 0.751961i 0.563081 0.826402i \(-0.309616\pi\)
−0.997225 + 0.0744412i \(0.976283\pi\)
\(192\) 1.73205 + 1.00000i 0.125000 + 0.0721688i
\(193\) −3.46410 2.00000i −0.249351 0.143963i 0.370116 0.928986i \(-0.379318\pi\)
−0.619467 + 0.785022i \(0.712651\pi\)
\(194\) 7.00000 + 12.1244i 0.502571 + 0.870478i
\(195\) 0 0
\(196\) −6.50000 2.59808i −0.464286 0.185577i
\(197\) 3.00000i 0.213741i −0.994273 0.106871i \(-0.965917\pi\)
0.994273 0.106871i \(-0.0340831\pi\)
\(198\) −2.59808 + 1.50000i −0.184637 + 0.106600i
\(199\) −2.00000 + 3.46410i −0.141776 + 0.245564i −0.928166 0.372168i \(-0.878615\pi\)
0.786389 + 0.617731i \(0.211948\pi\)
\(200\) 0 0
\(201\) −4.00000 6.92820i −0.282138 0.488678i
\(202\) 12.0000i 0.844317i
\(203\) 10.3923 12.0000i 0.729397 0.842235i
\(204\) 12.0000 0.840168
\(205\) 0 0
\(206\) 2.00000 3.46410i 0.139347 0.241355i
\(207\) −2.59808 1.50000i −0.180579 0.104257i
\(208\) −4.33013 + 2.50000i −0.300240 + 0.173344i
\(209\) 3.00000 0.207514
\(210\) 0 0
\(211\) −1.00000 −0.0688428 −0.0344214 0.999407i \(-0.510959\pi\)
−0.0344214 + 0.999407i \(0.510959\pi\)
\(212\) 2.59808 1.50000i 0.178437 0.103020i
\(213\) −20.7846 12.0000i −1.42414 0.822226i
\(214\) −6.00000 + 10.3923i −0.410152 + 0.710403i
\(215\) 0 0
\(216\) 4.00000 0.272166
\(217\) −3.46410 10.0000i −0.235159 0.678844i
\(218\) 4.00000i 0.270914i
\(219\) 4.00000 + 6.92820i 0.270295 + 0.468165i
\(220\) 0 0
\(221\) −15.0000 + 25.9808i −1.00901 + 1.74766i
\(222\) −19.0526 + 11.0000i −1.27872 + 0.738272i
\(223\) 8.00000i 0.535720i −0.963458 0.267860i \(-0.913684\pi\)
0.963458 0.267860i \(-0.0863164\pi\)
\(224\) −2.50000 + 0.866025i −0.167038 + 0.0578638i
\(225\) 0 0
\(226\) −6.00000 10.3923i −0.399114 0.691286i
\(227\) 20.7846 + 12.0000i 1.37952 + 0.796468i 0.992102 0.125435i \(-0.0400326\pi\)
0.387421 + 0.921903i \(0.373366\pi\)
\(228\) 1.73205 + 1.00000i 0.114708 + 0.0662266i
\(229\) −14.0000 24.2487i −0.925146 1.60240i −0.791326 0.611394i \(-0.790609\pi\)
−0.133820 0.991006i \(-0.542724\pi\)
\(230\) 0 0
\(231\) 3.00000 15.5885i 0.197386 1.02565i
\(232\) 6.00000i 0.393919i
\(233\) 5.19615 3.00000i 0.340411 0.196537i −0.320043 0.947403i \(-0.603697\pi\)
0.660454 + 0.750867i \(0.270364\pi\)
\(234\) 2.50000 4.33013i 0.163430 0.283069i
\(235\) 0 0
\(236\) 0 0
\(237\) 20.0000i 1.29914i
\(238\) −10.3923 + 12.0000i −0.673633 + 0.777844i
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) 12.5000 21.6506i 0.805196 1.39464i −0.110963 0.993825i \(-0.535394\pi\)
0.916159 0.400815i \(-0.131273\pi\)
\(242\) 1.73205 + 1.00000i 0.111340 + 0.0642824i
\(243\) −8.66025 + 5.00000i −0.555556 + 0.320750i
\(244\) 4.00000 0.256074
\(245\) 0 0
\(246\) −6.00000 −0.382546
\(247\) −4.33013 + 2.50000i −0.275519 + 0.159071i
\(248\) −3.46410 2.00000i −0.219971 0.127000i
\(249\) 12.0000 20.7846i 0.760469 1.31717i
\(250\) 0 0
\(251\) −15.0000 −0.946792 −0.473396 0.880850i \(-0.656972\pi\)
−0.473396 + 0.880850i \(0.656972\pi\)
\(252\) 1.73205 2.00000i 0.109109 0.125988i
\(253\) 9.00000i 0.565825i
\(254\) −9.50000 16.4545i −0.596083 1.03245i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −10.3923 + 6.00000i −0.648254 + 0.374270i −0.787787 0.615948i \(-0.788773\pi\)
0.139533 + 0.990217i \(0.455440\pi\)
\(258\) 20.0000i 1.24515i
\(259\) 5.50000 28.5788i 0.341753 1.77580i
\(260\) 0 0
\(261\) 3.00000 + 5.19615i 0.185695 + 0.321634i
\(262\) −2.59808 1.50000i −0.160510 0.0926703i
\(263\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) −3.00000 5.19615i −0.184637 0.319801i
\(265\) 0 0
\(266\) −2.50000 + 0.866025i −0.153285 + 0.0530994i
\(267\) 12.0000i 0.734388i
\(268\) 3.46410 2.00000i 0.211604 0.122169i
\(269\) −6.00000 + 10.3923i −0.365826 + 0.633630i −0.988908 0.148527i \(-0.952547\pi\)
0.623082 + 0.782157i \(0.285880\pi\)
\(270\) 0 0
\(271\) 8.00000 + 13.8564i 0.485965 + 0.841717i 0.999870 0.0161307i \(-0.00513477\pi\)
−0.513905 + 0.857847i \(0.671801\pi\)
\(272\) 6.00000i 0.363803i
\(273\) 8.66025 + 25.0000i 0.524142 + 1.51307i
\(274\) −12.0000 −0.724947
\(275\) 0 0
\(276\) 3.00000 5.19615i 0.180579 0.312772i
\(277\) −1.73205 1.00000i −0.104069 0.0600842i 0.447062 0.894503i \(-0.352470\pi\)
−0.551131 + 0.834419i \(0.685804\pi\)
\(278\) 3.46410 2.00000i 0.207763 0.119952i
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) −3.00000 −0.178965 −0.0894825 0.995988i \(-0.528521\pi\)
−0.0894825 + 0.995988i \(0.528521\pi\)
\(282\) −5.19615 + 3.00000i −0.309426 + 0.178647i
\(283\) 22.5167 + 13.0000i 1.33848 + 0.772770i 0.986581 0.163270i \(-0.0522041\pi\)
0.351895 + 0.936039i \(0.385537\pi\)
\(284\) 6.00000 10.3923i 0.356034 0.616670i
\(285\) 0 0
\(286\) 15.0000 0.886969
\(287\) 5.19615 6.00000i 0.306719 0.354169i
\(288\) 1.00000i 0.0589256i
\(289\) 9.50000 + 16.4545i 0.558824 + 0.967911i
\(290\) 0 0
\(291\) 14.0000 24.2487i 0.820695 1.42148i
\(292\) −3.46410 + 2.00000i −0.202721 + 0.117041i
\(293\) 27.0000i 1.57736i 0.614806 + 0.788678i \(0.289234\pi\)
−0.614806 + 0.788678i \(0.710766\pi\)
\(294\) 2.00000 + 13.8564i 0.116642 + 0.808122i
\(295\) 0 0
\(296\) −5.50000 9.52628i −0.319681 0.553704i
\(297\) −10.3923 6.00000i −0.603023 0.348155i
\(298\) 15.5885 + 9.00000i 0.903015 + 0.521356i
\(299\) 7.50000 + 12.9904i 0.433736 + 0.751253i
\(300\) 0 0
\(301\) 20.0000 + 17.3205i 1.15278 + 0.998337i
\(302\) 14.0000i 0.805609i
\(303\) −20.7846 + 12.0000i −1.19404 + 0.689382i
\(304\) −0.500000 + 0.866025i −0.0286770 + 0.0496700i
\(305\) 0 0
\(306\) −3.00000 5.19615i −0.171499 0.297044i
\(307\) 2.00000i 0.114146i 0.998370 + 0.0570730i \(0.0181768\pi\)
−0.998370 + 0.0570730i \(0.981823\pi\)
\(308\) 7.79423 + 1.50000i 0.444117 + 0.0854704i
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) −6.00000 + 10.3923i −0.340229 + 0.589294i −0.984475 0.175525i \(-0.943838\pi\)
0.644246 + 0.764818i \(0.277171\pi\)
\(312\) 8.66025 + 5.00000i 0.490290 + 0.283069i
\(313\) −6.92820 + 4.00000i −0.391605 + 0.226093i −0.682855 0.730554i \(-0.739262\pi\)
0.291250 + 0.956647i \(0.405929\pi\)
\(314\) −5.00000 −0.282166
\(315\) 0 0
\(316\) −10.0000 −0.562544
\(317\) 15.5885 9.00000i 0.875535 0.505490i 0.00635137 0.999980i \(-0.497978\pi\)
0.869184 + 0.494489i \(0.164645\pi\)
\(318\) −5.19615 3.00000i −0.291386 0.168232i
\(319\) −9.00000 + 15.5885i −0.503903 + 0.872786i
\(320\) 0 0
\(321\) 24.0000 1.33955
\(322\) 2.59808 + 7.50000i 0.144785 + 0.417959i
\(323\) 6.00000i 0.333849i
\(324\) −5.50000 9.52628i −0.305556 0.529238i
\(325\) 0 0
\(326\) 2.00000 3.46410i 0.110770 0.191859i
\(327\) 6.92820 4.00000i 0.383131 0.221201i
\(328\) 3.00000i 0.165647i
\(329\) 1.50000 7.79423i 0.0826977 0.429710i
\(330\) 0 0
\(331\) 3.50000 + 6.06218i 0.192377 + 0.333207i 0.946038 0.324057i \(-0.105047\pi\)
−0.753660 + 0.657264i \(0.771714\pi\)
\(332\) 10.3923 + 6.00000i 0.570352 + 0.329293i
\(333\) 9.52628 + 5.50000i 0.522037 + 0.301398i
\(334\) 4.50000 + 7.79423i 0.246229 + 0.426481i
\(335\) 0 0
\(336\) 4.00000 + 3.46410i 0.218218 + 0.188982i
\(337\) 14.0000i 0.762629i 0.924445 + 0.381314i \(0.124528\pi\)
−0.924445 + 0.381314i \(0.875472\pi\)
\(338\) −10.3923 + 6.00000i −0.565267 + 0.326357i
\(339\) −12.0000 + 20.7846i −0.651751 + 1.12887i
\(340\) 0 0
\(341\) 6.00000 + 10.3923i 0.324918 + 0.562775i
\(342\) 1.00000i 0.0540738i
\(343\) −15.5885 10.0000i −0.841698 0.539949i
\(344\) 10.0000 0.539164
\(345\) 0 0
\(346\) −1.50000 + 2.59808i −0.0806405 + 0.139673i
\(347\) −20.7846 12.0000i −1.11578 0.644194i −0.175457 0.984487i \(-0.556140\pi\)
−0.940319 + 0.340293i \(0.889474\pi\)
\(348\) −10.3923 + 6.00000i −0.557086 + 0.321634i
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) 20.0000 1.06752
\(352\) 2.59808 1.50000i 0.138478 0.0799503i
\(353\) 10.3923 + 6.00000i 0.553127 + 0.319348i 0.750382 0.661004i \(-0.229870\pi\)
−0.197256 + 0.980352i \(0.563203\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 6.00000 0.317999
\(357\) 31.1769 + 6.00000i 1.65006 + 0.317554i
\(358\) 3.00000i 0.158555i
\(359\) 3.00000 + 5.19615i 0.158334 + 0.274242i 0.934268 0.356572i \(-0.116054\pi\)
−0.775934 + 0.630814i \(0.782721\pi\)
\(360\) 0 0
\(361\) 9.00000 15.5885i 0.473684 0.820445i
\(362\) 1.73205 1.00000i 0.0910346 0.0525588i
\(363\) 4.00000i 0.209946i
\(364\) −12.5000 + 4.33013i −0.655178 + 0.226960i
\(365\) 0 0
\(366\) −4.00000 6.92820i −0.209083 0.362143i
\(367\) 0.866025 + 0.500000i 0.0452062 + 0.0260998i 0.522433 0.852680i \(-0.325025\pi\)
−0.477227 + 0.878780i \(0.658358\pi\)
\(368\) 2.59808 + 1.50000i 0.135434 + 0.0781929i
\(369\) 1.50000 + 2.59808i 0.0780869 + 0.135250i
\(370\) 0 0
\(371\) 7.50000 2.59808i 0.389381 0.134885i
\(372\) 8.00000i 0.414781i
\(373\) 29.4449 17.0000i 1.52460 0.880227i 0.525022 0.851089i \(-0.324057\pi\)
0.999575 0.0291379i \(-0.00927619\pi\)
\(374\) 9.00000 15.5885i 0.465379 0.806060i
\(375\) 0 0
\(376\) −1.50000 2.59808i −0.0773566 0.133986i
\(377\) 30.0000i 1.54508i
\(378\) 10.3923 + 2.00000i 0.534522 + 0.102869i
\(379\) 25.0000 1.28416 0.642082 0.766636i \(-0.278071\pi\)
0.642082 + 0.766636i \(0.278071\pi\)
\(380\) 0 0
\(381\) −19.0000 + 32.9090i −0.973399 + 1.68598i
\(382\) −10.3923 6.00000i −0.531717 0.306987i
\(383\) −12.9904 + 7.50000i −0.663777 + 0.383232i −0.793715 0.608290i \(-0.791856\pi\)
0.129937 + 0.991522i \(0.458522\pi\)
\(384\) 2.00000 0.102062
\(385\) 0 0
\(386\) −4.00000 −0.203595
\(387\) −8.66025 + 5.00000i −0.440225 + 0.254164i
\(388\) 12.1244 + 7.00000i 0.615521 + 0.355371i
\(389\) −12.0000 + 20.7846i −0.608424 + 1.05382i 0.383076 + 0.923717i \(0.374865\pi\)
−0.991500 + 0.130105i \(0.958469\pi\)
\(390\) 0 0
\(391\) 18.0000 0.910299
\(392\) −6.92820 + 1.00000i −0.349927 + 0.0505076i
\(393\) 6.00000i 0.302660i
\(394\) −1.50000 2.59808i −0.0755689 0.130889i
\(395\) 0 0
\(396\) −1.50000 + 2.59808i −0.0753778 + 0.130558i
\(397\) 1.73205 1.00000i 0.0869291 0.0501886i −0.455905 0.890028i \(-0.650684\pi\)
0.542834 + 0.839840i \(0.317351\pi\)
\(398\) 4.00000i 0.200502i
\(399\) 4.00000 + 3.46410i 0.200250 + 0.173422i
\(400\) 0 0
\(401\) −10.5000 18.1865i −0.524345 0.908192i −0.999598 0.0283431i \(-0.990977\pi\)
0.475253 0.879849i \(-0.342356\pi\)
\(402\) −6.92820 4.00000i −0.345547 0.199502i
\(403\) −17.3205 10.0000i −0.862796 0.498135i
\(404\) −6.00000 10.3923i −0.298511 0.517036i
\(405\) 0 0
\(406\) 3.00000 15.5885i 0.148888 0.773642i
\(407\) 33.0000i 1.63575i
\(408\) 10.3923 6.00000i 0.514496 0.297044i
\(409\) −11.0000 + 19.0526i −0.543915 + 0.942088i 0.454759 + 0.890614i \(0.349725\pi\)
−0.998674 + 0.0514740i \(0.983608\pi\)
\(410\) 0 0
\(411\) 12.0000 + 20.7846i 0.591916 + 1.02523i
\(412\) 4.00000i 0.197066i
\(413\) 0 0
\(414\) −3.00000 −0.147442
\(415\) 0 0
\(416\) −2.50000 + 4.33013i −0.122573 + 0.212302i
\(417\) −6.92820 4.00000i −0.339276 0.195881i
\(418\) 2.59808 1.50000i 0.127076 0.0733674i
\(419\) −15.0000 −0.732798 −0.366399 0.930458i \(-0.619409\pi\)
−0.366399 + 0.930458i \(0.619409\pi\)
\(420\) 0 0
\(421\) −34.0000 −1.65706 −0.828529 0.559946i \(-0.810822\pi\)
−0.828529 + 0.559946i \(0.810822\pi\)
\(422\) −0.866025 + 0.500000i −0.0421575 + 0.0243396i
\(423\) 2.59808 + 1.50000i 0.126323 + 0.0729325i
\(424\) 1.50000 2.59808i 0.0728464 0.126174i
\(425\) 0 0
\(426\) −24.0000 −1.16280
\(427\) 10.3923 + 2.00000i 0.502919 + 0.0967868i
\(428\) 12.0000i 0.580042i
\(429\) −15.0000 25.9808i −0.724207 1.25436i
\(430\) 0 0
\(431\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(432\) 3.46410 2.00000i 0.166667 0.0962250i
\(433\) 16.0000i 0.768911i 0.923144 + 0.384455i \(0.125611\pi\)
−0.923144 + 0.384455i \(0.874389\pi\)
\(434\) −8.00000 6.92820i −0.384012 0.332564i
\(435\) 0 0
\(436\) 2.00000 + 3.46410i 0.0957826 + 0.165900i
\(437\) 2.59808 + 1.50000i 0.124283 + 0.0717547i
\(438\) 6.92820 + 4.00000i 0.331042 + 0.191127i
\(439\) −5.00000 8.66025i −0.238637 0.413331i 0.721686 0.692220i \(-0.243367\pi\)
−0.960323 + 0.278889i \(0.910034\pi\)
\(440\) 0 0
\(441\) 5.50000 4.33013i 0.261905 0.206197i
\(442\) 30.0000i 1.42695i
\(443\) 20.7846 12.0000i 0.987507 0.570137i 0.0829786 0.996551i \(-0.473557\pi\)
0.904528 + 0.426414i \(0.140223\pi\)
\(444\) −11.0000 + 19.0526i −0.522037 + 0.904194i
\(445\) 0 0
\(446\) −4.00000 6.92820i −0.189405 0.328060i
\(447\) 36.0000i 1.70274i
\(448\) −1.73205 + 2.00000i −0.0818317 + 0.0944911i
\(449\) 3.00000 0.141579 0.0707894 0.997491i \(-0.477448\pi\)
0.0707894 + 0.997491i \(0.477448\pi\)
\(450\) 0 0
\(451\) −4.50000 + 7.79423i −0.211897 + 0.367016i
\(452\) −10.3923 6.00000i −0.488813 0.282216i
\(453\) 24.2487 14.0000i 1.13930 0.657777i
\(454\) 24.0000 1.12638
\(455\) 0 0
\(456\) 2.00000 0.0936586
\(457\) −19.0526 + 11.0000i −0.891241 + 0.514558i −0.874348 0.485299i \(-0.838711\pi\)
−0.0168929 + 0.999857i \(0.505377\pi\)
\(458\) −24.2487 14.0000i −1.13307 0.654177i
\(459\) 12.0000 20.7846i 0.560112 0.970143i
\(460\) 0 0
\(461\) 6.00000 0.279448 0.139724 0.990190i \(-0.455378\pi\)
0.139724 + 0.990190i \(0.455378\pi\)
\(462\) −5.19615 15.0000i −0.241747 0.697863i
\(463\) 19.0000i 0.883005i 0.897260 + 0.441502i \(0.145554\pi\)
−0.897260 + 0.441502i \(0.854446\pi\)
\(464\) −3.00000 5.19615i −0.139272 0.241225i
\(465\) 0 0
\(466\) 3.00000 5.19615i 0.138972 0.240707i
\(467\) −15.5885 + 9.00000i −0.721348 + 0.416470i −0.815249 0.579111i \(-0.803400\pi\)
0.0939008 + 0.995582i \(0.470066\pi\)
\(468\) 5.00000i 0.231125i
\(469\) 10.0000 3.46410i 0.461757 0.159957i
\(470\) 0 0
\(471\) 5.00000 + 8.66025i 0.230388 + 0.399043i
\(472\) 0 0
\(473\) −25.9808 15.0000i −1.19460 0.689701i
\(474\) 10.0000 + 17.3205i 0.459315 + 0.795557i
\(475\) 0 0
\(476\) −3.00000 + 15.5885i −0.137505 + 0.714496i
\(477\) 3.00000i 0.137361i
\(478\) −5.19615 + 3.00000i −0.237666 + 0.137217i
\(479\) 12.0000 20.7846i 0.548294 0.949673i −0.450098 0.892979i \(-0.648611\pi\)
0.998392 0.0566937i \(-0.0180558\pi\)
\(480\) 0 0
\(481\) −27.5000 47.6314i −1.25389 2.17180i
\(482\) 25.0000i 1.13872i
\(483\) 10.3923 12.0000i 0.472866 0.546019i
\(484\) 2.00000 0.0909091
\(485\) 0 0
\(486\) −5.00000 + 8.66025i −0.226805 + 0.392837i
\(487\) 13.8564 + 8.00000i 0.627894 + 0.362515i 0.779936 0.625859i \(-0.215252\pi\)
−0.152042 + 0.988374i \(0.548585\pi\)
\(488\) 3.46410 2.00000i 0.156813 0.0905357i
\(489\) −8.00000 −0.361773
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) −5.19615 + 3.00000i −0.234261 + 0.135250i
\(493\) −31.1769 18.0000i −1.40414 0.810679i
\(494\) −2.50000 + 4.33013i −0.112480 + 0.194822i
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 20.7846 24.0000i 0.932317 1.07655i
\(498\) 24.0000i 1.07547i
\(499\) −14.0000 24.2487i −0.626726 1.08552i −0.988204 0.153141i \(-0.951061\pi\)
0.361478 0.932381i \(-0.382272\pi\)
\(500\) 0 0
\(501\) 9.00000 15.5885i 0.402090 0.696441i
\(502\) −12.9904 + 7.50000i −0.579789 + 0.334741i
\(503\) 24.0000i 1.07011i −0.844818 0.535054i \(-0.820291\pi\)
0.844818 0.535054i \(-0.179709\pi\)
\(504\) 0.500000 2.59808i 0.0222718 0.115728i
\(505\) 0 0
\(506\) −4.50000 7.79423i −0.200049 0.346496i
\(507\) 20.7846 + 12.0000i 0.923077 + 0.532939i
\(508\) −16.4545 9.50000i −0.730050 0.421494i
\(509\) 3.00000 + 5.19615i 0.132973 + 0.230315i 0.924821 0.380402i \(-0.124214\pi\)
−0.791849 + 0.610718i \(0.790881\pi\)
\(510\) 0 0
\(511\) −10.0000 + 3.46410i −0.442374 + 0.153243i
\(512\) 1.00000i 0.0441942i
\(513\) 3.46410 2.00000i 0.152944 0.0883022i
\(514\) −6.00000 + 10.3923i −0.264649 + 0.458385i
\(515\) 0 0
\(516\) −10.0000 17.3205i −0.440225 0.762493i
\(517\) 9.00000i 0.395820i
\(518\) −9.52628 27.5000i −0.418561 1.20828i
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) −16.5000 + 28.5788i −0.722878 + 1.25206i 0.236963 + 0.971519i \(0.423848\pi\)
−0.959841 + 0.280543i \(0.909485\pi\)
\(522\) 5.19615 + 3.00000i 0.227429 + 0.131306i
\(523\) −17.3205 + 10.0000i −0.757373 + 0.437269i −0.828352 0.560208i \(-0.810721\pi\)
0.0709788 + 0.997478i \(0.477388\pi\)
\(524\) −3.00000 −0.131056
\(525\) 0 0
\(526\) 0 0
\(527\) −20.7846 + 12.0000i −0.905392 + 0.522728i
\(528\) −5.19615 3.00000i −0.226134 0.130558i
\(529\) −7.00000 + 12.1244i −0.304348 + 0.527146i
\(530\) 0 0
\(531\) 0 0
\(532\) −1.73205 + 2.00000i −0.0750939 + 0.0867110i
\(533\) 15.0000i 0.649722i
\(534\) −6.00000 10.3923i −0.259645 0.449719i
\(535\) 0 0
\(536\) 2.00000 3.46410i 0.0863868 0.149626i
\(537\) 5.19615 3.00000i 0.224231 0.129460i
\(538\) 12.0000i 0.517357i
\(539\) 19.5000 + 7.79423i 0.839924 + 0.335721i
\(540\) 0 0
\(541\) −4.00000 6.92820i −0.171973 0.297867i 0.767136 0.641484i \(-0.221681\pi\)
−0.939110 + 0.343617i \(0.888348\pi\)
\(542\) 13.8564 + 8.00000i 0.595184 + 0.343629i
\(543\) −3.46410 2.00000i −0.148659 0.0858282i
\(544\) 3.00000 + 5.19615i 0.128624 + 0.222783i
\(545\) 0 0
\(546\) 20.0000 + 17.3205i 0.855921 + 0.741249i
\(547\) 28.0000i 1.19719i −0.801050 0.598597i \(-0.795725\pi\)
0.801050 0.598597i \(-0.204275\pi\)
\(548\) −10.3923 + 6.00000i −0.443937 + 0.256307i
\(549\) −2.00000 + 3.46410i −0.0853579 + 0.147844i
\(550\) 0 0
\(551\) −3.00000 5.19615i −0.127804 0.221364i
\(552\) 6.00000i 0.255377i
\(553\) −25.9808 5.00000i −1.10481 0.212622i
\(554\) −2.00000 −0.0849719
\(555\) 0 0
\(556\) 2.00000 3.46410i 0.0848189 0.146911i
\(557\) 23.3827 + 13.5000i 0.990756 + 0.572013i 0.905500 0.424346i \(-0.139496\pi\)
0.0852559 + 0.996359i \(0.472829\pi\)
\(558\) 3.46410 2.00000i 0.146647 0.0846668i
\(559\) 50.0000 2.11477
\(560\) 0 0
\(561\) −36.0000 −1.51992
\(562\) −2.59808 + 1.50000i −0.109593 + 0.0632737i
\(563\) −15.5885 9.00000i −0.656975 0.379305i 0.134148 0.990961i \(-0.457170\pi\)
−0.791123 + 0.611656i \(0.790503\pi\)
\(564\) −3.00000 + 5.19615i −0.126323 + 0.218797i
\(565\) 0 0
\(566\) 26.0000 1.09286
\(567\) −9.52628 27.5000i −0.400066 1.15489i
\(568\) 12.0000i 0.503509i
\(569\) −1.50000 2.59808i −0.0628833 0.108917i 0.832870 0.553469i \(-0.186696\pi\)
−0.895753 + 0.444552i \(0.853363\pi\)
\(570\) 0 0
\(571\) −10.0000 + 17.3205i −0.418487 + 0.724841i −0.995788 0.0916910i \(-0.970773\pi\)
0.577301 + 0.816532i \(0.304106\pi\)
\(572\) 12.9904 7.50000i 0.543155 0.313591i
\(573\) 24.0000i 1.00261i
\(574\) 1.50000 7.79423i 0.0626088 0.325325i
\(575\) 0 0
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) −17.3205 10.0000i −0.721062 0.416305i 0.0940813 0.995565i \(-0.470009\pi\)
−0.815144 + 0.579259i \(0.803342\pi\)
\(578\) 16.4545 + 9.50000i 0.684416 + 0.395148i
\(579\) 4.00000 + 6.92820i 0.166234 + 0.287926i
\(580\) 0 0
\(581\) 24.0000 + 20.7846i 0.995688 + 0.862291i
\(582\) 28.0000i 1.16064i
\(583\) −7.79423 + 4.50000i −0.322804 + 0.186371i
\(584\) −2.00000 + 3.46410i −0.0827606 + 0.143346i
\(585\) 0 0
\(586\) 13.5000 + 23.3827i 0.557680 + 0.965930i
\(587\) 12.0000i 0.495293i 0.968850 + 0.247647i \(0.0796572\pi\)
−0.968850 + 0.247647i \(0.920343\pi\)
\(588\) 8.66025 + 11.0000i 0.357143 + 0.453632i
\(589\) −4.00000 −0.164817
\(590\) 0 0
\(591\) −3.00000 + 5.19615i −0.123404 + 0.213741i
\(592\) −9.52628 5.50000i −0.391528 0.226049i
\(593\) 31.1769 18.0000i 1.28028 0.739171i 0.303383 0.952869i \(-0.401884\pi\)
0.976900 + 0.213697i \(0.0685507\pi\)
\(594\) −12.0000 −0.492366
\(595\) 0 0
\(596\) 18.0000 0.737309
\(597\) 6.92820 4.00000i 0.283552 0.163709i
\(598\) 12.9904 + 7.50000i 0.531216 + 0.306698i
\(599\) 21.0000 36.3731i 0.858037 1.48616i −0.0157622 0.999876i \(-0.505017\pi\)
0.873799 0.486287i \(-0.161649\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 25.9808 + 5.00000i 1.05890 + 0.203785i
\(603\) 4.00000i 0.162893i
\(604\) 7.00000 + 12.1244i 0.284826 + 0.493333i
\(605\) 0 0
\(606\) −12.0000 + 20.7846i −0.487467 + 0.844317i
\(607\) −16.4545 + 9.50000i −0.667867 + 0.385593i −0.795268 0.606258i \(-0.792670\pi\)
0.127401 + 0.991851i \(0.459336\pi\)
\(608\) 1.00000i 0.0405554i
\(609\) −30.0000 + 10.3923i −1.21566 + 0.421117i
\(610\) 0 0
\(611\) −7.50000 12.9904i −0.303418 0.525535i
\(612\) −5.19615 3.00000i −0.210042 0.121268i
\(613\) 40.7032 + 23.5000i 1.64399 + 0.949156i 0.979396 + 0.201948i \(0.0647272\pi\)
0.664590 + 0.747208i \(0.268606\pi\)
\(614\) 1.00000 + 1.73205i 0.0403567 + 0.0698999i
\(615\) 0 0
\(616\) 7.50000 2.59808i 0.302184 0.104679i
\(617\) 6.00000i 0.241551i −0.992680 0.120775i \(-0.961462\pi\)
0.992680 0.120775i \(-0.0385381\pi\)
\(618\) −6.92820 + 4.00000i −0.278693 + 0.160904i
\(619\) −0.500000 + 0.866025i −0.0200967 + 0.0348085i −0.875899 0.482495i \(-0.839731\pi\)
0.855802 + 0.517303i \(0.173064\pi\)
\(620\) 0 0
\(621\) −6.00000 10.3923i −0.240772 0.417029i
\(622\) 12.0000i 0.481156i
\(623\) 15.5885 + 3.00000i 0.624538 + 0.120192i
\(624\) 10.0000 0.400320
\(625\) 0 0
\(626\) −4.00000 + 6.92820i −0.159872 + 0.276907i
\(627\) −5.19615 3.00000i −0.207514 0.119808i
\(628\) −4.33013 + 2.50000i −0.172791 + 0.0997609i
\(629\) −66.0000 −2.63159
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) −8.66025 + 5.00000i −0.344486 + 0.198889i
\(633\) 1.73205 + 1.00000i 0.0688428 + 0.0397464i
\(634\) 9.00000 15.5885i 0.357436 0.619097i
\(635\) 0 0
\(636\) −6.00000 −0.237915
\(637\) −34.6410 + 5.00000i −1.37253 + 0.198107i
\(638\) 18.0000i 0.712627i
\(639\) 6.00000 + 10.3923i 0.237356 + 0.411113i
\(640\) 0 0
\(641\) 22.5000 38.9711i 0.888697 1.53927i 0.0472793 0.998882i \(-0.484945\pi\)
0.841417 0.540386i \(-0.181722\pi\)
\(642\) 20.7846 12.0000i 0.820303 0.473602i
\(643\) 38.0000i 1.49857i −0.662246 0.749287i \(-0.730396\pi\)
0.662246 0.749287i \(-0.269604\pi\)
\(644\) 6.00000 + 5.19615i 0.236433 + 0.204757i
\(645\) 0 0
\(646\) 3.00000 + 5.19615i 0.118033 + 0.204440i
\(647\) 18.1865 + 10.5000i 0.714986 + 0.412798i 0.812905 0.582397i \(-0.197885\pi\)
−0.0979182 + 0.995194i \(0.531218\pi\)
\(648\) −9.52628 5.50000i −0.374228 0.216060i
\(649\) 0 0
\(650\) 0 0
\(651\) −4.00000 + 20.7846i −0.156772 + 0.814613i
\(652\) 4.00000i 0.156652i
\(653\) −18.1865 + 10.5000i −0.711694 + 0.410897i −0.811688 0.584091i \(-0.801451\pi\)
0.0999939 + 0.994988i \(0.468118\pi\)
\(654\) 4.00000 6.92820i 0.156412 0.270914i
\(655\) 0 0
\(656\) −1.50000 2.59808i −0.0585652 0.101438i
\(657\) 4.00000i 0.156055i
\(658\) −2.59808 7.50000i −0.101284 0.292380i
\(659\) −24.0000 −0.934907 −0.467454 0.884018i \(-0.654829\pi\)
−0.467454 + 0.884018i \(0.654829\pi\)
\(660\) 0 0
\(661\) −22.0000 + 38.1051i −0.855701 + 1.48212i 0.0202925 + 0.999794i \(0.493540\pi\)
−0.875993 + 0.482323i \(0.839793\pi\)
\(662\) 6.06218 + 3.50000i 0.235613 + 0.136031i
\(663\) 51.9615 30.0000i 2.01802 1.16510i
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) 11.0000 0.426241
\(667\) −15.5885 + 9.00000i −0.603587 + 0.348481i
\(668\) 7.79423 + 4.50000i 0.301568 + 0.174110i
\(669\) −8.00000 + 13.8564i −0.309298 + 0.535720i
\(670\) 0 0
\(671\) −12.0000 −0.463255
\(672\) 5.19615 + 1.00000i 0.200446 + 0.0385758i
\(673\) 34.0000i 1.31060i 0.755367 + 0.655302i \(0.227459\pi\)
−0.755367 + 0.655302i \(0.772541\pi\)
\(674\) 7.00000 + 12.1244i 0.269630 + 0.467013i
\(675\) 0 0
\(676\) −6.00000 + 10.3923i −0.230769 + 0.399704i
\(677\) −2.59808 + 1.50000i −0.0998522 + 0.0576497i −0.549095 0.835760i \(-0.685027\pi\)
0.449242 + 0.893410i \(0.351694\pi\)
\(678\) 24.0000i 0.921714i
\(679\) 28.0000 + 24.2487i 1.07454 + 0.930580i
\(680\) 0 0
\(681\) −24.0000 41.5692i −0.919682 1.59294i
\(682\) 10.3923 + 6.00000i 0.397942 + 0.229752i
\(683\) −10.3923 6.00000i −0.397650 0.229584i 0.287819 0.957685i \(-0.407070\pi\)
−0.685470 + 0.728101i \(0.740403\pi\)
\(684\) −0.500000 0.866025i −0.0191180 0.0331133i
\(685\) 0 0
\(686\) −18.5000 0.866025i −0.706333 0.0330650i
\(687\) 56.0000i 2.13653i
\(688\) 8.66025 5.00000i 0.330169 0.190623i
\(689\) 7.50000 12.9904i 0.285727 0.494894i
\(690\) 0 0
\(691\) −16.0000 27.7128i −0.608669 1.05425i −0.991460 0.130410i \(-0.958371\pi\)
0.382791 0.923835i \(-0.374963\pi\)
\(692\) 3.00000i 0.114043i
\(693\) −5.19615 + 6.00000i −0.197386 + 0.227921i
\(694\) −24.0000 −0.911028
\(695\) 0 0
\(696\) −6.00000 + 10.3923i −0.227429 + 0.393919i
\(697\) −15.5885 9.00000i −0.590455 0.340899i
\(698\) 8.66025 5.00000i 0.327795 0.189253i
\(699\) −12.0000 −0.453882
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 17.3205 10.0000i 0.653720 0.377426i
\(703\) −9.52628 5.50000i −0.359290 0.207436i
\(704\) 1.50000 2.59808i 0.0565334 0.0979187i
\(705\) 0 0
\(706\) 12.0000 0.451626
\(707\) −10.3923 30.0000i −0.390843 1.12827i
\(708\) 0 0
\(709\) 7.00000 + 12.1244i 0.262891 + 0.455340i 0.967009 0.254743i \(-0.0819909\pi\)
−0.704118 + 0.710083i \(0.748658\pi\)
\(710\) 0 0
\(711\) 5.00000 8.66025i 0.187515 0.324785i
\(712\) 5.19615 3.00000i 0.194734 0.112430i
\(713\) 12.0000i 0.449404i
\(714\) 30.0000 10.3923i 1.12272 0.388922i
\(715\) 0 0
\(716\) 1.50000 + 2.59808i 0.0560576 + 0.0970947i
\(717\) 10.3923 + 6.00000i 0.388108 + 0.224074i
\(718\) 5.19615 + 3.00000i 0.193919 + 0.111959i
\(719\) −18.0000 31.1769i −0.671287 1.16270i −0.977539 0.210752i \(-0.932409\pi\)
0.306253 0.951950i \(-0.400925\pi\)
\(720\) 0 0
\(721\) 2.00000 10.3923i 0.0744839 0.387030i
\(722\) 18.0000i 0.669891i
\(723\) −43.3013 + 25.0000i −1.61039 + 0.929760i
\(724\) 1.00000 1.73205i 0.0371647 0.0643712i
\(725\) 0 0
\(726\) −2.00000 3.46410i −0.0742270 0.128565i
\(727\) 29.0000i 1.07555i 0.843088 + 0.537775i \(0.180735\pi\)
−0.843088 + 0.537775i \(0.819265\pi\)
\(728\) −8.66025 + 10.0000i −0.320970 + 0.370625i
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 30.0000 51.9615i 1.10959 1.92187i
\(732\) −6.92820 4.00000i −0.256074 0.147844i
\(733\) −40.7032 + 23.5000i −1.50341 + 0.867992i −0.503415 + 0.864045i \(0.667923\pi\)
−0.999992 + 0.00394730i \(0.998744\pi\)
\(734\) 1.00000 0.0369107
\(735\) 0 0
\(736\) 3.00000 0.110581
\(737\) −10.3923 + 6.00000i −0.382805 + 0.221013i
\(738\) 2.59808 + 1.50000i 0.0956365 + 0.0552158i
\(739\) −18.5000 + 32.0429i −0.680534 + 1.17872i 0.294285 + 0.955718i \(0.404919\pi\)
−0.974818 + 0.223001i \(0.928415\pi\)
\(740\) 0 0
\(741\) 10.0000 0.367359
\(742\) 5.19615 6.00000i 0.190757 0.220267i
\(743\) 9.00000i 0.330178i −0.986279 0.165089i \(-0.947209\pi\)
0.986279 0.165089i \(-0.0527911\pi\)
\(744\) 4.00000 + 6.92820i 0.146647 + 0.254000i
\(745\) 0 0
\(746\) 17.0000 29.4449i 0.622414 1.07805i
\(747\) −10.3923 + 6.00000i −0.380235 + 0.219529i
\(748\) 18.0000i 0.658145i
\(749\) −6.00000 + 31.1769i −0.219235 + 1.13918i
\(750\) 0 0
\(751\) −13.0000 22.5167i −0.474377 0.821645i 0.525193 0.850983i \(-0.323993\pi\)
−0.999570 + 0.0293387i \(0.990660\pi\)
\(752\) −2.59808 1.50000i −0.0947421 0.0546994i
\(753\) 25.9808 + 15.0000i 0.946792 + 0.546630i
\(754\) −15.0000 25.9808i −0.546268 0.946164i
\(755\) 0 0
\(756\) 10.0000 3.46410i 0.363696 0.125988i
\(757\) 26.0000i 0.944986i 0.881334 + 0.472493i \(0.156646\pi\)
−0.881334 + 0.472493i \(0.843354\pi\)
\(758\) 21.6506 12.5000i 0.786386 0.454020i
\(759\) −9.00000 + 15.5885i −0.326679 + 0.565825i
\(760\) 0 0
\(761\) 25.5000 + 44.1673i 0.924374 + 1.60106i 0.792564 + 0.609788i \(0.208745\pi\)
0.131810 + 0.991275i \(0.457921\pi\)
\(762\) 38.0000i 1.37659i
\(763\) 3.46410 + 10.0000i 0.125409 + 0.362024i
\(764\) −12.0000 −0.434145
\(765\) 0 0
\(766\) −7.50000 + 12.9904i −0.270986 + 0.469362i
\(767\) 0 0
\(768\) 1.73205 1.00000i 0.0625000 0.0360844i
\(769\) 49.0000 1.76699 0.883493 0.468445i \(-0.155186\pi\)
0.883493 + 0.468445i \(0.155186\pi\)
\(770\) 0 0
\(771\) 24.0000 0.864339
\(772\) −3.46410 + 2.00000i −0.124676 + 0.0719816i
\(773\) 33.7750 + 19.5000i 1.21480 + 0.701366i 0.963802 0.266621i \(-0.0859071\pi\)
0.251000 + 0.967987i \(0.419240\pi\)
\(774\) −5.00000 + 8.66025i −0.179721 + 0.311286i
\(775\) 0 0
\(776\) 14.0000 0.502571
\(777\) −38.1051 + 44.0000i −1.36701 + 1.57849i
\(778\) 24.0000i 0.860442i
\(779\) −1.50000 2.59808i −0.0537431 0.0930857i
\(780\) 0 0
\(781\) −18.0000 + 31.1769i −0.644091 + 1.11560i
\(782\) 15.5885 9.00000i 0.557442 0.321839i
\(783\) 24.0000i 0.857690i
\(784\) −5.50000 + 4.33013i −0.196429 + 0.154647i
\(785\) 0 0
\(786\) 3.00000 + 5.19615i 0.107006 + 0.185341i
\(787\) 29.4449 + 17.0000i 1.04960 + 0.605985i 0.922536 0.385911i \(-0.126113\pi\)
0.127060 + 0.991895i \(0.459446\pi\)
\(788\) −2.59808 1.50000i −0.0925526 0.0534353i
\(789\) 0 0
\(790\) 0 0
\(791\) −24.0000 20.7846i −0.853342 0.739016i
\(792\) 3.00000i 0.106600i
\(793\) 17.3205 10.0000i 0.615069 0.355110i
\(794\) 1.00000 1.73205i 0.0354887 0.0614682i
\(795\) 0 0
\(796\) 2.00000 + 3.46410i 0.0708881 + 0.122782i
\(797\) 30.0000i 1.06265i −0.847167 0.531327i \(-0.821693\pi\)
0.847167 0.531327i \(-0.178307\pi\)
\(798\) 5.19615 + 1.00000i 0.183942 + 0.0353996i
\(799\) −18.0000 −0.636794
\(800\) 0 0
\(801\) −3.00000 + 5.19615i −0.106000 + 0.183597i
\(802\) −18.1865 10.5000i −0.642189 0.370768i
\(803\) 10.3923 6.00000i 0.366736 0.211735i
\(804\) −8.00000 −0.282138
\(805\) 0 0
\(806\) −20.0000 −0.704470
\(807\) 20.7846 12.0000i 0.731653 0.422420i
\(808\) −10.3923 6.00000i −0.365600 0.211079i
\(809\) 19.5000 33.7750i 0.685583 1.18747i −0.287670 0.957730i \(-0.592880\pi\)
0.973253 0.229736i \(-0.0737862\pi\)
\(810\) 0 0
\(811\) 47.0000 1.65039 0.825197 0.564846i \(-0.191064\pi\)
0.825197 + 0.564846i \(0.191064\pi\)
\(812\) −5.19615 15.0000i −0.182349 0.526397i
\(813\) 32.0000i 1.12229i
\(814\) 16.5000 + 28.5788i 0.578325 + 1.00169i
\(815\) 0 0
\(816\) 6.00000 10.3923i 0.210042 0.363803i
\(817\) 8.66025 5.00000i 0.302984 0.174928i
\(818\) 22.0000i 0.769212i
\(819\) 2.50000 12.9904i 0.0873571 0.453921i
\(820\) 0 0
\(821\) 9.00000 + 15.5885i 0.314102 + 0.544041i 0.979246 0.202674i \(-0.0649632\pi\)
−0.665144 + 0.746715i \(0.731630\pi\)
\(822\) 20.7846 + 12.0000i 0.724947 + 0.418548i
\(823\) 38.1051 + 22.0000i 1.32826 + 0.766872i 0.985031 0.172379i \(-0.0551455\pi\)
0.343230 + 0.939251i \(0.388479\pi\)
\(824\) −2.00000 3.46410i −0.0696733 0.120678i
\(825\) 0 0
\(826\) 0 0
\(827\) 54.0000i 1.87776i −0.344239 0.938882i \(-0.611863\pi\)
0.344239 0.938882i \(-0.388137\pi\)
\(828\) −2.59808 + 1.50000i −0.0902894 + 0.0521286i
\(829\) 7.00000 12.1244i 0.243120 0.421096i −0.718481 0.695546i \(-0.755162\pi\)
0.961601 + 0.274450i \(0.0884958\pi\)
\(830\) 0 0
\(831\) 2.00000 + 3.46410i 0.0693792 + 0.120168i
\(832\) 5.00000i 0.173344i
\(833\) −15.5885 + 39.0000i −0.540108 + 1.35127i
\(834\) −8.00000 −0.277017
\(835\) 0 0
\(836\) 1.50000 2.59808i 0.0518786 0.0898563i
\(837\) 13.8564 + 8.00000i 0.478947 + 0.276520i
\(838\) −12.9904 + 7.50000i −0.448745 + 0.259083i
\(839\) 6.00000 0.207143 0.103572 0.994622i \(-0.466973\pi\)
0.103572 + 0.994622i \(0.466973\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) −29.4449 + 17.0000i −1.01474 + 0.585859i
\(843\) 5.19615 + 3.00000i 0.178965 + 0.103325i
\(844\) −0.500000 + 0.866025i −0.0172107 + 0.0298098i
\(845\) 0 0
\(846\) 3.00000 0.103142
\(847\) 5.19615 + 1.00000i 0.178542 + 0.0343604i
\(848\) 3.00000i 0.103020i
\(849\) −26.0000 45.0333i −0.892318 1.54554i
\(850\) 0 0
\(851\) −16.5000 + 28.5788i −0.565613 + 0.979670i
\(852\) −20.7846 + 12.0000i −0.712069 + 0.411113i
\(853\) 1.00000i 0.0342393i 0.999853 + 0.0171197i \(0.00544963\pi\)
−0.999853 + 0.0171197i \(0.994550\pi\)
\(854\) 10.0000 3.46410i 0.342193 0.118539i
\(855\) 0 0
\(856\) 6.00000 + 10.3923i 0.205076 + 0.355202i
\(857\) 15.5885 + 9.00000i 0.532492 + 0.307434i 0.742030 0.670366i \(-0.233863\pi\)
−0.209539 + 0.977800i \(0.567196\pi\)
\(858\) −25.9808 15.0000i −0.886969 0.512092i
\(859\) 16.0000 + 27.7128i 0.545913 + 0.945549i 0.998549 + 0.0538535i \(0.0171504\pi\)
−0.452636 + 0.891695i \(0.649516\pi\)
\(860\) 0 0
\(861\) −15.0000 + 5.19615i −0.511199 + 0.177084i
\(862\) 0 0
\(863\) −33.7750 + 19.5000i −1.14971 + 0.663788i −0.948818 0.315825i \(-0.897719\pi\)
−0.200897 + 0.979612i \(0.564385\pi\)
\(864\) 2.00000 3.46410i 0.0680414 0.117851i
\(865\) 0 0
\(866\) 8.00000 + 13.8564i 0.271851 + 0.470860i
\(867\) 38.0000i 1.29055i
\(868\) −10.3923 2.00000i −0.352738 0.0678844i
\(869\) 30.0000 1.01768
\(870\) 0 0
\(871\) 10.0000 17.3205i 0.338837 0.586883i
\(872\) 3.46410 + 2.00000i 0.117309 + 0.0677285i
\(873\) −12.1244 + 7.00000i −0.410347 + 0.236914i
\(874\) 3.00000 0.101477
\(875\) 0 0
\(876\) 8.00000 0.270295
\(877\) −6.06218 + 3.50000i −0.204705 + 0.118187i −0.598848 0.800862i \(-0.704375\pi\)
0.394143 + 0.919049i \(0.371041\pi\)
\(878\) −8.66025 5.00000i −0.292269 0.168742i
\(879\) 27.0000 46.7654i 0.910687 1.57736i
\(880\) 0 0
\(881\) 33.0000 1.11180 0.555899 0.831250i \(-0.312374\pi\)
0.555899 + 0.831250i \(0.312374\pi\)
\(882\) 2.59808 6.50000i 0.0874818 0.218866i
\(883\) 8.00000i 0.269221i −0.990899 0.134611i \(-0.957022\pi\)
0.990899 0.134611i \(-0.0429784\pi\)
\(884\) 15.0000 + 25.9808i 0.504505 + 0.873828i
\(885\) 0 0
\(886\) 12.0000 20.7846i 0.403148 0.698273i
\(887\) 20.7846 12.0000i 0.697879 0.402921i −0.108678 0.994077i \(-0.534662\pi\)
0.806557 + 0.591156i \(0.201328\pi\)
\(888\) 22.0000i 0.738272i
\(889\) −38.0000 32.9090i −1.27448 1.10373i
\(890\) 0 0
\(891\) 16.5000 + 28.5788i 0.552771 + 0.957427i
\(892\) −6.92820 4.00000i −0.231973 0.133930i
\(893\) −2.59808 1.50000i −0.0869413 0.0501956i
\(894\) −18.0000 31.1769i −0.602010 1.04271i
\(895\) 0 0
\(896\) −0.500000 + 2.59808i −0.0167038 + 0.0867956i
\(897\) 30.0000i 1.00167i
\(898\) 2.59808 1.50000i 0.0866989 0.0500556i
\(899\) 12.0000 20.7846i 0.400222 0.693206i
\(900\) 0 0
\(901\) −9.00000 15.5885i −0.299833 0.519327i
\(902\) 9.00000i 0.299667i
\(903\) −17.3205 50.0000i −0.576390 1.66390i
\(904\) −12.0000 −0.399114
\(905\) 0 0
\(906\) 14.0000 24.2487i 0.465119 0.805609i
\(907\) 8.66025 + 5.00000i 0.287559 + 0.166022i 0.636841 0.770996i \(-0.280241\pi\)
−0.349281 + 0.937018i \(0.613574\pi\)
\(908\) 20.7846 12.0000i 0.689761 0.398234i
\(909\) 12.0000 0.398015
\(910\) 0 0
\(911\) −30.0000 −0.993944 −0.496972 0.867766i \(-0.665555\pi\)
−0.496972 + 0.867766i \(0.665555\pi\)
\(912\) 1.73205 1.00000i 0.0573539 0.0331133i
\(913\) −31.1769 18.0000i −1.03181 0.595713i
\(914\) −11.0000 + 19.0526i −0.363848 + 0.630203i
\(915\) 0 0
\(916\) −28.0000 −0.925146
\(917\) −7.79423 1.50000i −0.257388 0.0495344i
\(918\) 24.0000i 0.792118i
\(919\) 19.0000 + 32.9090i 0.626752 + 1.08557i 0.988199 + 0.153174i \(0.0489495\pi\)
−0.361447 + 0.932393i \(0.617717\pi\)
\(920\) 0 0
\(921\) 2.00000 3.46410i 0.0659022 0.114146i
\(922\) 5.19615 3.00000i 0.171126 0.0987997i
\(923\) 60.0000i 1.97492i
\(924\) −12.0000 10.3923i −0.394771 0.341882i
\(925\) 0 0
\(926\) 9.50000 + 16.4545i 0.312189 + 0.540728i
\(927\) 3.46410 + 2.00000i 0.113776 + 0.0656886i
\(928\) −5.19615 3.00000i −0.170572 0.0984798i
\(929\) 16.5000 + 28.5788i 0.541347 + 0.937641i 0.998827 + 0.0484211i \(0.0154190\pi\)
−0.457480 + 0.889220i \(0.651248\pi\)
\(930\) 0 0
\(931\) −5.50000 + 4.33013i −0.180255 + 0.141914i
\(932\) 6.00000i 0.196537i
\(933\) 20.7846 12.0000i 0.680458 0.392862i
\(934\) −9.00000 + 15.5885i −0.294489 + 0.510070i
\(935\) 0 0
\(936\) −2.50000 4.33013i −0.0817151 0.141535i
\(937\) 2.00000i 0.0653372i 0.999466 + 0.0326686i \(0.0104006\pi\)
−0.999466 + 0.0326686i \(0.989599\pi\)
\(938\) 6.92820 8.00000i 0.226214 0.261209i
\(939\) 16.0000 0.522140
\(940\) 0 0
\(941\) −12.0000 + 20.7846i −0.391189 + 0.677559i −0.992607 0.121376i \(-0.961269\pi\)
0.601418 + 0.798935i \(0.294603\pi\)
\(942\) 8.66025 + 5.00000i 0.282166 + 0.162909i
\(943\) −7.79423 + 4.50000i −0.253815 + 0.146540i
\(944\) 0 0
\(945\) 0 0
\(946\) −30.0000 −0.975384
\(947\) 25.9808 15.0000i 0.844261 0.487435i −0.0144491 0.999896i \(-0.504599\pi\)
0.858710 + 0.512461i \(0.171266\pi\)
\(948\) 17.3205 + 10.0000i 0.562544 + 0.324785i
\(949\) −10.0000 + 17.3205i −0.324614 + 0.562247i
\(950\) 0 0
\(951\) −36.0000 −1.16738
\(952\) 5.19615 + 15.0000i 0.168408 + 0.486153i
\(953\) 12.0000i 0.388718i 0.980930 + 0.194359i \(0.0622627\pi\)
−0.980930 + 0.194359i \(0.937737\pi\)
\(954\) 1.50000 + 2.59808i 0.0485643 + 0.0841158i
\(955\) 0 0
\(956\) −3.00000 + 5.19615i −0.0970269 + 0.168056i
\(957\) 31.1769 18.0000i 1.00781 0.581857i
\(958\) 24.0000i 0.775405i
\(959\) −30.0000 + 10.3923i −0.968751 + 0.335585i
\(960\) 0 0
\(961\) 7.50000 + 12.9904i 0.241935 + 0.419045i
\(962\) −47.6314 27.5000i −1.53570 0.886636i
\(963\) −10.3923 6.00000i −0.334887 0.193347i
\(964\) −12.5000 21.6506i −0.402598 0.697320i
\(965\) 0 0
\(966\) 3.00000 15.5885i 0.0965234 0.501550i
\(967\) 32.0000i 1.02905i 0.857475 + 0.514525i \(0.172032\pi\)
−0.857475 + 0.514525i \(0.827968\pi\)
\(968\) 1.73205 1.00000i 0.0556702 0.0321412i
\(969\) 6.00000 10.3923i 0.192748 0.333849i
\(970\) 0 0
\(971\) −13.5000 23.3827i −0.433236 0.750386i 0.563914 0.825833i \(-0.309295\pi\)
−0.997150 + 0.0754473i \(0.975962\pi\)
\(972\) 10.0000i 0.320750i
\(973\) 6.92820 8.00000i 0.222108 0.256468i
\(974\) 16.0000 0.512673
\(975\) 0 0
\(976\) 2.00000 3.46410i 0.0640184 0.110883i
\(977\) 25.9808 + 15.0000i 0.831198 + 0.479893i 0.854263 0.519841i \(-0.174009\pi\)
−0.0230645 + 0.999734i \(0.507342\pi\)
\(978\) −6.92820 + 4.00000i −0.221540 + 0.127906i
\(979\) −18.0000 −0.575282
\(980\) 0 0
\(981\) −4.00000 −0.127710
\(982\) −10.3923 + 6.00000i −0.331632 + 0.191468i
\(983\) 49.3634 + 28.5000i 1.57445 + 0.909009i 0.995613 + 0.0935651i \(0.0298263\pi\)
0.578836 + 0.815444i \(0.303507\pi\)
\(984\) −3.00000 + 5.19615i −0.0956365 + 0.165647i
\(985\) 0 0
\(986\) −36.0000 −1.14647
\(987\) −10.3923 + 12.0000i −0.330791 + 0.381964i
\(988\) 5.00000i 0.159071i
\(989\) −15.0000 25.9808i −0.476972 0.826140i
\(990\) 0 0
\(991\) −10.0000 + 17.3205i −0.317660 + 0.550204i −0.979999 0.199000i \(-0.936231\pi\)
0.662339 + 0.749204i \(0.269564\pi\)
\(992\) −3.46410 + 2.00000i −0.109985 + 0.0635001i
\(993\) 14.0000i 0.444277i
\(994\) 6.00000 31.1769i 0.190308 0.988872i
\(995\) 0 0
\(996\) −12.0000 20.7846i −0.380235 0.658586i
\(997\) −12.1244 7.00000i −0.383982 0.221692i 0.295567 0.955322i \(-0.404491\pi\)
−0.679549 + 0.733630i \(0.737825\pi\)
\(998\) −24.2487 14.0000i −0.767580 0.443162i
\(999\) 22.0000 + 38.1051i 0.696049 + 1.20559i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.2.j.a.249.2 4
5.2 odd 4 350.2.e.h.151.1 2
5.3 odd 4 70.2.e.b.11.1 2
5.4 even 2 inner 350.2.j.a.249.1 4
7.2 even 3 inner 350.2.j.a.149.1 4
7.3 odd 6 2450.2.c.p.99.2 2
7.4 even 3 2450.2.c.f.99.2 2
15.8 even 4 630.2.k.e.361.1 2
20.3 even 4 560.2.q.d.81.1 2
35.2 odd 12 350.2.e.h.51.1 2
35.3 even 12 490.2.a.j.1.1 1
35.4 even 6 2450.2.c.f.99.1 2
35.9 even 6 inner 350.2.j.a.149.2 4
35.13 even 4 490.2.e.a.361.1 2
35.17 even 12 2450.2.a.f.1.1 1
35.18 odd 12 490.2.a.g.1.1 1
35.23 odd 12 70.2.e.b.51.1 yes 2
35.24 odd 6 2450.2.c.p.99.1 2
35.32 odd 12 2450.2.a.p.1.1 1
35.33 even 12 490.2.e.a.471.1 2
105.23 even 12 630.2.k.e.541.1 2
105.38 odd 12 4410.2.a.c.1.1 1
105.53 even 12 4410.2.a.m.1.1 1
140.3 odd 12 3920.2.a.g.1.1 1
140.23 even 12 560.2.q.d.401.1 2
140.123 even 12 3920.2.a.be.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.2.e.b.11.1 2 5.3 odd 4
70.2.e.b.51.1 yes 2 35.23 odd 12
350.2.e.h.51.1 2 35.2 odd 12
350.2.e.h.151.1 2 5.2 odd 4
350.2.j.a.149.1 4 7.2 even 3 inner
350.2.j.a.149.2 4 35.9 even 6 inner
350.2.j.a.249.1 4 5.4 even 2 inner
350.2.j.a.249.2 4 1.1 even 1 trivial
490.2.a.g.1.1 1 35.18 odd 12
490.2.a.j.1.1 1 35.3 even 12
490.2.e.a.361.1 2 35.13 even 4
490.2.e.a.471.1 2 35.33 even 12
560.2.q.d.81.1 2 20.3 even 4
560.2.q.d.401.1 2 140.23 even 12
630.2.k.e.361.1 2 15.8 even 4
630.2.k.e.541.1 2 105.23 even 12
2450.2.a.f.1.1 1 35.17 even 12
2450.2.a.p.1.1 1 35.32 odd 12
2450.2.c.f.99.1 2 35.4 even 6
2450.2.c.f.99.2 2 7.4 even 3
2450.2.c.p.99.1 2 35.24 odd 6
2450.2.c.p.99.2 2 7.3 odd 6
3920.2.a.g.1.1 1 140.3 odd 12
3920.2.a.be.1.1 1 140.123 even 12
4410.2.a.c.1.1 1 105.38 odd 12
4410.2.a.m.1.1 1 105.53 even 12