Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [350,2,Mod(3,350)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(350, base_ring=CyclotomicField(60))
chi = DirichletCharacter(H, H._module([21, 10]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("350.3");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 350 = 2 \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 350.x (of order \(60\), degree \(16\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.79476407074\) |
Analytic rank: | \(0\) |
Dimension: | \(320\) |
Relative dimension: | \(20\) over \(\Q(\zeta_{60})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{60}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.1 | −0.544639 | + | 0.838671i | −1.15652 | + | 3.01283i | −0.406737 | − | 0.913545i | −1.77963 | − | 1.35386i | −1.89689 | − | 2.61084i | −0.00275235 | + | 2.64575i | 0.987688 | + | 0.156434i | −5.51019 | − | 4.96140i | 2.10469 | − | 0.755156i |
3.2 | −0.544639 | + | 0.838671i | −0.817783 | + | 2.13040i | −0.406737 | − | 0.913545i | 2.21313 | − | 0.319493i | −1.34131 | − | 1.84615i | 2.63815 | − | 0.200418i | 0.987688 | + | 0.156434i | −1.64039 | − | 1.47701i | −0.937405 | + | 2.03009i |
3.3 | −0.544639 | + | 0.838671i | −0.476017 | + | 1.24007i | −0.406737 | − | 0.913545i | 1.14772 | + | 1.91905i | −0.780750 | − | 1.07461i | −2.35038 | + | 1.21478i | 0.987688 | + | 0.156434i | 0.918261 | + | 0.826806i | −2.23454 | − | 0.0826285i |
3.4 | −0.544639 | + | 0.838671i | −0.316438 | + | 0.824348i | −0.406737 | − | 0.913545i | 0.514287 | − | 2.17612i | −0.519012 | − | 0.714359i | −2.61096 | − | 0.427657i | 0.987688 | + | 0.156434i | 1.65002 | + | 1.48568i | 1.54495 | + | 1.61652i |
3.5 | −0.544639 | + | 0.838671i | −0.255867 | + | 0.666556i | −0.406737 | − | 0.913545i | −2.11039 | − | 0.739089i | −0.419666 | − | 0.577620i | 2.27088 | − | 1.35761i | 0.987688 | + | 0.156434i | 1.85061 | + | 1.66629i | 1.76925 | − | 1.36739i |
3.6 | −0.544639 | + | 0.838671i | 0.172615 | − | 0.449679i | −0.406737 | − | 0.913545i | −2.02394 | + | 0.950624i | 0.283119 | + | 0.389680i | −1.46618 | − | 2.20234i | 0.987688 | + | 0.156434i | 2.05702 | + | 1.85215i | 0.305054 | − | 2.21516i |
3.7 | −0.544639 | + | 0.838671i | 0.375167 | − | 0.977343i | −0.406737 | − | 0.913545i | 1.91741 | + | 1.15045i | 0.615338 | + | 0.846940i | 2.64280 | + | 0.124862i | 0.987688 | + | 0.156434i | 1.41499 | + | 1.27406i | −2.00915 | + | 0.981495i |
3.8 | −0.544639 | + | 0.838671i | 0.637721 | − | 1.66132i | −0.406737 | − | 0.913545i | −1.80729 | + | 1.31671i | 1.04597 | + | 1.43966i | −0.155100 | + | 2.64120i | 0.987688 | + | 0.156434i | −0.123863 | − | 0.111527i | −0.119964 | − | 2.23285i |
3.9 | −0.544639 | + | 0.838671i | 0.828696 | − | 2.15883i | −0.406737 | − | 0.913545i | 1.91840 | − | 1.14880i | 1.35920 | + | 1.87078i | −1.79641 | − | 1.94240i | 0.987688 | + | 0.156434i | −1.74436 | − | 1.57063i | −0.0813718 | + | 2.23459i |
3.10 | −0.544639 | + | 0.838671i | 1.00842 | − | 2.62703i | −0.406737 | − | 0.913545i | −0.333527 | − | 2.21105i | 1.65399 | + | 2.27652i | 2.63222 | + | 0.267259i | 0.987688 | + | 0.156434i | −3.65494 | − | 3.29092i | 2.03600 | + | 0.924507i |
3.11 | 0.544639 | − | 0.838671i | −1.20499 | + | 3.13910i | −0.406737 | − | 0.913545i | 1.05534 | + | 1.97136i | 1.97639 | + | 2.72026i | 2.18246 | + | 1.49561i | −0.987688 | − | 0.156434i | −6.17252 | − | 5.55776i | 2.22810 | + | 0.188596i |
3.12 | 0.544639 | − | 0.838671i | −1.02776 | + | 2.67740i | −0.406737 | − | 0.913545i | −1.46986 | − | 1.68509i | 1.68570 | + | 2.32016i | 0.0482142 | − | 2.64531i | −0.987688 | − | 0.156434i | −3.88274 | − | 3.49603i | −2.21377 | + | 0.314962i |
3.13 | 0.544639 | − | 0.838671i | −0.439528 | + | 1.14501i | −0.406737 | − | 0.913545i | −2.19147 | + | 0.444347i | 0.720902 | + | 0.992236i | −2.02541 | + | 1.70227i | −0.987688 | − | 0.156434i | 1.11157 | + | 1.00086i | −0.820901 | + | 2.07993i |
3.14 | 0.544639 | − | 0.838671i | −0.327039 | + | 0.851967i | −0.406737 | − | 0.913545i | −1.80326 | + | 1.32222i | 0.536401 | + | 0.738293i | 2.28229 | − | 1.33834i | −0.987688 | − | 0.156434i | 1.61054 | + | 1.45014i | 0.126777 | + | 2.23247i |
3.15 | 0.544639 | − | 0.838671i | −0.110635 | + | 0.288213i | −0.406737 | − | 0.913545i | 1.72772 | − | 1.41950i | 0.181460 | + | 0.249758i | 2.11003 | + | 1.59618i | −0.987688 | − | 0.156434i | 2.15861 | + | 1.94362i | −0.249509 | − | 2.22210i |
3.16 | 0.544639 | − | 0.838671i | −0.0130481 | + | 0.0339916i | −0.406737 | − | 0.913545i | 0.859199 | + | 2.06441i | 0.0214012 | + | 0.0294562i | −1.30429 | + | 2.30192i | −0.987688 | − | 0.156434i | 2.22845 | + | 2.00650i | 2.19931 | + | 0.403772i |
3.17 | 0.544639 | − | 0.838671i | 0.309740 | − | 0.806901i | −0.406737 | − | 0.913545i | −0.415279 | − | 2.19717i | −0.508027 | − | 0.699240i | −1.18335 | − | 2.36636i | −0.987688 | − | 0.156434i | 1.67428 | + | 1.50753i | −2.06888 | − | 0.848381i |
3.18 | 0.544639 | − | 0.838671i | 0.822850 | − | 2.14360i | −0.406737 | − | 0.913545i | −2.04873 | − | 0.895939i | −1.34962 | − | 1.85759i | 2.63801 | + | 0.202309i | −0.987688 | − | 0.156434i | −1.68849 | − | 1.52033i | −1.86722 | + | 1.23025i |
3.19 | 0.544639 | − | 0.838671i | 0.894901 | − | 2.33130i | −0.406737 | − | 0.913545i | 0.406439 | + | 2.19882i | −1.46779 | − | 2.02024i | −1.33531 | − | 2.28406i | −0.987688 | − | 0.156434i | −2.40466 | − | 2.16517i | 2.06545 | + | 0.856694i |
3.20 | 0.544639 | − | 0.838671i | 1.09550 | − | 2.85388i | −0.406737 | − | 0.913545i | 1.64939 | − | 1.50980i | −1.79681 | − | 2.47310i | −1.61036 | + | 2.09922i | −0.987688 | − | 0.156434i | −4.71508 | − | 4.24548i | −0.367903 | − | 2.20559i |
See next 80 embeddings (of 320 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
25.f | odd | 20 | 1 | inner |
175.x | even | 60 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 350.2.x.a | ✓ | 320 |
7.d | odd | 6 | 1 | inner | 350.2.x.a | ✓ | 320 |
25.f | odd | 20 | 1 | inner | 350.2.x.a | ✓ | 320 |
175.x | even | 60 | 1 | inner | 350.2.x.a | ✓ | 320 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
350.2.x.a | ✓ | 320 | 1.a | even | 1 | 1 | trivial |
350.2.x.a | ✓ | 320 | 7.d | odd | 6 | 1 | inner |
350.2.x.a | ✓ | 320 | 25.f | odd | 20 | 1 | inner |
350.2.x.a | ✓ | 320 | 175.x | even | 60 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(350, [\chi])\).