Properties

Label 350.3.p.e.107.4
Level $350$
Weight $3$
Character 350.107
Analytic conductor $9.537$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,3,Mod(93,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 4]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.93");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 350.p (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.53680925261\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} - 8 x^{13} - 722 x^{12} + 1354 x^{11} - 1232 x^{10} + 9306 x^{9} + \cdots + 52200625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 107.4
Root \(1.35330 + 5.05060i\) of defining polynomial
Character \(\chi\) \(=\) 350.107
Dual form 350.3.p.e.193.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36603 - 0.366025i) q^{2} +(5.05060 + 1.35330i) q^{3} +(1.73205 - 1.00000i) q^{4} +7.39459 q^{6} +(-1.26709 - 6.88437i) q^{7} +(2.00000 - 2.00000i) q^{8} +(15.8829 + 9.16999i) q^{9} +O(q^{10})\) \(q+(1.36603 - 0.366025i) q^{2} +(5.05060 + 1.35330i) q^{3} +(1.73205 - 1.00000i) q^{4} +7.39459 q^{6} +(-1.26709 - 6.88437i) q^{7} +(2.00000 - 2.00000i) q^{8} +(15.8829 + 9.16999i) q^{9} +(5.56894 + 9.64568i) q^{11} +(10.1012 - 2.70661i) q^{12} +(-9.62415 + 9.62415i) q^{13} +(-4.25073 - 8.94043i) q^{14} +(2.00000 - 3.46410i) q^{16} +(2.29193 - 8.55361i) q^{17} +(25.0529 + 6.71290i) q^{18} +(-5.79257 - 3.34434i) q^{19} +(2.91708 - 36.4849i) q^{21} +(11.1379 + 11.1379i) q^{22} +(-7.37457 - 27.5223i) q^{23} +(12.8078 - 7.39459i) q^{24} +(-9.62415 + 16.6695i) q^{26} +(34.5327 + 34.5327i) q^{27} +(-9.07903 - 10.6570i) q^{28} +29.0733i q^{29} +(-11.9038 - 20.6179i) q^{31} +(1.46410 - 5.46410i) q^{32} +(15.0729 + 56.2529i) q^{33} -12.5233i q^{34} +36.6800 q^{36} +(14.9820 - 4.01442i) q^{37} +(-9.13690 - 2.44823i) q^{38} +(-61.6321 + 35.5833i) q^{39} -9.18256 q^{41} +(-9.36960 - 50.9071i) q^{42} +(-55.1244 + 55.1244i) q^{43} +(19.2914 + 11.1379i) q^{44} +(-20.1477 - 34.8968i) q^{46} +(-8.55361 + 2.29193i) q^{47} +(14.7892 - 14.7892i) q^{48} +(-45.7890 + 17.4462i) q^{49} +(23.1513 - 40.0992i) q^{51} +(-7.04537 + 26.2937i) q^{52} +(-13.8047 - 3.69897i) q^{53} +(59.8123 + 34.5327i) q^{54} +(-16.3029 - 11.2346i) q^{56} +(-24.7300 - 24.7300i) q^{57} +(10.6416 + 39.7149i) q^{58} +(67.7986 - 39.1435i) q^{59} +(-10.7196 + 18.5670i) q^{61} +(-23.8075 - 23.8075i) q^{62} +(43.0045 - 120.963i) q^{63} -8.00000i q^{64} +(41.1800 + 71.3259i) q^{66} +(-13.7678 + 51.3823i) q^{67} +(-4.58386 - 17.1072i) q^{68} -148.984i q^{69} -101.186 q^{71} +(50.1058 - 13.4258i) q^{72} +(101.181 + 27.1115i) q^{73} +(18.9964 - 10.9676i) q^{74} -13.3774 q^{76} +(59.3481 - 50.5605i) q^{77} +(-71.1666 + 71.1666i) q^{78} +(-11.7992 - 6.81228i) q^{79} +(45.1475 + 78.1978i) q^{81} +(-12.5436 + 3.36105i) q^{82} +(-28.4835 + 28.4835i) q^{83} +(-31.4324 - 66.1108i) q^{84} +(-55.1244 + 95.4783i) q^{86} +(-39.3451 + 146.838i) q^{87} +(30.4292 + 8.15349i) q^{88} +(-6.56157 - 3.78833i) q^{89} +(78.4508 + 54.0615i) q^{91} +(-40.2954 - 40.2954i) q^{92} +(-32.2188 - 120.242i) q^{93} +(-10.8455 + 6.26167i) q^{94} +(14.7892 - 25.6156i) q^{96} +(-74.4232 - 74.4232i) q^{97} +(-56.1632 + 40.5919i) q^{98} +204.268i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{2} - 2 q^{3} - 8 q^{6} - 12 q^{7} + 32 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 8 q^{2} - 2 q^{3} - 8 q^{6} - 12 q^{7} + 32 q^{8} + 40 q^{11} - 4 q^{12} - 16 q^{13} + 32 q^{16} - 46 q^{17} + 52 q^{18} - 20 q^{21} + 80 q^{22} - 54 q^{23} - 16 q^{26} + 52 q^{27} + 36 q^{28} - 208 q^{31} - 32 q^{32} + 22 q^{33} + 208 q^{36} + 38 q^{37} - 36 q^{38} - 72 q^{41} - 184 q^{42} - 144 q^{43} + 108 q^{46} - 46 q^{47} - 16 q^{48} - 136 q^{51} + 16 q^{52} - 30 q^{53} - 48 q^{56} + 492 q^{57} - 132 q^{58} - 120 q^{61} - 416 q^{62} + 292 q^{63} - 44 q^{66} + 74 q^{67} + 92 q^{68} + 16 q^{71} + 104 q^{72} + 54 q^{73} - 144 q^{76} - 570 q^{77} - 168 q^{78} + 244 q^{81} - 36 q^{82} - 64 q^{83} - 144 q^{86} + 236 q^{87} + 80 q^{88} + 336 q^{91} + 216 q^{92} - 142 q^{93} - 16 q^{96} - 136 q^{97} + 268 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 0.366025i 0.683013 0.183013i
\(3\) 5.05060 + 1.35330i 1.68353 + 0.451101i 0.968708 0.248202i \(-0.0798398\pi\)
0.714825 + 0.699304i \(0.246506\pi\)
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) 0 0
\(6\) 7.39459 1.23243
\(7\) −1.26709 6.88437i −0.181013 0.983481i
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 15.8829 + 9.16999i 1.76477 + 1.01889i
\(10\) 0 0
\(11\) 5.56894 + 9.64568i 0.506267 + 0.876880i 0.999974 + 0.00725183i \(0.00230835\pi\)
−0.493707 + 0.869629i \(0.664358\pi\)
\(12\) 10.1012 2.70661i 0.841767 0.225551i
\(13\) −9.62415 + 9.62415i −0.740319 + 0.740319i −0.972639 0.232320i \(-0.925368\pi\)
0.232320 + 0.972639i \(0.425368\pi\)
\(14\) −4.25073 8.94043i −0.303623 0.638602i
\(15\) 0 0
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 2.29193 8.55361i 0.134820 0.503153i −0.865179 0.501463i \(-0.832795\pi\)
0.999999 0.00169021i \(-0.000538011\pi\)
\(18\) 25.0529 + 6.71290i 1.39183 + 0.372939i
\(19\) −5.79257 3.34434i −0.304872 0.176018i 0.339758 0.940513i \(-0.389655\pi\)
−0.644629 + 0.764495i \(0.722988\pi\)
\(20\) 0 0
\(21\) 2.91708 36.4849i 0.138909 1.73738i
\(22\) 11.1379 + 11.1379i 0.506267 + 0.506267i
\(23\) −7.37457 27.5223i −0.320633 1.19662i −0.918629 0.395121i \(-0.870703\pi\)
0.597996 0.801499i \(-0.295964\pi\)
\(24\) 12.8078 7.39459i 0.533659 0.308108i
\(25\) 0 0
\(26\) −9.62415 + 16.6695i −0.370160 + 0.641135i
\(27\) 34.5327 + 34.5327i 1.27899 + 1.27899i
\(28\) −9.07903 10.6570i −0.324251 0.380607i
\(29\) 29.0733i 1.00253i 0.865294 + 0.501265i \(0.167132\pi\)
−0.865294 + 0.501265i \(0.832868\pi\)
\(30\) 0 0
\(31\) −11.9038 20.6179i −0.383992 0.665094i 0.607637 0.794215i \(-0.292118\pi\)
−0.991629 + 0.129121i \(0.958784\pi\)
\(32\) 1.46410 5.46410i 0.0457532 0.170753i
\(33\) 15.0729 + 56.2529i 0.456756 + 1.70463i
\(34\) 12.5233i 0.368334i
\(35\) 0 0
\(36\) 36.6800 1.01889
\(37\) 14.9820 4.01442i 0.404919 0.108498i −0.0506104 0.998718i \(-0.516117\pi\)
0.455529 + 0.890221i \(0.349450\pi\)
\(38\) −9.13690 2.44823i −0.240445 0.0644270i
\(39\) −61.6321 + 35.5833i −1.58031 + 0.912393i
\(40\) 0 0
\(41\) −9.18256 −0.223965 −0.111982 0.993710i \(-0.535720\pi\)
−0.111982 + 0.993710i \(0.535720\pi\)
\(42\) −9.36960 50.9071i −0.223086 1.21207i
\(43\) −55.1244 + 55.1244i −1.28196 + 1.28196i −0.342414 + 0.939549i \(0.611244\pi\)
−0.939549 + 0.342414i \(0.888756\pi\)
\(44\) 19.2914 + 11.1379i 0.438440 + 0.253134i
\(45\) 0 0
\(46\) −20.1477 34.8968i −0.437993 0.758627i
\(47\) −8.55361 + 2.29193i −0.181992 + 0.0487645i −0.348664 0.937248i \(-0.613364\pi\)
0.166672 + 0.986012i \(0.446698\pi\)
\(48\) 14.7892 14.7892i 0.308108 0.308108i
\(49\) −45.7890 + 17.4462i −0.934469 + 0.356045i
\(50\) 0 0
\(51\) 23.1513 40.0992i 0.453946 0.786258i
\(52\) −7.04537 + 26.2937i −0.135488 + 0.505647i
\(53\) −13.8047 3.69897i −0.260467 0.0697918i 0.126223 0.992002i \(-0.459715\pi\)
−0.386689 + 0.922210i \(0.626381\pi\)
\(54\) 59.8123 + 34.5327i 1.10764 + 0.639494i
\(55\) 0 0
\(56\) −16.3029 11.2346i −0.291123 0.200617i
\(57\) −24.7300 24.7300i −0.433860 0.433860i
\(58\) 10.6416 + 39.7149i 0.183476 + 0.684740i
\(59\) 67.7986 39.1435i 1.14913 0.663450i 0.200454 0.979703i \(-0.435758\pi\)
0.948675 + 0.316253i \(0.102425\pi\)
\(60\) 0 0
\(61\) −10.7196 + 18.5670i −0.175732 + 0.304376i −0.940414 0.340031i \(-0.889562\pi\)
0.764682 + 0.644407i \(0.222896\pi\)
\(62\) −23.8075 23.8075i −0.383992 0.383992i
\(63\) 43.0045 120.963i 0.682612 1.92004i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 41.1800 + 71.3259i 0.623940 + 1.08070i
\(67\) −13.7678 + 51.3823i −0.205490 + 0.766900i 0.783809 + 0.621001i \(0.213274\pi\)
−0.989300 + 0.145898i \(0.953393\pi\)
\(68\) −4.58386 17.1072i −0.0674098 0.251577i
\(69\) 148.984i 2.15919i
\(70\) 0 0
\(71\) −101.186 −1.42516 −0.712579 0.701591i \(-0.752473\pi\)
−0.712579 + 0.701591i \(0.752473\pi\)
\(72\) 50.1058 13.4258i 0.695913 0.186469i
\(73\) 101.181 + 27.1115i 1.38605 + 0.371390i 0.873314 0.487157i \(-0.161966\pi\)
0.512734 + 0.858548i \(0.328633\pi\)
\(74\) 18.9964 10.9676i 0.256708 0.148211i
\(75\) 0 0
\(76\) −13.3774 −0.176018
\(77\) 59.3481 50.5605i 0.770754 0.656630i
\(78\) −71.1666 + 71.1666i −0.912393 + 0.912393i
\(79\) −11.7992 6.81228i −0.149357 0.0862314i 0.423459 0.905915i \(-0.360816\pi\)
−0.572816 + 0.819684i \(0.694149\pi\)
\(80\) 0 0
\(81\) 45.1475 + 78.1978i 0.557377 + 0.965406i
\(82\) −12.5436 + 3.36105i −0.152971 + 0.0409884i
\(83\) −28.4835 + 28.4835i −0.343175 + 0.343175i −0.857560 0.514385i \(-0.828020\pi\)
0.514385 + 0.857560i \(0.328020\pi\)
\(84\) −31.4324 66.1108i −0.374195 0.787034i
\(85\) 0 0
\(86\) −55.1244 + 95.4783i −0.640981 + 1.11021i
\(87\) −39.3451 + 146.838i −0.452242 + 1.68779i
\(88\) 30.4292 + 8.15349i 0.345787 + 0.0926533i
\(89\) −6.56157 3.78833i −0.0737256 0.0425655i 0.462684 0.886523i \(-0.346886\pi\)
−0.536410 + 0.843958i \(0.680220\pi\)
\(90\) 0 0
\(91\) 78.4508 + 54.0615i 0.862097 + 0.594083i
\(92\) −40.2954 40.2954i −0.437993 0.437993i
\(93\) −32.2188 120.242i −0.346439 1.29293i
\(94\) −10.8455 + 6.26167i −0.115378 + 0.0666136i
\(95\) 0 0
\(96\) 14.7892 25.6156i 0.154054 0.266829i
\(97\) −74.4232 74.4232i −0.767249 0.767249i 0.210372 0.977621i \(-0.432532\pi\)
−0.977621 + 0.210372i \(0.932532\pi\)
\(98\) −56.1632 + 40.5919i −0.573093 + 0.414203i
\(99\) 204.268i 2.06332i
\(100\) 0 0
\(101\) −62.1520 107.650i −0.615366 1.06585i −0.990320 0.138802i \(-0.955675\pi\)
0.374954 0.927044i \(-0.377659\pi\)
\(102\) 16.9479 63.2504i 0.166156 0.620102i
\(103\) −26.8210 100.098i −0.260398 0.971820i −0.965007 0.262224i \(-0.915544\pi\)
0.704609 0.709596i \(-0.251123\pi\)
\(104\) 38.4966i 0.370160i
\(105\) 0 0
\(106\) −20.2115 −0.190675
\(107\) 86.7110 23.2341i 0.810383 0.217142i 0.170245 0.985402i \(-0.445544\pi\)
0.640138 + 0.768260i \(0.278877\pi\)
\(108\) 94.3450 + 25.2797i 0.873565 + 0.234071i
\(109\) 145.926 84.2503i 1.33877 0.772938i 0.352143 0.935946i \(-0.385453\pi\)
0.986625 + 0.163008i \(0.0521196\pi\)
\(110\) 0 0
\(111\) 81.1008 0.730638
\(112\) −26.3823 9.37941i −0.235556 0.0837447i
\(113\) −22.2552 + 22.2552i −0.196949 + 0.196949i −0.798691 0.601742i \(-0.794474\pi\)
0.601742 + 0.798691i \(0.294474\pi\)
\(114\) −42.8336 24.7300i −0.375734 0.216930i
\(115\) 0 0
\(116\) 29.0733 + 50.3565i 0.250632 + 0.434108i
\(117\) −241.113 + 64.6059i −2.06079 + 0.552188i
\(118\) 78.2871 78.2871i 0.663450 0.663450i
\(119\) −61.7902 4.94032i −0.519246 0.0415153i
\(120\) 0 0
\(121\) −1.52615 + 2.64336i −0.0126128 + 0.0218460i
\(122\) −7.84732 + 29.2866i −0.0643223 + 0.240054i
\(123\) −46.3775 12.4268i −0.377052 0.101031i
\(124\) −41.2358 23.8075i −0.332547 0.191996i
\(125\) 0 0
\(126\) 14.4698 180.979i 0.114840 1.43634i
\(127\) 80.5418 + 80.5418i 0.634187 + 0.634187i 0.949115 0.314928i \(-0.101980\pi\)
−0.314928 + 0.949115i \(0.601980\pi\)
\(128\) −2.92820 10.9282i −0.0228766 0.0853766i
\(129\) −353.011 + 203.811i −2.73652 + 1.57993i
\(130\) 0 0
\(131\) −38.6646 + 66.9690i −0.295149 + 0.511214i −0.975020 0.222119i \(-0.928703\pi\)
0.679870 + 0.733332i \(0.262036\pi\)
\(132\) 82.3600 + 82.3600i 0.623940 + 0.623940i
\(133\) −15.6840 + 44.1157i −0.117925 + 0.331697i
\(134\) 75.2289i 0.561409i
\(135\) 0 0
\(136\) −12.5233 21.6911i −0.0920834 0.159493i
\(137\) −16.6880 + 62.2804i −0.121810 + 0.454602i −0.999706 0.0242501i \(-0.992280\pi\)
0.877896 + 0.478852i \(0.158947\pi\)
\(138\) −54.5319 203.516i −0.395159 1.47475i
\(139\) 51.4750i 0.370324i −0.982708 0.185162i \(-0.940719\pi\)
0.982708 0.185162i \(-0.0592810\pi\)
\(140\) 0 0
\(141\) −46.3025 −0.328387
\(142\) −138.223 + 37.0368i −0.973402 + 0.260822i
\(143\) −146.428 39.2352i −1.02397 0.274372i
\(144\) 63.5316 36.6800i 0.441191 0.254722i
\(145\) 0 0
\(146\) 148.140 1.01466
\(147\) −254.872 + 26.1473i −1.73382 + 0.177873i
\(148\) 21.9352 21.9352i 0.148211 0.148211i
\(149\) 47.3177 + 27.3189i 0.317568 + 0.183348i 0.650308 0.759670i \(-0.274640\pi\)
−0.332740 + 0.943019i \(0.607973\pi\)
\(150\) 0 0
\(151\) 62.2354 + 107.795i 0.412155 + 0.713874i 0.995125 0.0986200i \(-0.0314428\pi\)
−0.582970 + 0.812494i \(0.698109\pi\)
\(152\) −18.2738 + 4.89645i −0.120222 + 0.0322135i
\(153\) 114.839 114.839i 0.750582 0.750582i
\(154\) 62.5645 90.7899i 0.406263 0.589545i
\(155\) 0 0
\(156\) −71.1666 + 123.264i −0.456196 + 0.790155i
\(157\) 20.6950 77.2347i 0.131815 0.491941i −0.868176 0.496257i \(-0.834707\pi\)
0.999991 + 0.00431635i \(0.00137394\pi\)
\(158\) −18.6115 4.98693i −0.117794 0.0315629i
\(159\) −64.7163 37.3640i −0.407021 0.234994i
\(160\) 0 0
\(161\) −180.129 + 85.6424i −1.11881 + 0.531940i
\(162\) 90.2951 + 90.2951i 0.557377 + 0.557377i
\(163\) 48.8390 + 182.269i 0.299626 + 1.11822i 0.937474 + 0.348056i \(0.113158\pi\)
−0.637848 + 0.770162i \(0.720175\pi\)
\(164\) −15.9047 + 9.18256i −0.0969797 + 0.0559912i
\(165\) 0 0
\(166\) −28.4835 + 49.3349i −0.171587 + 0.297198i
\(167\) −116.548 116.548i −0.697892 0.697892i 0.266064 0.963955i \(-0.414277\pi\)
−0.963955 + 0.266064i \(0.914277\pi\)
\(168\) −67.1357 78.8040i −0.399617 0.469072i
\(169\) 16.2485i 0.0961450i
\(170\) 0 0
\(171\) −61.3351 106.236i −0.358685 0.621260i
\(172\) −40.3539 + 150.603i −0.234615 + 0.875597i
\(173\) 82.3855 + 307.467i 0.476217 + 1.77727i 0.616717 + 0.787185i \(0.288462\pi\)
−0.140500 + 0.990081i \(0.544871\pi\)
\(174\) 214.985i 1.23555i
\(175\) 0 0
\(176\) 44.5515 0.253134
\(177\) 395.397 105.946i 2.23388 0.598566i
\(178\) −10.3499 2.77325i −0.0581455 0.0155800i
\(179\) 57.5525 33.2280i 0.321522 0.185631i −0.330549 0.943789i \(-0.607234\pi\)
0.652071 + 0.758158i \(0.273900\pi\)
\(180\) 0 0
\(181\) −71.5932 −0.395543 −0.197771 0.980248i \(-0.563370\pi\)
−0.197771 + 0.980248i \(0.563370\pi\)
\(182\) 126.954 + 45.1344i 0.697548 + 0.247991i
\(183\) −79.2673 + 79.2673i −0.433155 + 0.433155i
\(184\) −69.7937 40.2954i −0.379313 0.218997i
\(185\) 0 0
\(186\) −88.0234 152.461i −0.473244 0.819683i
\(187\) 95.2690 25.5273i 0.509460 0.136509i
\(188\) −12.5233 + 12.5233i −0.0666136 + 0.0666136i
\(189\) 193.980 281.491i 1.02635 1.48937i
\(190\) 0 0
\(191\) 166.665 288.672i 0.872590 1.51137i 0.0132816 0.999912i \(-0.495772\pi\)
0.859308 0.511458i \(-0.170894\pi\)
\(192\) 10.8264 40.4048i 0.0563877 0.210442i
\(193\) 95.9658 + 25.7140i 0.497232 + 0.133233i 0.498715 0.866766i \(-0.333805\pi\)
−0.00148294 + 0.999999i \(0.500472\pi\)
\(194\) −128.905 74.4232i −0.664457 0.383625i
\(195\) 0 0
\(196\) −61.8626 + 76.0067i −0.315626 + 0.387789i
\(197\) 131.527 + 131.527i 0.667651 + 0.667651i 0.957172 0.289521i \(-0.0934960\pi\)
−0.289521 + 0.957172i \(0.593496\pi\)
\(198\) 74.7674 + 279.036i 0.377613 + 1.40927i
\(199\) 211.873 122.325i 1.06469 0.614697i 0.137961 0.990438i \(-0.455945\pi\)
0.926725 + 0.375741i \(0.122612\pi\)
\(200\) 0 0
\(201\) −139.072 + 240.879i −0.691899 + 1.19840i
\(202\) −124.304 124.304i −0.615366 0.615366i
\(203\) 200.152 36.8385i 0.985968 0.181470i
\(204\) 92.6050i 0.453946i
\(205\) 0 0
\(206\) −73.2765 126.919i −0.355711 0.616109i
\(207\) 135.249 504.758i 0.653379 2.43844i
\(208\) 14.0907 + 52.5873i 0.0677439 + 0.252824i
\(209\) 74.4977i 0.356448i
\(210\) 0 0
\(211\) 203.685 0.965329 0.482665 0.875805i \(-0.339669\pi\)
0.482665 + 0.875805i \(0.339669\pi\)
\(212\) −27.6095 + 7.39793i −0.130233 + 0.0348959i
\(213\) −511.051 136.936i −2.39930 0.642891i
\(214\) 109.945 63.4769i 0.513762 0.296621i
\(215\) 0 0
\(216\) 138.131 0.639494
\(217\) −126.858 + 108.075i −0.584600 + 0.498039i
\(218\) 168.501 168.501i 0.772938 0.772938i
\(219\) 474.337 + 273.859i 2.16592 + 1.25050i
\(220\) 0 0
\(221\) 60.2633 + 104.379i 0.272685 + 0.472303i
\(222\) 110.786 29.6850i 0.499035 0.133716i
\(223\) 194.661 194.661i 0.872921 0.872921i −0.119869 0.992790i \(-0.538247\pi\)
0.992790 + 0.119869i \(0.0382474\pi\)
\(224\) −39.4720 3.15591i −0.176214 0.0140889i
\(225\) 0 0
\(226\) −22.2552 + 38.5472i −0.0984744 + 0.170563i
\(227\) 59.0356 220.324i 0.260069 0.970589i −0.705132 0.709077i \(-0.749112\pi\)
0.965200 0.261513i \(-0.0842213\pi\)
\(228\) −67.5637 18.1036i −0.296332 0.0794019i
\(229\) 161.759 + 93.3917i 0.706372 + 0.407824i 0.809716 0.586821i \(-0.199621\pi\)
−0.103344 + 0.994646i \(0.532954\pi\)
\(230\) 0 0
\(231\) 368.167 175.045i 1.59380 0.757771i
\(232\) 58.1467 + 58.1467i 0.250632 + 0.250632i
\(233\) 87.0627 + 324.922i 0.373660 + 1.39452i 0.855293 + 0.518144i \(0.173377\pi\)
−0.481634 + 0.876373i \(0.659956\pi\)
\(234\) −305.719 + 176.507i −1.30649 + 0.754302i
\(235\) 0 0
\(236\) 78.2871 135.597i 0.331725 0.574564i
\(237\) −50.3740 50.3740i −0.212549 0.212549i
\(238\) −86.2153 + 15.8682i −0.362249 + 0.0666731i
\(239\) 83.6738i 0.350099i −0.984560 0.175050i \(-0.943991\pi\)
0.984560 0.175050i \(-0.0560086\pi\)
\(240\) 0 0
\(241\) −57.1739 99.0280i −0.237236 0.410905i 0.722684 0.691178i \(-0.242908\pi\)
−0.959920 + 0.280274i \(0.909575\pi\)
\(242\) −1.11722 + 4.16951i −0.00461660 + 0.0172294i
\(243\) 8.43820 + 31.4918i 0.0347251 + 0.129596i
\(244\) 42.8786i 0.175732i
\(245\) 0 0
\(246\) −67.9013 −0.276022
\(247\) 87.9349 23.5621i 0.356012 0.0953931i
\(248\) −65.0433 17.4283i −0.262272 0.0702754i
\(249\) −182.406 + 105.312i −0.732553 + 0.422940i
\(250\) 0 0
\(251\) −2.86375 −0.0114094 −0.00570468 0.999984i \(-0.501816\pi\)
−0.00570468 + 0.999984i \(0.501816\pi\)
\(252\) −46.4768 252.518i −0.184432 1.00206i
\(253\) 224.403 224.403i 0.886967 0.886967i
\(254\) 139.502 + 80.5418i 0.549222 + 0.317094i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 82.9396 22.2236i 0.322722 0.0864731i −0.0938211 0.995589i \(-0.529908\pi\)
0.416543 + 0.909116i \(0.363241\pi\)
\(258\) −407.622 + 407.622i −1.57993 + 1.57993i
\(259\) −46.6202 98.0550i −0.180001 0.378591i
\(260\) 0 0
\(261\) −266.602 + 461.769i −1.02146 + 1.76923i
\(262\) −28.3044 + 105.634i −0.108032 + 0.403182i
\(263\) −244.691 65.5647i −0.930384 0.249296i −0.238365 0.971176i \(-0.576612\pi\)
−0.692018 + 0.721880i \(0.743278\pi\)
\(264\) 142.652 + 82.3600i 0.540348 + 0.311970i
\(265\) 0 0
\(266\) −5.27722 + 66.0039i −0.0198392 + 0.248135i
\(267\) −28.0131 28.0131i −0.104918 0.104918i
\(268\) 27.5357 + 102.765i 0.102745 + 0.383450i
\(269\) −435.001 + 251.148i −1.61710 + 0.933636i −0.629441 + 0.777049i \(0.716716\pi\)
−0.987664 + 0.156587i \(0.949951\pi\)
\(270\) 0 0
\(271\) 99.2563 171.917i 0.366259 0.634380i −0.622718 0.782446i \(-0.713972\pi\)
0.988977 + 0.148066i \(0.0473049\pi\)
\(272\) −25.0467 25.0467i −0.0920834 0.0920834i
\(273\) 323.062 + 379.211i 1.18338 + 1.38905i
\(274\) 91.1849i 0.332792i
\(275\) 0 0
\(276\) −148.984 258.048i −0.539797 0.934956i
\(277\) −98.4162 + 367.294i −0.355293 + 1.32597i 0.524822 + 0.851212i \(0.324132\pi\)
−0.880115 + 0.474760i \(0.842535\pi\)
\(278\) −18.8412 70.3162i −0.0677740 0.252936i
\(279\) 436.629i 1.56498i
\(280\) 0 0
\(281\) 135.599 0.482558 0.241279 0.970456i \(-0.422433\pi\)
0.241279 + 0.970456i \(0.422433\pi\)
\(282\) −63.2504 + 16.9479i −0.224292 + 0.0600989i
\(283\) 340.827 + 91.3244i 1.20434 + 0.322701i 0.804538 0.593902i \(-0.202413\pi\)
0.399799 + 0.916603i \(0.369080\pi\)
\(284\) −175.260 + 101.186i −0.617112 + 0.356290i
\(285\) 0 0
\(286\) −214.385 −0.749599
\(287\) 11.6351 + 63.2161i 0.0405405 + 0.220265i
\(288\) 73.3599 73.3599i 0.254722 0.254722i
\(289\) 182.370 + 105.291i 0.631039 + 0.364330i
\(290\) 0 0
\(291\) −275.164 476.599i −0.945582 1.63780i
\(292\) 202.363 54.2230i 0.693024 0.185695i
\(293\) −73.2341 + 73.2341i −0.249946 + 0.249946i −0.820948 0.571003i \(-0.806555\pi\)
0.571003 + 0.820948i \(0.306555\pi\)
\(294\) −338.591 + 129.007i −1.15167 + 0.438801i
\(295\) 0 0
\(296\) 21.9352 37.9928i 0.0741053 0.128354i
\(297\) −140.781 + 525.402i −0.474010 + 1.76903i
\(298\) 74.6366 + 19.9988i 0.250458 + 0.0671101i
\(299\) 335.852 + 193.904i 1.12325 + 0.648510i
\(300\) 0 0
\(301\) 449.344 + 309.649i 1.49284 + 1.02873i
\(302\) 124.471 + 124.471i 0.412155 + 0.412155i
\(303\) −168.221 627.810i −0.555185 2.07198i
\(304\) −23.1703 + 13.3774i −0.0762180 + 0.0440045i
\(305\) 0 0
\(306\) 114.839 198.907i 0.375291 0.650023i
\(307\) 394.192 + 394.192i 1.28401 + 1.28401i 0.938363 + 0.345652i \(0.112342\pi\)
0.345652 + 0.938363i \(0.387658\pi\)
\(308\) 52.2333 146.922i 0.169589 0.477018i
\(309\) 541.849i 1.75356i
\(310\) 0 0
\(311\) −117.796 204.029i −0.378766 0.656041i 0.612117 0.790767i \(-0.290318\pi\)
−0.990883 + 0.134726i \(0.956985\pi\)
\(312\) −52.0976 + 194.431i −0.166979 + 0.623176i
\(313\) −94.8023 353.807i −0.302883 1.13037i −0.934752 0.355300i \(-0.884379\pi\)
0.631870 0.775075i \(-0.282288\pi\)
\(314\) 113.079i 0.360126i
\(315\) 0 0
\(316\) −27.2491 −0.0862314
\(317\) −19.9576 + 5.34762i −0.0629577 + 0.0168695i −0.290160 0.956978i \(-0.593709\pi\)
0.227203 + 0.973847i \(0.427042\pi\)
\(318\) −102.080 27.3523i −0.321007 0.0860136i
\(319\) −280.432 + 161.908i −0.879098 + 0.507548i
\(320\) 0 0
\(321\) 469.385 1.46226
\(322\) −214.714 + 182.922i −0.666813 + 0.568079i
\(323\) −41.8823 + 41.8823i −0.129667 + 0.129667i
\(324\) 156.396 + 90.2951i 0.482703 + 0.278689i
\(325\) 0 0
\(326\) 133.431 + 231.108i 0.409296 + 0.708922i
\(327\) 851.029 228.032i 2.60253 0.697347i
\(328\) −18.3651 + 18.3651i −0.0559912 + 0.0559912i
\(329\) 26.6167 + 55.9821i 0.0809017 + 0.170158i
\(330\) 0 0
\(331\) −70.6868 + 122.433i −0.213555 + 0.369889i −0.952825 0.303521i \(-0.901838\pi\)
0.739269 + 0.673410i \(0.235171\pi\)
\(332\) −20.8514 + 77.8184i −0.0628054 + 0.234393i
\(333\) 274.770 + 73.6243i 0.825134 + 0.221094i
\(334\) −201.867 116.548i −0.604392 0.348946i
\(335\) 0 0
\(336\) −120.553 83.0749i −0.358790 0.247247i
\(337\) −226.963 226.963i −0.673482 0.673482i 0.285035 0.958517i \(-0.407995\pi\)
−0.958517 + 0.285035i \(0.907995\pi\)
\(338\) −5.94737 22.1959i −0.0175958 0.0656683i
\(339\) −142.520 + 82.2841i −0.420414 + 0.242726i
\(340\) 0 0
\(341\) 132.583 229.640i 0.388805 0.673430i
\(342\) −122.670 122.670i −0.358685 0.358685i
\(343\) 178.125 + 293.122i 0.519314 + 0.854584i
\(344\) 220.498i 0.640981i
\(345\) 0 0
\(346\) 225.081 + 389.852i 0.650524 + 1.12674i
\(347\) 149.887 559.385i 0.431950 1.61206i −0.316311 0.948656i \(-0.602444\pi\)
0.748261 0.663404i \(-0.230889\pi\)
\(348\) 78.6902 + 293.676i 0.226121 + 0.843896i
\(349\) 46.5465i 0.133371i 0.997774 + 0.0666856i \(0.0212424\pi\)
−0.997774 + 0.0666856i \(0.978758\pi\)
\(350\) 0 0
\(351\) −664.695 −1.89372
\(352\) 60.8585 16.3070i 0.172893 0.0463267i
\(353\) −513.383 137.561i −1.45434 0.389690i −0.556811 0.830639i \(-0.687975\pi\)
−0.897532 + 0.440949i \(0.854642\pi\)
\(354\) 501.343 289.450i 1.41622 0.817657i
\(355\) 0 0
\(356\) −15.1533 −0.0425655
\(357\) −305.392 108.573i −0.855439 0.304125i
\(358\) 66.4559 66.4559i 0.185631 0.185631i
\(359\) 61.5713 + 35.5482i 0.171508 + 0.0990201i 0.583297 0.812259i \(-0.301763\pi\)
−0.411789 + 0.911279i \(0.635096\pi\)
\(360\) 0 0
\(361\) −158.131 273.891i −0.438035 0.758700i
\(362\) −97.7982 + 26.2049i −0.270161 + 0.0723893i
\(363\) −11.2852 + 11.2852i −0.0310888 + 0.0310888i
\(364\) 189.942 + 15.1865i 0.521820 + 0.0417211i
\(365\) 0 0
\(366\) −79.2673 + 137.295i −0.216577 + 0.375123i
\(367\) 36.5132 136.269i 0.0994911 0.371306i −0.898171 0.439646i \(-0.855104\pi\)
0.997662 + 0.0683405i \(0.0217704\pi\)
\(368\) −110.089 29.4983i −0.299155 0.0801584i
\(369\) −145.846 84.2040i −0.395246 0.228195i
\(370\) 0 0
\(371\) −7.97322 + 99.7237i −0.0214912 + 0.268797i
\(372\) −176.047 176.047i −0.473244 0.473244i
\(373\) 78.3283 + 292.325i 0.209995 + 0.783714i 0.987869 + 0.155292i \(0.0496319\pi\)
−0.777873 + 0.628421i \(0.783701\pi\)
\(374\) 120.796 69.7417i 0.322985 0.186475i
\(375\) 0 0
\(376\) −12.5233 + 21.6911i −0.0333068 + 0.0576890i
\(377\) −279.806 279.806i −0.742192 0.742192i
\(378\) 161.948 455.526i 0.428434 1.20510i
\(379\) 329.976i 0.870649i 0.900274 + 0.435325i \(0.143366\pi\)
−0.900274 + 0.435325i \(0.856634\pi\)
\(380\) 0 0
\(381\) 297.787 + 515.782i 0.781593 + 1.35376i
\(382\) 122.007 455.336i 0.319390 1.19198i
\(383\) −46.0298 171.786i −0.120182 0.448527i 0.879440 0.476010i \(-0.157917\pi\)
−0.999622 + 0.0274833i \(0.991251\pi\)
\(384\) 59.1567i 0.154054i
\(385\) 0 0
\(386\) 140.504 0.363999
\(387\) −1381.03 + 370.045i −3.56854 + 0.956188i
\(388\) −203.328 54.4815i −0.524041 0.140416i
\(389\) −207.304 + 119.687i −0.532914 + 0.307678i −0.742202 0.670176i \(-0.766219\pi\)
0.209288 + 0.977854i \(0.432885\pi\)
\(390\) 0 0
\(391\) −252.317 −0.645311
\(392\) −56.6856 + 126.470i −0.144606 + 0.322628i
\(393\) −285.909 + 285.909i −0.727503 + 0.727503i
\(394\) 227.812 + 131.527i 0.578202 + 0.333825i
\(395\) 0 0
\(396\) 204.268 + 353.803i 0.515829 + 0.893443i
\(397\) −594.046 + 159.174i −1.49634 + 0.400942i −0.911871 0.410476i \(-0.865362\pi\)
−0.584466 + 0.811419i \(0.698696\pi\)
\(398\) 244.649 244.649i 0.614697 0.614697i
\(399\) −138.915 + 201.586i −0.348159 + 0.505227i
\(400\) 0 0
\(401\) −243.686 + 422.077i −0.607697 + 1.05256i 0.383922 + 0.923366i \(0.374573\pi\)
−0.991619 + 0.129197i \(0.958760\pi\)
\(402\) −101.808 + 379.951i −0.253253 + 0.945151i
\(403\) 312.993 + 83.8663i 0.776659 + 0.208105i
\(404\) −215.301 124.304i −0.532923 0.307683i
\(405\) 0 0
\(406\) 259.928 123.583i 0.640217 0.304391i
\(407\) 122.156 + 122.156i 0.300137 + 0.300137i
\(408\) −33.8958 126.501i −0.0830779 0.310051i
\(409\) 197.730 114.159i 0.483447 0.279119i −0.238405 0.971166i \(-0.576624\pi\)
0.721852 + 0.692047i \(0.243291\pi\)
\(410\) 0 0
\(411\) −168.569 + 291.970i −0.410143 + 0.710388i
\(412\) −146.553 146.553i −0.355711 0.355711i
\(413\) −355.385 417.152i −0.860497 1.01005i
\(414\) 739.017i 1.78506i
\(415\) 0 0
\(416\) 38.4966 + 66.6781i 0.0925399 + 0.160284i
\(417\) 69.6614 259.980i 0.167054 0.623453i
\(418\) −27.2680 101.766i −0.0652345 0.243459i
\(419\) 312.625i 0.746121i −0.927807 0.373061i \(-0.878308\pi\)
0.927807 0.373061i \(-0.121692\pi\)
\(420\) 0 0
\(421\) 479.690 1.13941 0.569703 0.821851i \(-0.307058\pi\)
0.569703 + 0.821851i \(0.307058\pi\)
\(422\) 278.238 74.5537i 0.659332 0.176668i
\(423\) −156.873 42.0340i −0.370858 0.0993711i
\(424\) −35.0074 + 20.2115i −0.0825646 + 0.0476687i
\(425\) 0 0
\(426\) −748.231 −1.75641
\(427\) 141.404 + 50.2719i 0.331158 + 0.117733i
\(428\) 126.954 126.954i 0.296621 0.296621i
\(429\) −686.451 396.323i −1.60012 0.923829i
\(430\) 0 0
\(431\) 268.836 + 465.638i 0.623750 + 1.08037i 0.988781 + 0.149371i \(0.0477250\pi\)
−0.365031 + 0.930995i \(0.618942\pi\)
\(432\) 188.690 50.5593i 0.436782 0.117036i
\(433\) −13.8191 + 13.8191i −0.0319148 + 0.0319148i −0.722884 0.690969i \(-0.757184\pi\)
0.690969 + 0.722884i \(0.257184\pi\)
\(434\) −133.733 + 194.066i −0.308142 + 0.447156i
\(435\) 0 0
\(436\) 168.501 291.851i 0.386469 0.669384i
\(437\) −49.3261 + 184.088i −0.112874 + 0.421253i
\(438\) 748.196 + 200.478i 1.70821 + 0.457713i
\(439\) 160.490 + 92.6588i 0.365580 + 0.211068i 0.671526 0.740981i \(-0.265639\pi\)
−0.305945 + 0.952049i \(0.598973\pi\)
\(440\) 0 0
\(441\) −887.243 142.788i −2.01189 0.323783i
\(442\) 120.527 + 120.527i 0.272685 + 0.272685i
\(443\) −44.0219 164.292i −0.0993722 0.370862i 0.898274 0.439436i \(-0.144822\pi\)
−0.997646 + 0.0685740i \(0.978155\pi\)
\(444\) 140.471 81.1008i 0.316375 0.182659i
\(445\) 0 0
\(446\) 194.661 337.163i 0.436460 0.755972i
\(447\) 202.012 + 202.012i 0.451928 + 0.451928i
\(448\) −55.0749 + 10.1367i −0.122935 + 0.0226266i
\(449\) 136.021i 0.302943i −0.988462 0.151472i \(-0.951599\pi\)
0.988462 0.151472i \(-0.0484012\pi\)
\(450\) 0 0
\(451\) −51.1371 88.5721i −0.113386 0.196391i
\(452\) −16.2919 + 60.8024i −0.0360441 + 0.134518i
\(453\) 168.447 + 628.652i 0.371847 + 1.38775i
\(454\) 322.576i 0.710520i
\(455\) 0 0
\(456\) −98.9201 −0.216930
\(457\) 744.760 199.558i 1.62967 0.436669i 0.675850 0.737040i \(-0.263777\pi\)
0.953823 + 0.300370i \(0.0971102\pi\)
\(458\) 255.151 + 68.3675i 0.557098 + 0.149274i
\(459\) 374.525 216.232i 0.815959 0.471094i
\(460\) 0 0
\(461\) −174.788 −0.379149 −0.189574 0.981866i \(-0.560711\pi\)
−0.189574 + 0.981866i \(0.560711\pi\)
\(462\) 438.855 373.874i 0.949902 0.809252i
\(463\) 219.730 219.730i 0.474578 0.474578i −0.428814 0.903393i \(-0.641069\pi\)
0.903393 + 0.428814i \(0.141069\pi\)
\(464\) 100.713 + 58.1467i 0.217054 + 0.125316i
\(465\) 0 0
\(466\) 237.860 + 411.985i 0.510429 + 0.884088i
\(467\) −749.905 + 200.936i −1.60579 + 0.430270i −0.946785 0.321867i \(-0.895690\pi\)
−0.659006 + 0.752137i \(0.729023\pi\)
\(468\) −353.013 + 353.013i −0.754302 + 0.754302i
\(469\) 371.179 + 29.6770i 0.791427 + 0.0632771i
\(470\) 0 0
\(471\) 209.044 362.075i 0.443830 0.768737i
\(472\) 57.3101 213.884i 0.121420 0.453145i
\(473\) −838.697 224.728i −1.77314 0.475112i
\(474\) −87.2503 50.3740i −0.184072 0.106274i
\(475\) 0 0
\(476\) −111.964 + 53.2333i −0.235219 + 0.111835i
\(477\) −185.339 185.339i −0.388552 0.388552i
\(478\) −30.6267 114.300i −0.0640726 0.239122i
\(479\) −78.4044 + 45.2668i −0.163684 + 0.0945028i −0.579604 0.814898i \(-0.696793\pi\)
0.415921 + 0.909401i \(0.363459\pi\)
\(480\) 0 0
\(481\) −105.554 + 182.824i −0.219446 + 0.380092i
\(482\) −114.348 114.348i −0.237236 0.237236i
\(483\) −1025.66 + 188.776i −2.12352 + 0.390840i
\(484\) 6.10459i 0.0126128i
\(485\) 0 0
\(486\) 23.0536 + 39.9300i 0.0474354 + 0.0821605i
\(487\) −236.419 + 882.327i −0.485460 + 1.81176i 0.0925219 + 0.995711i \(0.470507\pi\)
−0.577982 + 0.816050i \(0.696159\pi\)
\(488\) 15.6946 + 58.5732i 0.0321611 + 0.120027i
\(489\) 986.664i 2.01772i
\(490\) 0 0
\(491\) −885.439 −1.80334 −0.901669 0.432427i \(-0.857657\pi\)
−0.901669 + 0.432427i \(0.857657\pi\)
\(492\) −92.7549 + 24.8536i −0.188526 + 0.0505154i
\(493\) 248.682 + 66.6341i 0.504426 + 0.135161i
\(494\) 111.497 64.3728i 0.225702 0.130309i
\(495\) 0 0
\(496\) −95.2301 −0.191996
\(497\) 128.212 + 696.603i 0.257972 + 1.40162i
\(498\) −210.624 + 210.624i −0.422940 + 0.422940i
\(499\) −559.499 323.027i −1.12124 0.647348i −0.179522 0.983754i \(-0.557455\pi\)
−0.941717 + 0.336406i \(0.890789\pi\)
\(500\) 0 0
\(501\) −430.912 746.362i −0.860104 1.48974i
\(502\) −3.91195 + 1.04821i −0.00779274 + 0.00208806i
\(503\) 498.400 498.400i 0.990855 0.990855i −0.00910371 0.999959i \(-0.502898\pi\)
0.999959 + 0.00910371i \(0.00289784\pi\)
\(504\) −155.917 327.935i −0.309358 0.650664i
\(505\) 0 0
\(506\) 224.403 388.677i 0.443483 0.768136i
\(507\) 21.9892 82.0647i 0.0433711 0.161863i
\(508\) 220.044 + 58.9607i 0.433158 + 0.116064i
\(509\) −256.295 147.972i −0.503526 0.290711i 0.226642 0.973978i \(-0.427225\pi\)
−0.730169 + 0.683267i \(0.760558\pi\)
\(510\) 0 0
\(511\) 58.4396 730.923i 0.114363 1.43038i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) −84.5438 315.522i −0.164803 0.615052i
\(514\) 105.163 60.7160i 0.204598 0.118124i
\(515\) 0 0
\(516\) −407.622 + 706.023i −0.789966 + 1.36826i
\(517\) −69.7417 69.7417i −0.134897 0.134897i
\(518\) −99.5750 116.881i −0.192230 0.225640i
\(519\) 1664.38i 3.20691i
\(520\) 0 0
\(521\) −343.065 594.206i −0.658474 1.14051i −0.981011 0.193953i \(-0.937869\pi\)
0.322537 0.946557i \(-0.395464\pi\)
\(522\) −195.166 + 728.371i −0.373882 + 1.39535i
\(523\) 119.269 + 445.117i 0.228047 + 0.851085i 0.981161 + 0.193194i \(0.0618846\pi\)
−0.753113 + 0.657891i \(0.771449\pi\)
\(524\) 154.658i 0.295149i
\(525\) 0 0
\(526\) −358.252 −0.681088
\(527\) −203.640 + 54.5652i −0.386414 + 0.103539i
\(528\) 225.012 + 60.2917i 0.426159 + 0.114189i
\(529\) −244.964 + 141.430i −0.463069 + 0.267353i
\(530\) 0 0
\(531\) 1435.78 2.70392
\(532\) 16.9503 + 92.0946i 0.0318614 + 0.173110i
\(533\) 88.3744 88.3744i 0.165806 0.165806i
\(534\) −48.5202 28.0131i −0.0908617 0.0524590i
\(535\) 0 0
\(536\) 75.2289 + 130.300i 0.140352 + 0.243097i
\(537\) 335.642 89.9350i 0.625032 0.167477i
\(538\) −502.296 + 502.296i −0.933636 + 0.933636i
\(539\) −423.276 344.509i −0.785300 0.639164i
\(540\) 0 0
\(541\) −78.6223 + 136.178i −0.145328 + 0.251715i −0.929495 0.368834i \(-0.879757\pi\)
0.784167 + 0.620549i \(0.213090\pi\)
\(542\) 72.6607 271.173i 0.134060 0.500320i
\(543\) −361.589 96.8874i −0.665909 0.178430i
\(544\) −43.3821 25.0467i −0.0797466 0.0460417i
\(545\) 0 0
\(546\) 580.112 + 399.763i 1.06248 + 0.732166i
\(547\) 13.1899 + 13.1899i 0.0241132 + 0.0241132i 0.719061 0.694947i \(-0.244572\pi\)
−0.694947 + 0.719061i \(0.744572\pi\)
\(548\) 33.3760 + 124.561i 0.0609051 + 0.227301i
\(549\) −340.518 + 196.598i −0.620251 + 0.358102i
\(550\) 0 0
\(551\) 97.2311 168.409i 0.176463 0.305643i
\(552\) −297.968 297.968i −0.539797 0.539797i
\(553\) −31.9476 + 89.8618i −0.0577714 + 0.162499i
\(554\) 537.756i 0.970679i
\(555\) 0 0
\(556\) −51.4750 89.1574i −0.0925810 0.160355i
\(557\) 145.580 543.313i 0.261365 0.975427i −0.703073 0.711117i \(-0.748189\pi\)
0.964438 0.264309i \(-0.0851439\pi\)
\(558\) −159.817 596.447i −0.286411 1.06890i
\(559\) 1061.05i 1.89812i
\(560\) 0 0
\(561\) 515.712 0.919272
\(562\) 185.231 49.6326i 0.329593 0.0883143i
\(563\) 810.309 + 217.122i 1.43927 + 0.385651i 0.892278 0.451486i \(-0.149106\pi\)
0.546992 + 0.837138i \(0.315773\pi\)
\(564\) −80.1983 + 46.3025i −0.142196 + 0.0820967i
\(565\) 0 0
\(566\) 499.006 0.881636
\(567\) 481.137 409.896i 0.848566 0.722920i
\(568\) −202.373 + 202.373i −0.356290 + 0.356290i
\(569\) −271.713 156.874i −0.477527 0.275701i 0.241858 0.970312i \(-0.422243\pi\)
−0.719385 + 0.694611i \(0.755576\pi\)
\(570\) 0 0
\(571\) 340.272 + 589.368i 0.595923 + 1.03217i 0.993416 + 0.114564i \(0.0365470\pi\)
−0.397493 + 0.917605i \(0.630120\pi\)
\(572\) −292.856 + 78.4704i −0.511985 + 0.137186i
\(573\) 1232.42 1232.42i 2.15081 2.15081i
\(574\) 39.0326 + 82.0961i 0.0680010 + 0.143025i
\(575\) 0 0
\(576\) 73.3599 127.063i 0.127361 0.220596i
\(577\) −213.851 + 798.104i −0.370626 + 1.38320i 0.489005 + 0.872281i \(0.337360\pi\)
−0.859631 + 0.510915i \(0.829307\pi\)
\(578\) 287.662 + 77.0787i 0.497684 + 0.133354i
\(579\) 449.886 + 259.742i 0.777005 + 0.448604i
\(580\) 0 0
\(581\) 232.182 + 160.000i 0.399625 + 0.275387i
\(582\) −550.329 550.329i −0.945582 0.945582i
\(583\) −41.1986 153.755i −0.0706666 0.263731i
\(584\) 256.586 148.140i 0.439360 0.253664i
\(585\) 0 0
\(586\) −73.2341 + 126.845i −0.124973 + 0.216459i
\(587\) 345.401 + 345.401i 0.588417 + 0.588417i 0.937202 0.348786i \(-0.113406\pi\)
−0.348786 + 0.937202i \(0.613406\pi\)
\(588\) −415.303 + 300.160i −0.706298 + 0.510477i
\(589\) 159.241i 0.270358i
\(590\) 0 0
\(591\) 486.295 + 842.287i 0.822834 + 1.42519i
\(592\) 16.0577 59.9280i 0.0271244 0.101230i
\(593\) 46.7804 + 174.587i 0.0788876 + 0.294413i 0.994087 0.108589i \(-0.0346334\pi\)
−0.915199 + 0.403002i \(0.867967\pi\)
\(594\) 769.241i 1.29502i
\(595\) 0 0
\(596\) 109.276 0.183348
\(597\) 1235.63 331.085i 2.06972 0.554581i
\(598\) 529.757 + 141.948i 0.885881 + 0.237371i
\(599\) 267.890 154.666i 0.447229 0.258208i −0.259430 0.965762i \(-0.583535\pi\)
0.706659 + 0.707554i \(0.250201\pi\)
\(600\) 0 0
\(601\) −583.911 −0.971566 −0.485783 0.874079i \(-0.661465\pi\)
−0.485783 + 0.874079i \(0.661465\pi\)
\(602\) 727.155 + 258.517i 1.20790 + 0.429430i
\(603\) −689.848 + 689.848i −1.14403 + 1.14403i
\(604\) 215.590 + 124.471i 0.356937 + 0.206078i
\(605\) 0 0
\(606\) −459.589 796.031i −0.758397 1.31358i
\(607\) −162.955 + 43.6636i −0.268459 + 0.0719335i −0.390537 0.920587i \(-0.627711\pi\)
0.122078 + 0.992520i \(0.461044\pi\)
\(608\) −26.7547 + 26.7547i −0.0440045 + 0.0440045i
\(609\) 1060.74 + 84.8094i 1.74177 + 0.139260i
\(610\) 0 0
\(611\) 60.2633 104.379i 0.0986306 0.170833i
\(612\) 84.0680 313.746i 0.137366 0.512657i
\(613\) −365.798 98.0152i −0.596734 0.159894i −0.0522047 0.998636i \(-0.516625\pi\)
−0.544529 + 0.838742i \(0.683291\pi\)
\(614\) 682.761 + 394.192i 1.11199 + 0.642007i
\(615\) 0 0
\(616\) 17.5751 219.817i 0.0285310 0.356846i
\(617\) −788.089 788.089i −1.27729 1.27729i −0.942178 0.335114i \(-0.891225\pi\)
−0.335114 0.942178i \(-0.608775\pi\)
\(618\) −198.331 740.180i −0.320923 1.19770i
\(619\) 506.750 292.572i 0.818660 0.472653i −0.0312944 0.999510i \(-0.509963\pi\)
0.849954 + 0.526857i \(0.176630\pi\)
\(620\) 0 0
\(621\) 695.754 1205.08i 1.12038 1.94055i
\(622\) −235.592 235.592i −0.378766 0.378766i
\(623\) −17.7661 + 49.9724i −0.0285171 + 0.0802126i
\(624\) 284.667i 0.456196i
\(625\) 0 0
\(626\) −259.005 448.609i −0.413746 0.716629i
\(627\) 100.818 376.258i 0.160794 0.600092i
\(628\) −41.3900 154.469i −0.0659076 0.245970i
\(629\) 137.351i 0.218364i
\(630\) 0 0
\(631\) 592.443 0.938895 0.469448 0.882960i \(-0.344453\pi\)
0.469448 + 0.882960i \(0.344453\pi\)
\(632\) −37.2230 + 9.97387i −0.0588971 + 0.0157814i
\(633\) 1028.73 + 275.647i 1.62516 + 0.435461i
\(634\) −25.3052 + 14.6100i −0.0399136 + 0.0230441i
\(635\) 0 0
\(636\) −149.456 −0.234994
\(637\) 272.775 608.585i 0.428218 0.955392i
\(638\) −323.815 + 323.815i −0.507548 + 0.507548i
\(639\) −1607.13 927.877i −2.51507 1.45208i
\(640\) 0 0
\(641\) −190.823 330.516i −0.297696 0.515625i 0.677912 0.735143i \(-0.262885\pi\)
−0.975609 + 0.219518i \(0.929552\pi\)
\(642\) 641.192 171.807i 0.998742 0.267612i
\(643\) −34.6664 + 34.6664i −0.0539135 + 0.0539135i −0.733550 0.679636i \(-0.762138\pi\)
0.679636 + 0.733550i \(0.262138\pi\)
\(644\) −226.350 + 328.466i −0.351476 + 0.510040i
\(645\) 0 0
\(646\) −41.8823 + 72.5423i −0.0648333 + 0.112295i
\(647\) 180.656 674.219i 0.279222 1.04207i −0.673738 0.738971i \(-0.735312\pi\)
0.952959 0.303098i \(-0.0980211\pi\)
\(648\) 246.691 + 66.1006i 0.380696 + 0.102007i
\(649\) 755.133 + 435.976i 1.16353 + 0.671766i
\(650\) 0 0
\(651\) −786.967 + 374.164i −1.20886 + 0.574752i
\(652\) 266.861 + 266.861i 0.409296 + 0.409296i
\(653\) 288.387 + 1076.27i 0.441634 + 1.64820i 0.724675 + 0.689091i \(0.241990\pi\)
−0.283041 + 0.959108i \(0.591343\pi\)
\(654\) 1079.06 622.996i 1.64994 0.952594i
\(655\) 0 0
\(656\) −18.3651 + 31.8093i −0.0279956 + 0.0484898i
\(657\) 1358.44 + 1358.44i 2.06764 + 2.06764i
\(658\) 56.8499 + 66.7305i 0.0863980 + 0.101414i
\(659\) 894.905i 1.35797i −0.734150 0.678987i \(-0.762419\pi\)
0.734150 0.678987i \(-0.237581\pi\)
\(660\) 0 0
\(661\) 505.683 + 875.868i 0.765026 + 1.32506i 0.940233 + 0.340533i \(0.110607\pi\)
−0.175206 + 0.984532i \(0.556059\pi\)
\(662\) −51.7464 + 193.120i −0.0781667 + 0.291722i
\(663\) 163.109 + 608.731i 0.246017 + 0.918147i
\(664\) 113.934i 0.171587i
\(665\) 0 0
\(666\) 402.291 0.604040
\(667\) 800.165 214.403i 1.19965 0.321444i
\(668\) −318.415 85.3190i −0.476669 0.127723i
\(669\) 1246.59 719.720i 1.86337 1.07582i
\(670\) 0 0
\(671\) −238.788 −0.355869
\(672\) −195.086 69.3569i −0.290307 0.103210i
\(673\) −331.906 + 331.906i −0.493174 + 0.493174i −0.909305 0.416131i \(-0.863386\pi\)
0.416131 + 0.909305i \(0.363386\pi\)
\(674\) −393.112 226.963i −0.583253 0.336741i
\(675\) 0 0
\(676\) −16.2485 28.1432i −0.0240363 0.0416320i
\(677\) 272.549 73.0294i 0.402584 0.107872i −0.0518447 0.998655i \(-0.516510\pi\)
0.454429 + 0.890783i \(0.349843\pi\)
\(678\) −164.568 + 164.568i −0.242726 + 0.242726i
\(679\) −418.055 + 606.657i −0.615693 + 0.893456i
\(680\) 0 0
\(681\) 596.330 1032.87i 0.875668 1.51670i
\(682\) 97.0572 362.222i 0.142313 0.531118i
\(683\) −413.854 110.892i −0.605935 0.162360i −0.0572092 0.998362i \(-0.518220\pi\)
−0.548726 + 0.836002i \(0.684887\pi\)
\(684\) −212.471 122.670i −0.310630 0.179342i
\(685\) 0 0
\(686\) 350.613 + 335.214i 0.511098 + 0.488650i
\(687\) 690.594 + 690.594i 1.00523 + 1.00523i
\(688\) 80.7077 + 301.205i 0.117308 + 0.437798i
\(689\) 168.458 97.2594i 0.244497 0.141160i
\(690\) 0 0
\(691\) 23.9800 41.5345i 0.0347033 0.0601079i −0.848152 0.529753i \(-0.822285\pi\)
0.882855 + 0.469645i \(0.155618\pi\)
\(692\) 450.163 + 450.163i 0.650524 + 0.650524i
\(693\) 1406.26 258.826i 2.02923 0.373487i
\(694\) 818.996i 1.18011i
\(695\) 0 0
\(696\) 214.985 + 372.366i 0.308887 + 0.535008i
\(697\) −21.0458 + 78.5440i −0.0301948 + 0.112689i
\(698\) 17.0372 + 63.5837i 0.0244086 + 0.0910942i
\(699\) 1758.87i 2.51627i
\(700\) 0 0
\(701\) −952.278 −1.35846 −0.679228 0.733927i \(-0.737685\pi\)
−0.679228 + 0.733927i \(0.737685\pi\)
\(702\) −907.990 + 243.295i −1.29343 + 0.346575i
\(703\) −100.210 26.8511i −0.142546 0.0381951i
\(704\) 77.1655 44.5515i 0.109610 0.0632834i
\(705\) 0 0
\(706\) −751.645 −1.06465
\(707\) −662.353 + 564.280i −0.936850 + 0.798133i
\(708\) 578.901 578.901i 0.817657 0.817657i
\(709\) 619.824 + 357.856i 0.874224 + 0.504733i 0.868749 0.495252i \(-0.164924\pi\)
0.00547406 + 0.999985i \(0.498258\pi\)
\(710\) 0 0
\(711\) −124.937 216.397i −0.175720 0.304356i
\(712\) −20.6998 + 5.54650i −0.0290728 + 0.00779002i
\(713\) −479.667 + 479.667i −0.672744 + 0.672744i
\(714\) −456.913 36.5317i −0.639935 0.0511648i
\(715\) 0 0
\(716\) 66.4559 115.105i 0.0928155 0.160761i
\(717\) 113.236 422.603i 0.157930 0.589404i
\(718\) 97.1195 + 26.0231i 0.135264 + 0.0362439i
\(719\) 66.9619 + 38.6605i 0.0931320 + 0.0537698i 0.545843 0.837888i \(-0.316210\pi\)
−0.452711 + 0.891657i \(0.649543\pi\)
\(720\) 0 0
\(721\) −655.123 + 311.478i −0.908631 + 0.432009i
\(722\) −316.262 316.262i −0.438035 0.438035i
\(723\) −154.747 577.524i −0.214035 0.798789i
\(724\) −124.003 + 71.5932i −0.171275 + 0.0988857i
\(725\) 0 0
\(726\) −11.2852 + 19.5466i −0.0155444 + 0.0269237i
\(727\) −760.852 760.852i −1.04656 1.04656i −0.998862 0.0477025i \(-0.984810\pi\)
−0.0477025 0.998862i \(-0.515190\pi\)
\(728\) 265.025 48.7786i 0.364045 0.0670036i
\(729\) 642.184i 0.880911i
\(730\) 0 0
\(731\) 345.171 + 597.854i 0.472190 + 0.817857i
\(732\) −58.0277 + 216.562i −0.0792728 + 0.295850i
\(733\) −280.505 1046.86i −0.382681 1.42818i −0.841791 0.539804i \(-0.818498\pi\)
0.459110 0.888379i \(-0.348168\pi\)
\(734\) 199.512i 0.271815i
\(735\) 0 0
\(736\) −161.182 −0.218997
\(737\) −572.289 + 153.344i −0.776512 + 0.208066i
\(738\) −230.050 61.6416i −0.311720 0.0835252i
\(739\) −1026.64 + 592.730i −1.38923 + 0.802070i −0.993228 0.116181i \(-0.962935\pi\)
−0.395999 + 0.918251i \(0.629602\pi\)
\(740\) 0 0
\(741\) 476.011 0.642390
\(742\) 25.6098 + 139.144i 0.0345145 + 0.187525i
\(743\) −65.8954 + 65.8954i −0.0886883 + 0.0886883i −0.750059 0.661371i \(-0.769975\pi\)
0.661371 + 0.750059i \(0.269975\pi\)
\(744\) −304.922 176.047i −0.409841 0.236622i
\(745\) 0 0
\(746\) 213.997 + 370.653i 0.286859 + 0.496855i
\(747\) −713.594 + 191.207i −0.955280 + 0.255967i
\(748\) 139.483 139.483i 0.186475 0.186475i
\(749\) −269.823 567.510i −0.360244 0.757691i
\(750\) 0 0
\(751\) −146.301 + 253.400i −0.194808 + 0.337417i −0.946837 0.321712i \(-0.895742\pi\)
0.752030 + 0.659129i \(0.229075\pi\)
\(752\) −9.16773 + 34.2144i −0.0121911 + 0.0454979i
\(753\) −14.4637 3.87552i −0.0192080 0.00514678i
\(754\) −484.639 279.806i −0.642757 0.371096i
\(755\) 0 0
\(756\) 54.4910 681.537i 0.0720781 0.901504i
\(757\) −742.193 742.193i −0.980440 0.980440i 0.0193719 0.999812i \(-0.493833\pi\)
−0.999812 + 0.0193719i \(0.993833\pi\)
\(758\) 120.780 + 450.756i 0.159340 + 0.594665i
\(759\) 1437.05 829.683i 1.89335 1.09313i
\(760\) 0 0
\(761\) −308.160 + 533.749i −0.404941 + 0.701378i −0.994315 0.106482i \(-0.966041\pi\)
0.589374 + 0.807860i \(0.299375\pi\)
\(762\) 595.574 + 595.574i 0.781593 + 0.781593i
\(763\) −764.910 897.854i −1.00250 1.17674i
\(764\) 666.659i 0.872590i
\(765\) 0 0
\(766\) −125.756 217.816i −0.164172 0.284354i
\(767\) −275.781 + 1029.23i −0.359558 + 1.34189i
\(768\) −21.6529 80.8096i −0.0281938 0.105221i
\(769\) 743.180i 0.966424i 0.875503 + 0.483212i \(0.160530\pi\)
−0.875503 + 0.483212i \(0.839470\pi\)
\(770\) 0 0
\(771\) 448.970 0.582321
\(772\) 191.932 51.4279i 0.248616 0.0666165i
\(773\) −320.715 85.9354i −0.414897 0.111171i 0.0453311 0.998972i \(-0.485566\pi\)
−0.460228 + 0.887801i \(0.652232\pi\)
\(774\) −1751.07 + 1010.98i −2.26236 + 1.30618i
\(775\) 0 0
\(776\) −297.693 −0.383625
\(777\) −102.762 558.328i −0.132255 0.718568i
\(778\) −239.373 + 239.373i −0.307678 + 0.307678i
\(779\) 53.1906 + 30.7096i 0.0682806 + 0.0394218i
\(780\) 0 0
\(781\) −563.500 976.011i −0.721511 1.24969i
\(782\) −344.671 + 92.3543i −0.440756 + 0.118100i
\(783\) −1003.98 + 1003.98i −1.28222 + 1.28222i
\(784\) −31.1425 + 193.510i −0.0397226 + 0.246824i
\(785\) 0 0
\(786\) −285.909 + 495.208i −0.363752 + 0.630036i
\(787\) 182.282 680.286i 0.231616 0.864404i −0.748029 0.663667i \(-0.768999\pi\)
0.979645 0.200738i \(-0.0643339\pi\)
\(788\) 359.339 + 96.2846i 0.456014 + 0.122189i
\(789\) −1147.11 662.282i −1.45387 0.839395i
\(790\) 0 0
\(791\) 181.412 + 125.014i 0.229346 + 0.158045i
\(792\) 408.537 + 408.537i 0.515829 + 0.515829i
\(793\) −75.5238 281.859i −0.0952381 0.355433i
\(794\) −753.220 + 434.872i −0.948640 + 0.547697i
\(795\) 0 0
\(796\) 244.649 423.745i 0.307348 0.532343i
\(797\) −559.866 559.866i −0.702467 0.702467i 0.262472 0.964940i \(-0.415462\pi\)
−0.964940 + 0.262472i \(0.915462\pi\)
\(798\) −115.976 + 326.218i −0.145334 + 0.408794i
\(799\) 78.4171i 0.0981441i
\(800\) 0 0
\(801\) −69.4778 120.339i −0.0867389 0.150236i
\(802\) −178.391 + 665.764i −0.222433 + 0.830130i
\(803\) 301.965 + 1126.95i 0.376046 + 1.40342i
\(804\) 556.287i 0.691899i
\(805\) 0 0
\(806\) 458.254 0.568554
\(807\) −2536.90 + 679.759i −3.14361 + 0.842329i
\(808\) −339.605 90.9969i −0.420303 0.112620i
\(809\) −772.252 + 445.860i −0.954576 + 0.551125i −0.894499 0.447069i \(-0.852468\pi\)
−0.0600765 + 0.998194i \(0.519134\pi\)
\(810\) 0 0
\(811\) −725.006 −0.893965 −0.446982 0.894543i \(-0.647501\pi\)
−0.446982 + 0.894543i \(0.647501\pi\)
\(812\) 309.834 263.958i 0.381569 0.325071i
\(813\) 733.960 733.960i 0.902780 0.902780i
\(814\) 211.580 + 122.156i 0.259926 + 0.150068i
\(815\) 0 0
\(816\) −92.6050 160.397i −0.113487 0.196564i
\(817\) 503.666 134.957i 0.616483 0.165186i
\(818\) 228.319 228.319i 0.279119 0.279119i
\(819\) 750.282 + 1578.05i 0.916095 + 1.92680i
\(820\) 0 0
\(821\) 377.073 653.109i 0.459285 0.795504i −0.539639 0.841897i \(-0.681439\pi\)
0.998923 + 0.0463923i \(0.0147724\pi\)
\(822\) −123.401 + 460.538i −0.150123 + 0.560266i
\(823\) −1012.22 271.224i −1.22992 0.329556i −0.415371 0.909652i \(-0.636348\pi\)
−0.814548 + 0.580096i \(0.803015\pi\)
\(824\) −253.837 146.553i −0.308055 0.177855i
\(825\) 0 0
\(826\) −638.154 439.760i −0.772583 0.532397i
\(827\) 29.7436 + 29.7436i 0.0359656 + 0.0359656i 0.724861 0.688895i \(-0.241904\pi\)
−0.688895 + 0.724861i \(0.741904\pi\)
\(828\) −270.499 1009.52i −0.326690 1.21922i
\(829\) 159.407 92.0338i 0.192289 0.111018i −0.400765 0.916181i \(-0.631256\pi\)
0.593053 + 0.805163i \(0.297922\pi\)
\(830\) 0 0
\(831\) −994.122 + 1721.87i −1.19630 + 2.07205i
\(832\) 76.9932 + 76.9932i 0.0925399 + 0.0925399i
\(833\) 44.2827 + 431.646i 0.0531605 + 0.518183i
\(834\) 380.637i 0.456399i
\(835\) 0 0
\(836\) −74.4977 129.034i −0.0891120 0.154347i
\(837\) 300.923 1123.06i 0.359526 1.34177i
\(838\) −114.429 427.054i −0.136550 0.509610i
\(839\) 230.146i 0.274310i −0.990550 0.137155i \(-0.956204\pi\)
0.990550 0.137155i \(-0.0437958\pi\)
\(840\) 0 0
\(841\) −4.25956 −0.00506488
\(842\) 655.269 175.579i 0.778229 0.208526i
\(843\) 684.855 + 183.506i 0.812403 + 0.217683i
\(844\) 352.792 203.685i 0.418000 0.241332i
\(845\) 0 0
\(846\) −229.678 −0.271487
\(847\) 20.1317 + 7.15718i 0.0237682 + 0.00845004i
\(848\) −40.4230 + 40.4230i −0.0476687 + 0.0476687i
\(849\) 1597.79 + 922.486i 1.88197 + 1.08656i
\(850\) 0 0
\(851\) −220.972 382.734i −0.259661 0.449746i
\(852\) −1022.10 + 273.872i −1.19965 + 0.321446i
\(853\) −1144.00 + 1144.00i −1.34115 + 1.34115i −0.446242 + 0.894912i \(0.647238\pi\)
−0.894912 + 0.446242i \(0.852762\pi\)
\(854\) 211.563 + 16.9151i 0.247732 + 0.0198069i
\(855\) 0 0
\(856\) 126.954 219.890i 0.148310 0.256881i
\(857\) 92.2922 344.439i 0.107692 0.401913i −0.890944 0.454112i \(-0.849957\pi\)
0.998637 + 0.0521995i \(0.0166232\pi\)
\(858\) −1082.77 290.128i −1.26197 0.338145i
\(859\) −1316.32 759.978i −1.53239 0.884724i −0.999251 0.0386951i \(-0.987680\pi\)
−0.533136 0.846029i \(-0.678987\pi\)
\(860\) 0 0
\(861\) −26.7863 + 335.025i −0.0311107 + 0.389112i
\(862\) 537.672 + 537.672i 0.623750 + 0.623750i
\(863\) 58.7013 + 219.076i 0.0680200 + 0.253854i 0.991560 0.129648i \(-0.0413846\pi\)
−0.923540 + 0.383502i \(0.874718\pi\)
\(864\) 239.249 138.131i 0.276909 0.159873i
\(865\) 0 0
\(866\) −13.8191 + 23.9354i −0.0159574 + 0.0276391i
\(867\) 778.587 + 778.587i 0.898024 + 0.898024i
\(868\) −111.650 + 314.049i −0.128629 + 0.361807i
\(869\) 151.749i 0.174624i
\(870\) 0 0
\(871\) −362.007 627.014i −0.415622 0.719879i
\(872\) 123.351 460.352i 0.141458 0.527927i
\(873\) −499.595 1864.51i −0.572274 2.13576i
\(874\) 269.523i 0.308379i
\(875\) 0 0
\(876\) 1095.43 1.25050
\(877\) −942.868 + 252.641i −1.07511 + 0.288074i −0.752590 0.658490i \(-0.771196\pi\)
−0.322517 + 0.946564i \(0.604529\pi\)
\(878\) 253.149 + 67.8310i 0.288324 + 0.0772562i
\(879\) −468.984 + 270.768i −0.533543 + 0.308041i
\(880\) 0 0
\(881\) 495.620 0.562566 0.281283 0.959625i \(-0.409240\pi\)
0.281283 + 0.959625i \(0.409240\pi\)
\(882\) −1264.26 + 129.701i −1.43340 + 0.147053i
\(883\) 918.390 918.390i 1.04008 1.04008i 0.0409167 0.999163i \(-0.486972\pi\)
0.999163 0.0409167i \(-0.0130278\pi\)
\(884\) 208.758 + 120.527i 0.236152 + 0.136342i
\(885\) 0 0
\(886\) −120.270 208.314i −0.135745 0.235117i
\(887\) 137.822 36.9292i 0.155379 0.0416338i −0.180291 0.983613i \(-0.557704\pi\)
0.335670 + 0.941980i \(0.391037\pi\)
\(888\) 162.202 162.202i 0.182659 0.182659i
\(889\) 452.426 656.533i 0.508915 0.738507i
\(890\) 0 0
\(891\) −502.848 + 870.958i −0.564363 + 0.977506i
\(892\) 142.502 531.825i 0.159756 0.596216i
\(893\) 57.2123 + 15.3300i 0.0640675 + 0.0171668i
\(894\) 349.895 + 202.012i 0.391381 + 0.225964i
\(895\) 0 0
\(896\) −71.5235 + 34.0058i −0.0798253 + 0.0379529i
\(897\) 1433.84 + 1433.84i 1.59849 + 1.59849i
\(898\) −49.7873 185.809i −0.0554424 0.206914i
\(899\) 599.432 346.082i 0.666776 0.384963i
\(900\) 0 0
\(901\) −63.2790 + 109.602i −0.0702319 + 0.121645i
\(902\) −102.274 102.274i −0.113386 0.113386i
\(903\) 1850.41 + 2172.01i 2.04918 + 2.40533i
\(904\) 89.0208i 0.0984744i
\(905\) 0 0
\(906\) 460.205 + 797.099i 0.507953 + 0.879801i
\(907\) 22.8874 85.4170i 0.0252342 0.0941753i −0.952160 0.305599i \(-0.901143\pi\)
0.977395 + 0.211424i \(0.0678100\pi\)
\(908\) −118.071 440.647i −0.130034 0.485295i
\(909\) 2279.73i 2.50796i
\(910\) 0 0
\(911\) −19.6420 −0.0215609 −0.0107805 0.999942i \(-0.503432\pi\)
−0.0107805 + 0.999942i \(0.503432\pi\)
\(912\) −135.127 + 36.2073i −0.148166 + 0.0397009i
\(913\) −433.366 116.120i −0.474662 0.127185i
\(914\) 944.318 545.202i 1.03317 0.596501i
\(915\) 0 0
\(916\) 373.567 0.407824
\(917\) 510.031 + 181.325i 0.556195 + 0.197738i
\(918\) 432.465 432.465i 0.471094 0.471094i
\(919\) −730.678 421.857i −0.795080 0.459039i 0.0466681 0.998910i \(-0.485140\pi\)
−0.841748 + 0.539871i \(0.818473\pi\)
\(920\) 0 0
\(921\) 1457.45 + 2524.37i 1.58246 + 2.74090i
\(922\) −238.764 + 63.9767i −0.258963 + 0.0693890i
\(923\) 973.832 973.832i 1.05507 1.05507i
\(924\) 462.639 671.354i 0.500692 0.726574i
\(925\) 0 0
\(926\) 219.730 380.583i 0.237289 0.410997i
\(927\) 491.897 1835.79i 0.530634 1.98035i
\(928\) 158.860 + 42.5663i 0.171185 + 0.0458689i
\(929\) −325.901 188.159i −0.350808 0.202539i 0.314233 0.949346i \(-0.398253\pi\)
−0.665041 + 0.746807i \(0.731586\pi\)
\(930\) 0 0
\(931\) 323.582 + 52.0756i 0.347564 + 0.0559351i
\(932\) 475.719 + 475.719i 0.510429 + 0.510429i
\(933\) −318.828 1189.88i −0.341723 1.27533i
\(934\) −950.841 + 548.968i −1.01803 + 0.587760i
\(935\) 0 0
\(936\) −353.013 + 611.437i −0.377151 + 0.653245i
\(937\) −333.039 333.039i −0.355431 0.355431i 0.506694 0.862126i \(-0.330867\pi\)
−0.862126 + 0.506694i \(0.830867\pi\)
\(938\) 517.903 95.3216i 0.552135 0.101622i
\(939\) 1915.23i 2.03965i
\(940\) 0 0
\(941\) −462.718 801.452i −0.491730 0.851702i 0.508224 0.861225i \(-0.330302\pi\)
−0.999955 + 0.00952274i \(0.996969\pi\)
\(942\) 153.031 571.119i 0.162453 0.606284i
\(943\) 67.7175 + 252.725i 0.0718107 + 0.268001i
\(944\) 313.148i 0.331725i
\(945\) 0 0
\(946\) −1227.94 −1.29803
\(947\) 872.417 233.763i 0.921243 0.246846i 0.233126 0.972446i \(-0.425104\pi\)
0.688116 + 0.725600i \(0.258438\pi\)
\(948\) −137.624 36.8763i −0.145173 0.0388991i
\(949\) −1234.71 + 712.861i −1.30107 + 0.751170i
\(950\) 0 0
\(951\) −108.035 −0.113601
\(952\) −133.461 + 113.700i −0.140190 + 0.119433i
\(953\) 336.361 336.361i 0.352950 0.352950i −0.508256 0.861206i \(-0.669710\pi\)
0.861206 + 0.508256i \(0.169710\pi\)
\(954\) −321.017 185.339i −0.336496 0.194276i
\(955\) 0 0
\(956\) −83.6738 144.927i −0.0875249 0.151598i
\(957\) −1635.46 + 438.221i −1.70895 + 0.457911i
\(958\) −90.5336 + 90.5336i −0.0945028 + 0.0945028i
\(959\) 449.906 + 35.9714i 0.469141 + 0.0375093i
\(960\) 0 0
\(961\) 197.101 341.389i 0.205100 0.355244i
\(962\) −77.2707 + 288.378i −0.0803229 + 0.299769i
\(963\) 1590.28 + 426.114i 1.65138 + 0.442486i
\(964\) −198.056 114.348i −0.205452 0.118618i
\(965\) 0 0
\(966\) −1331.98 + 633.290i −1.37886 + 0.655580i
\(967\) −95.1413 95.1413i −0.0983881 0.0983881i 0.656199 0.754588i \(-0.272163\pi\)
−0.754588 + 0.656199i \(0.772163\pi\)
\(968\) 2.23443 + 8.33902i 0.00230830 + 0.00861469i
\(969\) −268.210 + 154.851i −0.276791 + 0.159805i
\(970\) 0 0
\(971\) −541.576 + 938.036i −0.557750 + 0.966052i 0.439934 + 0.898030i \(0.355002\pi\)
−0.997684 + 0.0680216i \(0.978331\pi\)
\(972\) 46.1072 + 46.1072i 0.0474354 + 0.0474354i
\(973\) −354.373 + 65.2234i −0.364207 + 0.0670333i
\(974\) 1291.82i 1.32630i
\(975\) 0 0
\(976\) 42.8786 + 74.2678i 0.0439329 + 0.0760941i
\(977\) −492.348 + 1837.47i −0.503939 + 1.88072i −0.0312166 + 0.999513i \(0.509938\pi\)
−0.472722 + 0.881212i \(0.656729\pi\)
\(978\) 361.144 + 1347.81i 0.369268 + 1.37813i
\(979\) 84.3878i 0.0861980i
\(980\) 0 0
\(981\) 3090.30 3.15015
\(982\) −1209.53 + 324.093i −1.23170 + 0.330034i
\(983\) −916.515 245.579i −0.932365 0.249826i −0.239502 0.970896i \(-0.576984\pi\)
−0.692863 + 0.721069i \(0.743651\pi\)
\(984\) −117.609 + 67.9013i −0.119521 + 0.0690054i
\(985\) 0 0
\(986\) 364.096 0.369265
\(987\) 58.6694 + 318.763i 0.0594421 + 0.322962i
\(988\) 128.746 128.746i 0.130309 0.130309i
\(989\) 1923.67 + 1110.63i 1.94506 + 1.12298i
\(990\) 0 0
\(991\) 898.430 + 1556.13i 0.906590 + 1.57026i 0.818769 + 0.574123i \(0.194657\pi\)
0.0878205 + 0.996136i \(0.472010\pi\)
\(992\) −130.087 + 34.8566i −0.131136 + 0.0351377i
\(993\) −522.700 + 522.700i −0.526385 + 0.526385i
\(994\) 430.115 + 904.649i 0.432712 + 0.910110i
\(995\) 0 0
\(996\) −210.624 + 364.811i −0.211470 + 0.366277i
\(997\) 126.473 472.003i 0.126853 0.473423i −0.873046 0.487639i \(-0.837858\pi\)
0.999899 + 0.0142155i \(0.00452508\pi\)
\(998\) −882.525 236.472i −0.884294 0.236946i
\(999\) 655.997 + 378.740i 0.656654 + 0.379119i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.3.p.e.107.4 16
5.2 odd 4 70.3.l.c.23.4 16
5.3 odd 4 inner 350.3.p.e.93.1 16
5.4 even 2 70.3.l.c.37.1 yes 16
7.4 even 3 inner 350.3.p.e.207.1 16
35.2 odd 12 490.3.f.o.393.4 8
35.4 even 6 70.3.l.c.67.4 yes 16
35.9 even 6 490.3.f.o.197.4 8
35.12 even 12 490.3.f.p.393.1 8
35.18 odd 12 inner 350.3.p.e.193.4 16
35.19 odd 6 490.3.f.p.197.1 8
35.32 odd 12 70.3.l.c.53.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.3.l.c.23.4 16 5.2 odd 4
70.3.l.c.37.1 yes 16 5.4 even 2
70.3.l.c.53.1 yes 16 35.32 odd 12
70.3.l.c.67.4 yes 16 35.4 even 6
350.3.p.e.93.1 16 5.3 odd 4 inner
350.3.p.e.107.4 16 1.1 even 1 trivial
350.3.p.e.193.4 16 35.18 odd 12 inner
350.3.p.e.207.1 16 7.4 even 3 inner
490.3.f.o.197.4 8 35.9 even 6
490.3.f.o.393.4 8 35.2 odd 12
490.3.f.p.197.1 8 35.19 odd 6
490.3.f.p.393.1 8 35.12 even 12