Properties

Label 350.3.p.e.193.1
Level $350$
Weight $3$
Character 350.193
Analytic conductor $9.537$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,3,Mod(93,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 4]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.93");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 350.p (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.53680925261\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} - 8 x^{13} - 722 x^{12} + 1354 x^{11} - 1232 x^{10} + 9306 x^{9} + \cdots + 52200625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 193.1
Root \(-1.31528 + 4.90868i\) of defining polynomial
Character \(\chi\) \(=\) 350.193
Dual form 350.3.p.e.107.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36603 + 0.366025i) q^{2} +(-4.90868 + 1.31528i) q^{3} +(1.73205 + 1.00000i) q^{4} -7.18681 q^{6} +(6.99850 - 0.145113i) q^{7} +(2.00000 + 2.00000i) q^{8} +(14.5710 - 8.41254i) q^{9} +O(q^{10})\) \(q+(1.36603 + 0.366025i) q^{2} +(-4.90868 + 1.31528i) q^{3} +(1.73205 + 1.00000i) q^{4} -7.18681 q^{6} +(6.99850 - 0.145113i) q^{7} +(2.00000 + 2.00000i) q^{8} +(14.5710 - 8.41254i) q^{9} +(0.474367 - 0.821627i) q^{11} +(-9.81736 - 2.63055i) q^{12} +(-0.862338 - 0.862338i) q^{13} +(9.61324 + 2.36340i) q^{14} +(2.00000 + 3.46410i) q^{16} +(7.87429 + 29.3872i) q^{17} +(22.9835 - 6.15841i) q^{18} +(-20.9123 + 12.0737i) q^{19} +(-34.1625 + 9.91727i) q^{21} +(0.948733 - 0.948733i) q^{22} +(-1.46689 + 5.47452i) q^{23} +(-12.4479 - 7.18681i) q^{24} +(-0.862338 - 1.49361i) q^{26} +(-28.1187 + 28.1187i) q^{27} +(12.2669 + 6.74715i) q^{28} +7.33636i q^{29} +(-23.5316 + 40.7579i) q^{31} +(1.46410 + 5.46410i) q^{32} +(-1.24785 + 4.65703i) q^{33} +43.0259i q^{34} +33.6502 q^{36} +(-7.95202 - 2.13074i) q^{37} +(-32.9860 + 8.83857i) q^{38} +(5.36716 + 3.09873i) q^{39} +53.3601 q^{41} +(-50.2968 + 1.04290i) q^{42} +(33.0776 + 33.0776i) q^{43} +(1.64325 - 0.948733i) q^{44} +(-4.00763 + 6.94142i) q^{46} +(-29.3872 - 7.87429i) q^{47} +(-14.3736 - 14.3736i) q^{48} +(48.9579 - 2.03114i) q^{49} +(-77.3047 - 133.896i) q^{51} +(-0.631275 - 2.35595i) q^{52} +(12.9978 - 3.48276i) q^{53} +(-48.7030 + 28.1187i) q^{54} +(14.2872 + 13.7068i) q^{56} +(86.7715 - 86.7715i) q^{57} +(-2.68529 + 10.0217i) q^{58} +(-43.5119 - 25.1216i) q^{59} +(22.7478 + 39.4004i) q^{61} +(-47.0632 + 47.0632i) q^{62} +(100.754 - 60.9896i) q^{63} +8.00000i q^{64} +(-3.40918 + 5.90487i) q^{66} +(17.6846 + 65.9999i) q^{67} +(-15.7486 + 58.7745i) q^{68} -28.8020i q^{69} -11.9203 q^{71} +(45.9670 + 12.3168i) q^{72} +(-53.2017 + 14.2554i) q^{73} +(-10.0828 - 5.82128i) q^{74} -48.2949 q^{76} +(3.20062 - 5.81899i) q^{77} +(6.19746 + 6.19746i) q^{78} +(61.4002 - 35.4495i) q^{79} +(25.3289 - 43.8709i) q^{81} +(72.8913 + 19.5312i) q^{82} +(-85.7452 - 85.7452i) q^{83} +(-69.0885 - 16.9853i) q^{84} +(33.0776 + 57.2921i) q^{86} +(-9.64934 - 36.0118i) q^{87} +(2.59199 - 0.694521i) q^{88} +(135.750 - 78.3752i) q^{89} +(-6.16021 - 5.90994i) q^{91} +(-8.01526 + 8.01526i) q^{92} +(61.9011 - 231.018i) q^{93} +(-37.2615 - 21.5130i) q^{94} +(-14.3736 - 24.8958i) q^{96} +(87.1790 - 87.1790i) q^{97} +(67.6212 + 15.1452i) q^{98} -15.9625i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{2} - 2 q^{3} - 8 q^{6} - 12 q^{7} + 32 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 8 q^{2} - 2 q^{3} - 8 q^{6} - 12 q^{7} + 32 q^{8} + 40 q^{11} - 4 q^{12} - 16 q^{13} + 32 q^{16} - 46 q^{17} + 52 q^{18} - 20 q^{21} + 80 q^{22} - 54 q^{23} - 16 q^{26} + 52 q^{27} + 36 q^{28} - 208 q^{31} - 32 q^{32} + 22 q^{33} + 208 q^{36} + 38 q^{37} - 36 q^{38} - 72 q^{41} - 184 q^{42} - 144 q^{43} + 108 q^{46} - 46 q^{47} - 16 q^{48} - 136 q^{51} + 16 q^{52} - 30 q^{53} - 48 q^{56} + 492 q^{57} - 132 q^{58} - 120 q^{61} - 416 q^{62} + 292 q^{63} - 44 q^{66} + 74 q^{67} + 92 q^{68} + 16 q^{71} + 104 q^{72} + 54 q^{73} - 144 q^{76} - 570 q^{77} - 168 q^{78} + 244 q^{81} - 36 q^{82} - 64 q^{83} - 144 q^{86} + 236 q^{87} + 80 q^{88} + 336 q^{91} + 216 q^{92} - 142 q^{93} - 16 q^{96} - 136 q^{97} + 268 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 + 0.366025i 0.683013 + 0.183013i
\(3\) −4.90868 + 1.31528i −1.63623 + 0.438426i −0.955711 0.294308i \(-0.904911\pi\)
−0.680516 + 0.732733i \(0.738244\pi\)
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) 0 0
\(6\) −7.18681 −1.19780
\(7\) 6.99850 0.145113i 0.999785 0.0207304i
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 14.5710 8.41254i 1.61899 0.934727i
\(10\) 0 0
\(11\) 0.474367 0.821627i 0.0431242 0.0746934i −0.843658 0.536882i \(-0.819602\pi\)
0.886782 + 0.462188i \(0.152936\pi\)
\(12\) −9.81736 2.63055i −0.818113 0.219213i
\(13\) −0.862338 0.862338i −0.0663337 0.0663337i 0.673162 0.739495i \(-0.264936\pi\)
−0.739495 + 0.673162i \(0.764936\pi\)
\(14\) 9.61324 + 2.36340i 0.686660 + 0.168814i
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 7.87429 + 29.3872i 0.463193 + 1.72866i 0.662810 + 0.748787i \(0.269364\pi\)
−0.199617 + 0.979874i \(0.563970\pi\)
\(18\) 22.9835 6.15841i 1.27686 0.342134i
\(19\) −20.9123 + 12.0737i −1.10065 + 0.635459i −0.936391 0.350959i \(-0.885856\pi\)
−0.164256 + 0.986418i \(0.552522\pi\)
\(20\) 0 0
\(21\) −34.1625 + 9.91727i −1.62679 + 0.472251i
\(22\) 0.948733 0.948733i 0.0431242 0.0431242i
\(23\) −1.46689 + 5.47452i −0.0637780 + 0.238023i −0.990455 0.137836i \(-0.955985\pi\)
0.926677 + 0.375858i \(0.122652\pi\)
\(24\) −12.4479 7.18681i −0.518663 0.299450i
\(25\) 0 0
\(26\) −0.862338 1.49361i −0.0331669 0.0574467i
\(27\) −28.1187 + 28.1187i −1.04143 + 1.04143i
\(28\) 12.2669 + 6.74715i 0.438102 + 0.240970i
\(29\) 7.33636i 0.252978i 0.991968 + 0.126489i \(0.0403708\pi\)
−0.991968 + 0.126489i \(0.959629\pi\)
\(30\) 0 0
\(31\) −23.5316 + 40.7579i −0.759083 + 1.31477i 0.184235 + 0.982882i \(0.441019\pi\)
−0.943319 + 0.331889i \(0.892314\pi\)
\(32\) 1.46410 + 5.46410i 0.0457532 + 0.170753i
\(33\) −1.24785 + 4.65703i −0.0378135 + 0.141122i
\(34\) 43.0259i 1.26547i
\(35\) 0 0
\(36\) 33.6502 0.934727
\(37\) −7.95202 2.13074i −0.214919 0.0575875i 0.149753 0.988723i \(-0.452152\pi\)
−0.364672 + 0.931136i \(0.618819\pi\)
\(38\) −32.9860 + 8.83857i −0.868053 + 0.232594i
\(39\) 5.36716 + 3.09873i 0.137619 + 0.0794546i
\(40\) 0 0
\(41\) 53.3601 1.30147 0.650733 0.759306i \(-0.274462\pi\)
0.650733 + 0.759306i \(0.274462\pi\)
\(42\) −50.2968 + 1.04290i −1.19754 + 0.0248308i
\(43\) 33.0776 + 33.0776i 0.769247 + 0.769247i 0.977974 0.208727i \(-0.0669319\pi\)
−0.208727 + 0.977974i \(0.566932\pi\)
\(44\) 1.64325 0.948733i 0.0373467 0.0215621i
\(45\) 0 0
\(46\) −4.00763 + 6.94142i −0.0871224 + 0.150900i
\(47\) −29.3872 7.87429i −0.625260 0.167538i −0.0677424 0.997703i \(-0.521580\pi\)
−0.557518 + 0.830165i \(0.688246\pi\)
\(48\) −14.3736 14.3736i −0.299450 0.299450i
\(49\) 48.9579 2.03114i 0.999141 0.0414518i
\(50\) 0 0
\(51\) −77.3047 133.896i −1.51578 2.62541i
\(52\) −0.631275 2.35595i −0.0121399 0.0453068i
\(53\) 12.9978 3.48276i 0.245242 0.0657125i −0.134104 0.990967i \(-0.542816\pi\)
0.379346 + 0.925255i \(0.376149\pi\)
\(54\) −48.7030 + 28.1187i −0.901907 + 0.520717i
\(55\) 0 0
\(56\) 14.2872 + 13.7068i 0.255129 + 0.244764i
\(57\) 86.7715 86.7715i 1.52231 1.52231i
\(58\) −2.68529 + 10.0217i −0.0462982 + 0.172787i
\(59\) −43.5119 25.1216i −0.737490 0.425790i 0.0836659 0.996494i \(-0.473337\pi\)
−0.821156 + 0.570704i \(0.806670\pi\)
\(60\) 0 0
\(61\) 22.7478 + 39.4004i 0.372915 + 0.645909i 0.990013 0.140978i \(-0.0450248\pi\)
−0.617097 + 0.786887i \(0.711691\pi\)
\(62\) −47.0632 + 47.0632i −0.759083 + 0.759083i
\(63\) 100.754 60.9896i 1.59927 0.968089i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) −3.40918 + 5.90487i −0.0516542 + 0.0894678i
\(67\) 17.6846 + 65.9999i 0.263949 + 0.985073i 0.962890 + 0.269893i \(0.0869884\pi\)
−0.698941 + 0.715180i \(0.746345\pi\)
\(68\) −15.7486 + 58.7745i −0.231597 + 0.864331i
\(69\) 28.8020i 0.417421i
\(70\) 0 0
\(71\) −11.9203 −0.167892 −0.0839460 0.996470i \(-0.526752\pi\)
−0.0839460 + 0.996470i \(0.526752\pi\)
\(72\) 45.9670 + 12.3168i 0.638430 + 0.171067i
\(73\) −53.2017 + 14.2554i −0.728791 + 0.195279i −0.604091 0.796916i \(-0.706464\pi\)
−0.124700 + 0.992194i \(0.539797\pi\)
\(74\) −10.0828 5.82128i −0.136253 0.0786660i
\(75\) 0 0
\(76\) −48.2949 −0.635459
\(77\) 3.20062 5.81899i 0.0415665 0.0755713i
\(78\) 6.19746 + 6.19746i 0.0794546 + 0.0794546i
\(79\) 61.4002 35.4495i 0.777218 0.448727i −0.0582252 0.998303i \(-0.518544\pi\)
0.835444 + 0.549576i \(0.185211\pi\)
\(80\) 0 0
\(81\) 25.3289 43.8709i 0.312702 0.541616i
\(82\) 72.8913 + 19.5312i 0.888918 + 0.238185i
\(83\) −85.7452 85.7452i −1.03307 1.03307i −0.999434 0.0336406i \(-0.989290\pi\)
−0.0336406 0.999434i \(-0.510710\pi\)
\(84\) −69.0885 16.9853i −0.822482 0.202206i
\(85\) 0 0
\(86\) 33.0776 + 57.2921i 0.384624 + 0.666188i
\(87\) −9.64934 36.0118i −0.110912 0.413929i
\(88\) 2.59199 0.694521i 0.0294544 0.00789228i
\(89\) 135.750 78.3752i 1.52528 0.880621i 0.525729 0.850652i \(-0.323793\pi\)
0.999551 0.0299681i \(-0.00954058\pi\)
\(90\) 0 0
\(91\) −6.16021 5.90994i −0.0676946 0.0649443i
\(92\) −8.01526 + 8.01526i −0.0871224 + 0.0871224i
\(93\) 61.9011 231.018i 0.665603 2.48406i
\(94\) −37.2615 21.5130i −0.396399 0.228861i
\(95\) 0 0
\(96\) −14.3736 24.8958i −0.149725 0.259332i
\(97\) 87.1790 87.1790i 0.898753 0.898753i −0.0965731 0.995326i \(-0.530788\pi\)
0.995326 + 0.0965731i \(0.0307882\pi\)
\(98\) 67.6212 + 15.1452i 0.690012 + 0.154543i
\(99\) 15.9625i 0.161238i
\(100\) 0 0
\(101\) 25.2261 43.6929i 0.249763 0.432603i −0.713697 0.700455i \(-0.752980\pi\)
0.963460 + 0.267852i \(0.0863138\pi\)
\(102\) −56.5910 211.200i −0.554813 2.07059i
\(103\) −37.4152 + 139.636i −0.363255 + 1.35569i 0.506517 + 0.862230i \(0.330933\pi\)
−0.869771 + 0.493455i \(0.835734\pi\)
\(104\) 3.44935i 0.0331669i
\(105\) 0 0
\(106\) 19.0302 0.179530
\(107\) −6.70244 1.79591i −0.0626397 0.0167842i 0.227363 0.973810i \(-0.426990\pi\)
−0.290003 + 0.957026i \(0.593656\pi\)
\(108\) −76.8217 + 20.5843i −0.711312 + 0.190595i
\(109\) −42.3291 24.4387i −0.388340 0.224208i 0.293100 0.956082i \(-0.405313\pi\)
−0.681441 + 0.731873i \(0.738646\pi\)
\(110\) 0 0
\(111\) 41.8364 0.376905
\(112\) 14.4997 + 23.9533i 0.129461 + 0.213869i
\(113\) 8.29274 + 8.29274i 0.0733871 + 0.0733871i 0.742848 0.669461i \(-0.233475\pi\)
−0.669461 + 0.742848i \(0.733475\pi\)
\(114\) 150.293 86.7715i 1.31836 0.761153i
\(115\) 0 0
\(116\) −7.33636 + 12.7069i −0.0632445 + 0.109543i
\(117\) −19.8196 5.31063i −0.169398 0.0453900i
\(118\) −50.2432 50.2432i −0.425790 0.425790i
\(119\) 59.3726 + 204.524i 0.498930 + 1.71869i
\(120\) 0 0
\(121\) 60.0500 + 104.010i 0.496281 + 0.859583i
\(122\) 16.6526 + 62.1483i 0.136497 + 0.509412i
\(123\) −261.928 + 70.1834i −2.12949 + 0.570596i
\(124\) −81.5158 + 47.0632i −0.657385 + 0.379542i
\(125\) 0 0
\(126\) 159.956 46.4348i 1.26949 0.368530i
\(127\) 80.3440 80.3440i 0.632630 0.632630i −0.316097 0.948727i \(-0.602373\pi\)
0.948727 + 0.316097i \(0.102373\pi\)
\(128\) −2.92820 + 10.9282i −0.0228766 + 0.0853766i
\(129\) −205.874 118.861i −1.59592 0.921405i
\(130\) 0 0
\(131\) −12.5429 21.7250i −0.0957475 0.165840i 0.814173 0.580623i \(-0.197191\pi\)
−0.909920 + 0.414783i \(0.863857\pi\)
\(132\) −6.81836 + 6.81836i −0.0516542 + 0.0516542i
\(133\) −144.603 + 87.5325i −1.08724 + 0.658139i
\(134\) 96.6305i 0.721123i
\(135\) 0 0
\(136\) −43.0259 + 74.5231i −0.316367 + 0.547964i
\(137\) 17.7020 + 66.0647i 0.129212 + 0.482224i 0.999955 0.00951399i \(-0.00302844\pi\)
−0.870743 + 0.491738i \(0.836362\pi\)
\(138\) 10.5423 39.3443i 0.0763933 0.285104i
\(139\) 67.3054i 0.484212i 0.970250 + 0.242106i \(0.0778381\pi\)
−0.970250 + 0.242106i \(0.922162\pi\)
\(140\) 0 0
\(141\) 154.609 1.09652
\(142\) −16.2835 4.36314i −0.114672 0.0307264i
\(143\) −1.11758 + 0.299456i −0.00781528 + 0.00209410i
\(144\) 58.2838 + 33.6502i 0.404749 + 0.233682i
\(145\) 0 0
\(146\) −77.8927 −0.533512
\(147\) −237.647 + 74.3634i −1.61665 + 0.505873i
\(148\) −11.6426 11.6426i −0.0786660 0.0786660i
\(149\) −51.9776 + 30.0093i −0.348843 + 0.201404i −0.664175 0.747577i \(-0.731217\pi\)
0.315333 + 0.948981i \(0.397884\pi\)
\(150\) 0 0
\(151\) −23.9018 + 41.3992i −0.158290 + 0.274167i −0.934252 0.356613i \(-0.883932\pi\)
0.775962 + 0.630780i \(0.217265\pi\)
\(152\) −65.9720 17.6771i −0.434026 0.116297i
\(153\) 361.957 + 361.957i 2.36573 + 2.36573i
\(154\) 6.50203 6.77738i 0.0422210 0.0440089i
\(155\) 0 0
\(156\) 6.19746 + 10.7343i 0.0397273 + 0.0688097i
\(157\) −27.0694 101.024i −0.172416 0.643466i −0.996977 0.0776933i \(-0.975245\pi\)
0.824561 0.565773i \(-0.191422\pi\)
\(158\) 96.8497 25.9508i 0.612973 0.164246i
\(159\) −59.2214 + 34.1915i −0.372462 + 0.215041i
\(160\) 0 0
\(161\) −9.47163 + 38.5263i −0.0588300 + 0.239294i
\(162\) 50.6578 50.6578i 0.312702 0.312702i
\(163\) 10.6400 39.7089i 0.0652759 0.243613i −0.925577 0.378559i \(-0.876420\pi\)
0.990853 + 0.134946i \(0.0430863\pi\)
\(164\) 92.4225 + 53.3601i 0.563552 + 0.325367i
\(165\) 0 0
\(166\) −85.7452 148.515i −0.516537 0.894669i
\(167\) −26.4354 + 26.4354i −0.158296 + 0.158296i −0.781811 0.623515i \(-0.785704\pi\)
0.623515 + 0.781811i \(0.285704\pi\)
\(168\) −88.1596 48.4905i −0.524759 0.288634i
\(169\) 167.513i 0.991200i
\(170\) 0 0
\(171\) −203.141 + 351.851i −1.18796 + 2.05761i
\(172\) 24.2145 + 90.3698i 0.140782 + 0.525406i
\(173\) 64.9724 242.480i 0.375563 1.40162i −0.476958 0.878926i \(-0.658261\pi\)
0.852521 0.522693i \(-0.175073\pi\)
\(174\) 52.7250i 0.303017i
\(175\) 0 0
\(176\) 3.79493 0.0215621
\(177\) 246.628 + 66.0838i 1.39338 + 0.373355i
\(178\) 214.125 57.3746i 1.20295 0.322329i
\(179\) −46.8192 27.0311i −0.261560 0.151012i 0.363486 0.931600i \(-0.381586\pi\)
−0.625046 + 0.780588i \(0.714920\pi\)
\(180\) 0 0
\(181\) 201.453 1.11300 0.556501 0.830847i \(-0.312143\pi\)
0.556501 + 0.830847i \(0.312143\pi\)
\(182\) −6.25181 10.3279i −0.0343506 0.0567468i
\(183\) −163.484 163.484i −0.893357 0.893357i
\(184\) −13.8828 + 8.01526i −0.0754502 + 0.0435612i
\(185\) 0 0
\(186\) 169.117 292.919i 0.909231 1.57483i
\(187\) 27.8807 + 7.47060i 0.149094 + 0.0399497i
\(188\) −43.0259 43.0259i −0.228861 0.228861i
\(189\) −192.708 + 200.869i −1.01962 + 1.06280i
\(190\) 0 0
\(191\) −87.8707 152.197i −0.460056 0.796841i 0.538907 0.842365i \(-0.318837\pi\)
−0.998963 + 0.0455246i \(0.985504\pi\)
\(192\) −10.5222 39.2694i −0.0548032 0.204528i
\(193\) −50.4101 + 13.5073i −0.261192 + 0.0699862i −0.387039 0.922064i \(-0.626502\pi\)
0.125846 + 0.992050i \(0.459835\pi\)
\(194\) 150.998 87.1790i 0.778343 0.449376i
\(195\) 0 0
\(196\) 86.8287 + 45.4398i 0.443003 + 0.231836i
\(197\) 62.8178 62.8178i 0.318872 0.318872i −0.529462 0.848334i \(-0.677606\pi\)
0.848334 + 0.529462i \(0.177606\pi\)
\(198\) 5.84269 21.8052i 0.0295085 0.110127i
\(199\) −22.4632 12.9692i −0.112881 0.0651717i 0.442497 0.896770i \(-0.354093\pi\)
−0.555377 + 0.831598i \(0.687426\pi\)
\(200\) 0 0
\(201\) −173.616 300.712i −0.863762 1.49608i
\(202\) 50.4522 50.4522i 0.249763 0.249763i
\(203\) 1.06460 + 51.3435i 0.00524432 + 0.252924i
\(204\) 309.219i 1.51578i
\(205\) 0 0
\(206\) −102.220 + 177.051i −0.496215 + 0.859470i
\(207\) 24.6806 + 92.1093i 0.119230 + 0.444973i
\(208\) 1.26255 4.71190i 0.00606996 0.0226534i
\(209\) 22.9095i 0.109615i
\(210\) 0 0
\(211\) −223.675 −1.06007 −0.530036 0.847975i \(-0.677822\pi\)
−0.530036 + 0.847975i \(0.677822\pi\)
\(212\) 25.9957 + 6.96552i 0.122621 + 0.0328562i
\(213\) 58.5131 15.6785i 0.274709 0.0736081i
\(214\) −8.49836 4.90653i −0.0397119 0.0229277i
\(215\) 0 0
\(216\) −112.475 −0.520717
\(217\) −158.771 + 288.659i −0.731664 + 1.33022i
\(218\) −48.8774 48.8774i −0.224208 0.224208i
\(219\) 242.400 139.950i 1.10685 0.639041i
\(220\) 0 0
\(221\) 18.5514 32.1320i 0.0839432 0.145394i
\(222\) 57.1496 + 15.3132i 0.257431 + 0.0689784i
\(223\) 131.856 + 131.856i 0.591282 + 0.591282i 0.937978 0.346696i \(-0.112696\pi\)
−0.346696 + 0.937978i \(0.612696\pi\)
\(224\) 11.0394 + 38.0280i 0.0492831 + 0.169768i
\(225\) 0 0
\(226\) 8.29274 + 14.3634i 0.0366935 + 0.0635551i
\(227\) −98.1186 366.184i −0.432241 1.61314i −0.747585 0.664166i \(-0.768787\pi\)
0.315344 0.948977i \(-0.397880\pi\)
\(228\) 237.064 63.5211i 1.03975 0.278601i
\(229\) −39.8456 + 23.0049i −0.173998 + 0.100458i −0.584470 0.811415i \(-0.698697\pi\)
0.410471 + 0.911873i \(0.365364\pi\)
\(230\) 0 0
\(231\) −8.05726 + 32.7733i −0.0348799 + 0.141876i
\(232\) −14.6727 + 14.6727i −0.0632445 + 0.0632445i
\(233\) −27.0237 + 100.854i −0.115981 + 0.432849i −0.999358 0.0358143i \(-0.988598\pi\)
0.883377 + 0.468663i \(0.155264\pi\)
\(234\) −25.1302 14.5089i −0.107394 0.0620039i
\(235\) 0 0
\(236\) −50.2432 87.0238i −0.212895 0.368745i
\(237\) −254.768 + 254.768i −1.07497 + 1.07497i
\(238\) 6.24360 + 301.117i 0.0262336 + 1.26520i
\(239\) 4.00351i 0.0167511i 0.999965 + 0.00837554i \(0.00266605\pi\)
−0.999965 + 0.00837554i \(0.997334\pi\)
\(240\) 0 0
\(241\) 148.899 257.901i 0.617839 1.07013i −0.372041 0.928216i \(-0.621342\pi\)
0.989879 0.141912i \(-0.0453249\pi\)
\(242\) 43.9596 + 164.060i 0.181651 + 0.677932i
\(243\) 26.0004 97.0348i 0.106998 0.399320i
\(244\) 90.9914i 0.372915i
\(245\) 0 0
\(246\) −383.489 −1.55890
\(247\) 28.4451 + 7.62184i 0.115162 + 0.0308577i
\(248\) −128.579 + 34.4526i −0.518463 + 0.138922i
\(249\) 533.674 + 308.117i 2.14327 + 1.23742i
\(250\) 0 0
\(251\) 300.624 1.19770 0.598852 0.800860i \(-0.295624\pi\)
0.598852 + 0.800860i \(0.295624\pi\)
\(252\) 235.501 4.88306i 0.934526 0.0193772i
\(253\) 3.80217 + 3.80217i 0.0150283 + 0.0150283i
\(254\) 139.160 80.3440i 0.547873 0.316315i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −319.201 85.5296i −1.24203 0.332800i −0.422775 0.906235i \(-0.638944\pi\)
−0.819251 + 0.573435i \(0.805611\pi\)
\(258\) −237.723 237.723i −0.921405 0.921405i
\(259\) −55.9614 13.7580i −0.216067 0.0531198i
\(260\) 0 0
\(261\) 61.7175 + 106.898i 0.236465 + 0.409570i
\(262\) −9.18206 34.2679i −0.0350460 0.130794i
\(263\) 365.648 97.9751i 1.39030 0.372529i 0.515446 0.856922i \(-0.327626\pi\)
0.874851 + 0.484393i \(0.160959\pi\)
\(264\) −11.8097 + 6.81836i −0.0447339 + 0.0258271i
\(265\) 0 0
\(266\) −229.570 + 66.6434i −0.863044 + 0.250539i
\(267\) −563.268 + 563.268i −2.10962 + 2.10962i
\(268\) −35.3692 + 132.000i −0.131975 + 0.492536i
\(269\) −125.485 72.4489i −0.466488 0.269327i 0.248280 0.968688i \(-0.420135\pi\)
−0.714768 + 0.699361i \(0.753468\pi\)
\(270\) 0 0
\(271\) 165.311 + 286.326i 0.610002 + 1.05655i 0.991239 + 0.132078i \(0.0421648\pi\)
−0.381237 + 0.924477i \(0.624502\pi\)
\(272\) −86.0518 + 86.0518i −0.316367 + 0.316367i
\(273\) 38.0117 + 20.9076i 0.139237 + 0.0765846i
\(274\) 96.7254i 0.353012i
\(275\) 0 0
\(276\) 28.8020 49.8866i 0.104355 0.180749i
\(277\) −20.3424 75.9189i −0.0734383 0.274075i 0.919436 0.393239i \(-0.128645\pi\)
−0.992875 + 0.119163i \(0.961979\pi\)
\(278\) −24.6355 + 91.9409i −0.0886169 + 0.330723i
\(279\) 791.842i 2.83814i
\(280\) 0 0
\(281\) −342.866 −1.22016 −0.610081 0.792339i \(-0.708863\pi\)
−0.610081 + 0.792339i \(0.708863\pi\)
\(282\) 211.200 + 56.5910i 0.748938 + 0.200677i
\(283\) −89.7129 + 24.0385i −0.317007 + 0.0849417i −0.413814 0.910361i \(-0.635804\pi\)
0.0968072 + 0.995303i \(0.469137\pi\)
\(284\) −20.6466 11.9203i −0.0726994 0.0419730i
\(285\) 0 0
\(286\) −1.63626 −0.00572118
\(287\) 373.441 7.74323i 1.30119 0.0269799i
\(288\) 67.3004 + 67.3004i 0.233682 + 0.233682i
\(289\) −551.324 + 318.307i −1.90770 + 1.10141i
\(290\) 0 0
\(291\) −313.269 + 542.598i −1.07653 + 1.86460i
\(292\) −106.403 28.5107i −0.364395 0.0976394i
\(293\) 345.276 + 345.276i 1.17842 + 1.17842i 0.980147 + 0.198270i \(0.0635323\pi\)
0.198270 + 0.980147i \(0.436468\pi\)
\(294\) −351.851 + 14.5974i −1.19677 + 0.0496510i
\(295\) 0 0
\(296\) −11.6426 20.1655i −0.0393330 0.0681267i
\(297\) 9.76451 + 36.4416i 0.0328771 + 0.122699i
\(298\) −81.9868 + 21.9683i −0.275124 + 0.0737191i
\(299\) 5.98585 3.45593i 0.0200196 0.0115583i
\(300\) 0 0
\(301\) 236.294 + 226.694i 0.785029 + 0.753135i
\(302\) −47.8037 + 47.8037i −0.158290 + 0.158290i
\(303\) −66.3586 + 247.654i −0.219005 + 0.817339i
\(304\) −83.6492 48.2949i −0.275162 0.158865i
\(305\) 0 0
\(306\) 361.957 + 626.929i 1.18287 + 2.04879i
\(307\) 344.100 344.100i 1.12085 1.12085i 0.129233 0.991614i \(-0.458748\pi\)
0.991614 0.129233i \(-0.0412517\pi\)
\(308\) 11.3626 6.87816i 0.0368917 0.0223317i
\(309\) 734.638i 2.37747i
\(310\) 0 0
\(311\) 165.159 286.064i 0.531059 0.919821i −0.468284 0.883578i \(-0.655128\pi\)
0.999343 0.0362433i \(-0.0115391\pi\)
\(312\) 4.53685 + 16.9318i 0.0145412 + 0.0542685i
\(313\) −22.1618 + 82.7090i −0.0708045 + 0.264246i −0.992249 0.124263i \(-0.960343\pi\)
0.921445 + 0.388509i \(0.127010\pi\)
\(314\) 147.910i 0.471050i
\(315\) 0 0
\(316\) 141.798 0.448727
\(317\) −170.202 45.6055i −0.536915 0.143866i −0.0198354 0.999803i \(-0.506314\pi\)
−0.517080 + 0.855937i \(0.672981\pi\)
\(318\) −93.4129 + 25.0299i −0.293751 + 0.0787104i
\(319\) 6.02775 + 3.48012i 0.0188958 + 0.0109095i
\(320\) 0 0
\(321\) 35.2623 0.109851
\(322\) −27.0401 + 49.1610i −0.0839754 + 0.152674i
\(323\) −519.483 519.483i −1.60831 1.60831i
\(324\) 87.7419 50.6578i 0.270808 0.156351i
\(325\) 0 0
\(326\) 29.0689 50.3489i 0.0891685 0.154444i
\(327\) 239.924 + 64.2873i 0.733711 + 0.196597i
\(328\) 106.720 + 106.720i 0.325367 + 0.325367i
\(329\) −206.809 50.8437i −0.628599 0.154540i
\(330\) 0 0
\(331\) −160.736 278.404i −0.485608 0.841098i 0.514255 0.857637i \(-0.328069\pi\)
−0.999863 + 0.0165391i \(0.994735\pi\)
\(332\) −62.7698 234.260i −0.189066 0.705603i
\(333\) −133.793 + 35.8498i −0.401782 + 0.107657i
\(334\) −45.7874 + 26.4354i −0.137088 + 0.0791479i
\(335\) 0 0
\(336\) −102.679 98.5079i −0.305594 0.293178i
\(337\) 77.9872 77.9872i 0.231416 0.231416i −0.581868 0.813284i \(-0.697678\pi\)
0.813284 + 0.581868i \(0.197678\pi\)
\(338\) 61.3139 228.827i 0.181402 0.677002i
\(339\) −51.6137 29.7992i −0.152253 0.0879031i
\(340\) 0 0
\(341\) 22.3252 + 38.6684i 0.0654698 + 0.113397i
\(342\) −406.283 + 406.283i −1.18796 + 1.18796i
\(343\) 342.337 21.3193i 0.998066 0.0621555i
\(344\) 132.311i 0.384624i
\(345\) 0 0
\(346\) 177.508 307.453i 0.513028 0.888591i
\(347\) 87.2508 + 325.624i 0.251443 + 0.938398i 0.970035 + 0.242966i \(0.0781204\pi\)
−0.718592 + 0.695432i \(0.755213\pi\)
\(348\) 19.2987 72.0237i 0.0554560 0.206965i
\(349\) 287.505i 0.823797i 0.911230 + 0.411899i \(0.135134\pi\)
−0.911230 + 0.411899i \(0.864866\pi\)
\(350\) 0 0
\(351\) 48.4957 0.138164
\(352\) 5.18397 + 1.38904i 0.0147272 + 0.00394614i
\(353\) 160.203 42.9263i 0.453834 0.121604i −0.0246589 0.999696i \(-0.507850\pi\)
0.478493 + 0.878092i \(0.341183\pi\)
\(354\) 312.712 + 180.544i 0.883366 + 0.510012i
\(355\) 0 0
\(356\) 313.501 0.880621
\(357\) −560.447 925.851i −1.56988 2.59342i
\(358\) −54.0621 54.0621i −0.151012 0.151012i
\(359\) 324.332 187.253i 0.903432 0.521597i 0.0251201 0.999684i \(-0.492003\pi\)
0.878312 + 0.478088i \(0.158670\pi\)
\(360\) 0 0
\(361\) 111.049 192.343i 0.307616 0.532806i
\(362\) 275.191 + 73.7371i 0.760195 + 0.203694i
\(363\) −431.567 431.567i −1.18889 1.18889i
\(364\) −4.75986 16.3965i −0.0130765 0.0450454i
\(365\) 0 0
\(366\) −163.484 283.163i −0.446678 0.773670i
\(367\) −8.45008 31.5361i −0.0230247 0.0859295i 0.953457 0.301528i \(-0.0974966\pi\)
−0.976482 + 0.215598i \(0.930830\pi\)
\(368\) −21.8981 + 5.86758i −0.0595057 + 0.0159445i
\(369\) 777.508 448.895i 2.10707 1.21652i
\(370\) 0 0
\(371\) 90.4599 26.2602i 0.243827 0.0707823i
\(372\) 338.234 338.234i 0.909231 0.909231i
\(373\) −190.704 + 711.719i −0.511272 + 1.90809i −0.104614 + 0.994513i \(0.533361\pi\)
−0.406658 + 0.913580i \(0.633306\pi\)
\(374\) 35.3512 + 20.4101i 0.0945221 + 0.0545723i
\(375\) 0 0
\(376\) −43.0259 74.5231i −0.114431 0.198200i
\(377\) 6.32643 6.32643i 0.0167810 0.0167810i
\(378\) −336.767 + 203.856i −0.890919 + 0.539301i
\(379\) 287.166i 0.757693i 0.925460 + 0.378846i \(0.123679\pi\)
−0.925460 + 0.378846i \(0.876321\pi\)
\(380\) 0 0
\(381\) −288.708 + 500.057i −0.757764 + 1.31249i
\(382\) −64.3258 240.067i −0.168392 0.628448i
\(383\) 118.232 441.247i 0.308699 1.15208i −0.621014 0.783799i \(-0.713279\pi\)
0.929714 0.368283i \(-0.120054\pi\)
\(384\) 57.4944i 0.149725i
\(385\) 0 0
\(386\) −73.8055 −0.191206
\(387\) 760.240 + 203.706i 1.96444 + 0.526371i
\(388\) 238.178 63.8195i 0.613860 0.164483i
\(389\) −470.416 271.595i −1.20930 0.698187i −0.246690 0.969094i \(-0.579343\pi\)
−0.962605 + 0.270907i \(0.912676\pi\)
\(390\) 0 0
\(391\) −172.432 −0.441002
\(392\) 101.978 + 93.8535i 0.260148 + 0.239422i
\(393\) 90.1435 + 90.1435i 0.229373 + 0.229373i
\(394\) 108.804 62.8178i 0.276151 0.159436i
\(395\) 0 0
\(396\) 15.9625 27.6479i 0.0403094 0.0698179i
\(397\) 617.160 + 165.368i 1.55456 + 0.416543i 0.930936 0.365182i \(-0.118993\pi\)
0.623623 + 0.781725i \(0.285660\pi\)
\(398\) −25.9383 25.9383i −0.0651717 0.0651717i
\(399\) 594.678 619.861i 1.49042 1.55354i
\(400\) 0 0
\(401\) −223.636 387.349i −0.557696 0.965958i −0.997688 0.0679566i \(-0.978352\pi\)
0.439992 0.898002i \(-0.354981\pi\)
\(402\) −127.096 474.328i −0.316159 1.17992i
\(403\) 55.4393 14.8549i 0.137566 0.0368608i
\(404\) 87.3858 50.4522i 0.216302 0.124882i
\(405\) 0 0
\(406\) −17.3388 + 70.5262i −0.0427063 + 0.173710i
\(407\) −5.52284 + 5.52284i −0.0135696 + 0.0135696i
\(408\) 113.182 422.401i 0.277407 1.03530i
\(409\) 19.9762 + 11.5333i 0.0488417 + 0.0281988i 0.524222 0.851582i \(-0.324356\pi\)
−0.475380 + 0.879780i \(0.657690\pi\)
\(410\) 0 0
\(411\) −173.787 301.007i −0.422839 0.732378i
\(412\) −204.441 + 204.441i −0.496215 + 0.496215i
\(413\) −308.163 169.499i −0.746158 0.410410i
\(414\) 134.857i 0.325743i
\(415\) 0 0
\(416\) 3.44935 5.97446i 0.00829172 0.0143617i
\(417\) −88.5253 330.381i −0.212291 0.792280i
\(418\) −8.38545 + 31.2949i −0.0200609 + 0.0748682i
\(419\) 502.792i 1.19998i −0.800007 0.599990i \(-0.795171\pi\)
0.800007 0.599990i \(-0.204829\pi\)
\(420\) 0 0
\(421\) 48.4897 0.115177 0.0575887 0.998340i \(-0.481659\pi\)
0.0575887 + 0.998340i \(0.481659\pi\)
\(422\) −305.546 81.8708i −0.724043 0.194007i
\(423\) −494.443 + 132.486i −1.16890 + 0.313205i
\(424\) 32.9612 + 19.0302i 0.0777387 + 0.0448824i
\(425\) 0 0
\(426\) 85.6691 0.201101
\(427\) 164.918 + 272.443i 0.386225 + 0.638039i
\(428\) −9.81306 9.81306i −0.0229277 0.0229277i
\(429\) 5.09200 2.93987i 0.0118695 0.00685284i
\(430\) 0 0
\(431\) 185.726 321.686i 0.430918 0.746372i −0.566035 0.824381i \(-0.691523\pi\)
0.996953 + 0.0780097i \(0.0248565\pi\)
\(432\) −153.643 41.1686i −0.355656 0.0952977i
\(433\) −449.707 449.707i −1.03858 1.03858i −0.999225 0.0393595i \(-0.987468\pi\)
−0.0393595 0.999225i \(-0.512532\pi\)
\(434\) −322.542 + 336.201i −0.743184 + 0.774656i
\(435\) 0 0
\(436\) −48.8774 84.6582i −0.112104 0.194170i
\(437\) −35.4217 132.196i −0.0810566 0.302507i
\(438\) 382.350 102.450i 0.872946 0.233905i
\(439\) −508.790 + 293.750i −1.15897 + 0.669134i −0.951058 0.309012i \(-0.900002\pi\)
−0.207917 + 0.978147i \(0.566668\pi\)
\(440\) 0 0
\(441\) 696.276 441.456i 1.57886 1.00103i
\(442\) 37.1029 37.1029i 0.0839432 0.0839432i
\(443\) −1.22904 + 4.58686i −0.00277437 + 0.0103541i −0.967299 0.253638i \(-0.918373\pi\)
0.964525 + 0.263992i \(0.0850394\pi\)
\(444\) 72.4628 + 41.8364i 0.163205 + 0.0942262i
\(445\) 0 0
\(446\) 131.856 + 228.381i 0.295641 + 0.512065i
\(447\) 215.671 215.671i 0.482485 0.482485i
\(448\) 1.16090 + 55.9880i 0.00259130 + 0.124973i
\(449\) 40.6375i 0.0905067i 0.998976 + 0.0452533i \(0.0144095\pi\)
−0.998976 + 0.0452533i \(0.985590\pi\)
\(450\) 0 0
\(451\) 25.3123 43.8421i 0.0561248 0.0972109i
\(452\) 6.07071 + 22.6562i 0.0134308 + 0.0501243i
\(453\) 62.8750 234.653i 0.138797 0.517997i
\(454\) 536.130i 1.18090i
\(455\) 0 0
\(456\) 347.086 0.761153
\(457\) 317.526 + 85.0810i 0.694806 + 0.186173i 0.588903 0.808204i \(-0.299560\pi\)
0.105903 + 0.994376i \(0.466227\pi\)
\(458\) −62.8505 + 16.8407i −0.137228 + 0.0367702i
\(459\) −1047.75 604.916i −2.28267 1.31790i
\(460\) 0 0
\(461\) 64.7559 0.140468 0.0702341 0.997531i \(-0.477625\pi\)
0.0702341 + 0.997531i \(0.477625\pi\)
\(462\) −23.0023 + 41.8199i −0.0497884 + 0.0905194i
\(463\) 604.400 + 604.400i 1.30540 + 1.30540i 0.924698 + 0.380701i \(0.124317\pi\)
0.380701 + 0.924698i \(0.375683\pi\)
\(464\) −25.4139 + 14.6727i −0.0547713 + 0.0316222i
\(465\) 0 0
\(466\) −73.8301 + 127.877i −0.158434 + 0.274415i
\(467\) −345.213 92.4995i −0.739214 0.198072i −0.130485 0.991450i \(-0.541653\pi\)
−0.608729 + 0.793379i \(0.708320\pi\)
\(468\) −29.0178 29.0178i −0.0620039 0.0620039i
\(469\) 133.343 + 459.334i 0.284314 + 0.979389i
\(470\) 0 0
\(471\) 265.750 + 460.292i 0.564224 + 0.977265i
\(472\) −36.7806 137.267i −0.0779250 0.290820i
\(473\) 42.8684 11.4866i 0.0906309 0.0242845i
\(474\) −441.272 + 254.768i −0.930953 + 0.537486i
\(475\) 0 0
\(476\) −101.687 + 413.618i −0.213629 + 0.868946i
\(477\) 160.092 160.092i 0.335623 0.335623i
\(478\) −1.46539 + 5.46889i −0.00306566 + 0.0114412i
\(479\) −508.668 293.679i −1.06194 0.613109i −0.135969 0.990713i \(-0.543415\pi\)
−0.925967 + 0.377604i \(0.876748\pi\)
\(480\) 0 0
\(481\) 5.01992 + 8.69475i 0.0104364 + 0.0180764i
\(482\) 297.798 297.798i 0.617839 0.617839i
\(483\) −4.17954 201.571i −0.00865329 0.417331i
\(484\) 240.200i 0.496281i
\(485\) 0 0
\(486\) 71.0344 123.035i 0.146161 0.253159i
\(487\) −147.222 549.440i −0.302304 1.12821i −0.935242 0.354010i \(-0.884818\pi\)
0.632938 0.774202i \(-0.281849\pi\)
\(488\) −33.3052 + 124.297i −0.0682483 + 0.254706i
\(489\) 208.913i 0.427224i
\(490\) 0 0
\(491\) 485.037 0.987856 0.493928 0.869503i \(-0.335561\pi\)
0.493928 + 0.869503i \(0.335561\pi\)
\(492\) −523.856 140.367i −1.06475 0.285298i
\(493\) −215.595 + 57.7686i −0.437313 + 0.117178i
\(494\) 36.0669 + 20.8233i 0.0730100 + 0.0421523i
\(495\) 0 0
\(496\) −188.253 −0.379542
\(497\) −83.4244 + 1.72979i −0.167856 + 0.00348046i
\(498\) 616.234 + 616.234i 1.23742 + 1.23742i
\(499\) 500.231 288.808i 1.00247 0.578774i 0.0934891 0.995620i \(-0.470198\pi\)
0.908977 + 0.416846i \(0.136865\pi\)
\(500\) 0 0
\(501\) 94.9930 164.533i 0.189607 0.328409i
\(502\) 410.660 + 110.036i 0.818047 + 0.219195i
\(503\) 417.802 + 417.802i 0.830620 + 0.830620i 0.987602 0.156981i \(-0.0501763\pi\)
−0.156981 + 0.987602i \(0.550176\pi\)
\(504\) 323.487 + 79.5288i 0.641840 + 0.157795i
\(505\) 0 0
\(506\) 3.80217 + 6.58555i 0.00751417 + 0.0130149i
\(507\) 220.326 + 822.266i 0.434567 + 1.62183i
\(508\) 219.504 58.8159i 0.432094 0.115779i
\(509\) 136.905 79.0420i 0.268968 0.155289i −0.359451 0.933164i \(-0.617036\pi\)
0.628419 + 0.777875i \(0.283703\pi\)
\(510\) 0 0
\(511\) −370.263 + 107.486i −0.724586 + 0.210345i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 248.529 927.523i 0.484462 1.80804i
\(514\) −404.730 233.671i −0.787413 0.454613i
\(515\) 0 0
\(516\) −237.723 411.748i −0.460703 0.797960i
\(517\) −20.4101 + 20.4101i −0.0394779 + 0.0394779i
\(518\) −71.4089 39.2771i −0.137855 0.0758245i
\(519\) 1275.71i 2.45802i
\(520\) 0 0
\(521\) 58.2493 100.891i 0.111803 0.193648i −0.804694 0.593689i \(-0.797671\pi\)
0.916497 + 0.400041i \(0.131004\pi\)
\(522\) 45.1803 + 168.615i 0.0865523 + 0.323018i
\(523\) 65.4858 244.396i 0.125212 0.467297i −0.874635 0.484782i \(-0.838899\pi\)
0.999847 + 0.0174845i \(0.00556577\pi\)
\(524\) 50.1717i 0.0957475i
\(525\) 0 0
\(526\) 535.346 1.01777
\(527\) −1383.06 370.589i −2.62440 0.703205i
\(528\) −18.6281 + 4.99139i −0.0352805 + 0.00945338i
\(529\) 430.309 + 248.439i 0.813438 + 0.469639i
\(530\) 0 0
\(531\) −845.347 −1.59199
\(532\) −337.991 + 7.00819i −0.635322 + 0.0131733i
\(533\) −46.0145 46.0145i −0.0863311 0.0863311i
\(534\) −975.608 + 563.268i −1.82698 + 1.05481i
\(535\) 0 0
\(536\) −96.6305 + 167.369i −0.180281 + 0.312256i
\(537\) 265.374 + 71.1067i 0.494178 + 0.132415i
\(538\) −144.898 144.898i −0.269327 0.269327i
\(539\) 21.5551 41.1886i 0.0399910 0.0764167i
\(540\) 0 0
\(541\) 420.568 + 728.445i 0.777390 + 1.34648i 0.933442 + 0.358730i \(0.116790\pi\)
−0.156052 + 0.987749i \(0.549877\pi\)
\(542\) 121.016 + 451.637i 0.223276 + 0.833279i
\(543\) −988.871 + 264.967i −1.82112 + 0.487969i
\(544\) −149.046 + 86.0518i −0.273982 + 0.158183i
\(545\) 0 0
\(546\) 44.2722 + 42.4736i 0.0810846 + 0.0777904i
\(547\) −228.297 + 228.297i −0.417362 + 0.417362i −0.884294 0.466931i \(-0.845360\pi\)
0.466931 + 0.884294i \(0.345360\pi\)
\(548\) −35.4040 + 132.129i −0.0646058 + 0.241112i
\(549\) 662.916 + 382.734i 1.20750 + 0.697148i
\(550\) 0 0
\(551\) −88.5771 153.420i −0.160757 0.278439i
\(552\) 57.6041 57.6041i 0.104355 0.104355i
\(553\) 424.565 257.003i 0.767749 0.464743i
\(554\) 111.153i 0.200637i
\(555\) 0 0
\(556\) −67.3054 + 116.576i −0.121053 + 0.209670i
\(557\) 248.070 + 925.810i 0.445368 + 1.66214i 0.714963 + 0.699162i \(0.246443\pi\)
−0.269595 + 0.962974i \(0.586890\pi\)
\(558\) −289.834 + 1081.68i −0.519416 + 1.93849i
\(559\) 57.0482i 0.102054i
\(560\) 0 0
\(561\) −146.683 −0.261467
\(562\) −468.363 125.497i −0.833386 0.223305i
\(563\) −895.754 + 240.016i −1.59104 + 0.426317i −0.942320 0.334713i \(-0.891361\pi\)
−0.648717 + 0.761030i \(0.724694\pi\)
\(564\) 267.791 + 154.609i 0.474807 + 0.274130i
\(565\) 0 0
\(566\) −131.349 −0.232065
\(567\) 170.898 310.706i 0.301407 0.547982i
\(568\) −23.8407 23.8407i −0.0419730 0.0419730i
\(569\) 391.524 226.046i 0.688091 0.397270i −0.114805 0.993388i \(-0.536624\pi\)
0.802897 + 0.596118i \(0.203291\pi\)
\(570\) 0 0
\(571\) −195.371 + 338.393i −0.342157 + 0.592633i −0.984833 0.173505i \(-0.944491\pi\)
0.642676 + 0.766138i \(0.277824\pi\)
\(572\) −2.23517 0.598912i −0.00390764 0.00104705i
\(573\) 631.510 + 631.510i 1.10211 + 1.10211i
\(574\) 512.964 + 126.111i 0.893665 + 0.219706i
\(575\) 0 0
\(576\) 67.3004 + 116.568i 0.116841 + 0.202374i
\(577\) 117.398 + 438.134i 0.203462 + 0.759330i 0.989913 + 0.141677i \(0.0452496\pi\)
−0.786451 + 0.617653i \(0.788084\pi\)
\(578\) −869.631 + 233.017i −1.50455 + 0.403144i
\(579\) 229.681 132.606i 0.396686 0.229027i
\(580\) 0 0
\(581\) −612.530 587.645i −1.05427 1.01144i
\(582\) −626.539 + 626.539i −1.07653 + 1.07653i
\(583\) 3.30421 12.3315i 0.00566760 0.0211518i
\(584\) −134.914 77.8927i −0.231017 0.133378i
\(585\) 0 0
\(586\) 345.276 + 598.036i 0.589209 + 1.02054i
\(587\) 132.759 132.759i 0.226165 0.226165i −0.584924 0.811088i \(-0.698876\pi\)
0.811088 + 0.584924i \(0.198876\pi\)
\(588\) −485.980 108.846i −0.826497 0.185112i
\(589\) 1136.45i 1.92946i
\(590\) 0 0
\(591\) −225.730 + 390.975i −0.381946 + 0.661549i
\(592\) −8.52295 31.8081i −0.0143969 0.0537299i
\(593\) −35.4612 + 132.343i −0.0597997 + 0.223176i −0.989358 0.145498i \(-0.953521\pi\)
0.929559 + 0.368674i \(0.120188\pi\)
\(594\) 53.3543i 0.0898220i
\(595\) 0 0
\(596\) −120.037 −0.201404
\(597\) 127.323 + 34.1161i 0.213271 + 0.0571458i
\(598\) 9.44178 2.52992i 0.0157889 0.00423063i
\(599\) 533.617 + 308.084i 0.890847 + 0.514331i 0.874220 0.485531i \(-0.161374\pi\)
0.0166277 + 0.999862i \(0.494707\pi\)
\(600\) 0 0
\(601\) −660.812 −1.09952 −0.549760 0.835322i \(-0.685281\pi\)
−0.549760 + 0.835322i \(0.685281\pi\)
\(602\) 239.808 + 396.159i 0.398351 + 0.658071i
\(603\) 812.909 + 812.909i 1.34811 + 1.34811i
\(604\) −82.7984 + 47.8037i −0.137083 + 0.0791451i
\(605\) 0 0
\(606\) −181.295 + 314.012i −0.299167 + 0.518172i
\(607\) −373.398 100.052i −0.615153 0.164830i −0.0622299 0.998062i \(-0.519821\pi\)
−0.552924 + 0.833232i \(0.686488\pi\)
\(608\) −96.5897 96.5897i −0.158865 0.158865i
\(609\) −72.7567 250.628i −0.119469 0.411541i
\(610\) 0 0
\(611\) 18.5514 + 32.1320i 0.0303624 + 0.0525893i
\(612\) 264.971 + 988.886i 0.432959 + 1.61583i
\(613\) −49.9662 + 13.3884i −0.0815109 + 0.0218408i −0.299344 0.954145i \(-0.596768\pi\)
0.217833 + 0.975986i \(0.430101\pi\)
\(614\) 595.999 344.100i 0.970683 0.560424i
\(615\) 0 0
\(616\) 18.0392 5.23673i 0.0292845 0.00850119i
\(617\) 616.887 616.887i 0.999816 0.999816i −0.000183933 1.00000i \(-0.500059\pi\)
1.00000 0.000183933i \(5.85476e-5\pi\)
\(618\) 268.896 1003.53i 0.435107 1.62384i
\(619\) 449.823 + 259.705i 0.726693 + 0.419556i 0.817211 0.576339i \(-0.195519\pi\)
−0.0905183 + 0.995895i \(0.528852\pi\)
\(620\) 0 0
\(621\) −112.689 195.184i −0.181464 0.314305i
\(622\) 330.319 330.319i 0.531059 0.531059i
\(623\) 938.672 568.208i 1.50670 0.912051i
\(624\) 24.7898i 0.0397273i
\(625\) 0 0
\(626\) −60.5472 + 104.871i −0.0967208 + 0.167525i
\(627\) −30.1323 112.455i −0.0480579 0.179354i
\(628\) 54.1387 202.048i 0.0862081 0.321733i
\(629\) 250.466i 0.398197i
\(630\) 0 0
\(631\) −427.140 −0.676925 −0.338463 0.940980i \(-0.609907\pi\)
−0.338463 + 0.940980i \(0.609907\pi\)
\(632\) 193.699 + 51.9016i 0.306486 + 0.0821228i
\(633\) 1097.95 294.195i 1.73452 0.464763i
\(634\) −215.808 124.597i −0.340390 0.196525i
\(635\) 0 0
\(636\) −136.766 −0.215041
\(637\) −43.9698 40.4667i −0.0690264 0.0635271i
\(638\) 6.96025 + 6.96025i 0.0109095 + 0.0109095i
\(639\) −173.691 + 100.280i −0.271816 + 0.156933i
\(640\) 0 0
\(641\) −135.063 + 233.937i −0.210707 + 0.364956i −0.951936 0.306297i \(-0.900910\pi\)
0.741229 + 0.671252i \(0.234243\pi\)
\(642\) 48.1692 + 12.9069i 0.0750298 + 0.0201042i
\(643\) −192.668 192.668i −0.299639 0.299639i 0.541234 0.840872i \(-0.317957\pi\)
−0.840872 + 0.541234i \(0.817957\pi\)
\(644\) −54.9316 + 57.2579i −0.0852976 + 0.0889097i
\(645\) 0 0
\(646\) −519.483 899.770i −0.804153 1.39283i
\(647\) −63.5381 237.128i −0.0982042 0.366503i 0.899282 0.437370i \(-0.144090\pi\)
−0.997486 + 0.0708670i \(0.977423\pi\)
\(648\) 138.400 37.0841i 0.213580 0.0572285i
\(649\) −41.2812 + 23.8337i −0.0636074 + 0.0367237i
\(650\) 0 0
\(651\) 399.691 1625.76i 0.613964 2.49733i
\(652\) 58.1379 58.1379i 0.0891685 0.0891685i
\(653\) 118.033 440.504i 0.180755 0.674585i −0.814745 0.579819i \(-0.803123\pi\)
0.995500 0.0947659i \(-0.0302103\pi\)
\(654\) 304.211 + 175.636i 0.465154 + 0.268557i
\(655\) 0 0
\(656\) 106.720 + 184.845i 0.162683 + 0.281776i
\(657\) −655.276 + 655.276i −0.997376 + 0.997376i
\(658\) −263.896 145.151i −0.401058 0.220595i
\(659\) 973.026i 1.47652i 0.674517 + 0.738259i \(0.264352\pi\)
−0.674517 + 0.738259i \(0.735648\pi\)
\(660\) 0 0
\(661\) 152.550 264.224i 0.230787 0.399734i −0.727253 0.686369i \(-0.759203\pi\)
0.958040 + 0.286635i \(0.0925367\pi\)
\(662\) −117.667 439.140i −0.177745 0.663353i
\(663\) −48.8006 + 182.126i −0.0736057 + 0.274700i
\(664\) 342.981i 0.516537i
\(665\) 0 0
\(666\) −195.887 −0.294125
\(667\) −40.1631 10.7617i −0.0602145 0.0161344i
\(668\) −72.2228 + 19.3520i −0.108118 + 0.0289701i
\(669\) −820.666 473.811i −1.22670 0.708238i
\(670\) 0 0
\(671\) 43.1633 0.0643268
\(672\) −104.206 172.148i −0.155069 0.256172i
\(673\) −567.081 567.081i −0.842616 0.842616i 0.146582 0.989198i \(-0.453173\pi\)
−0.989198 + 0.146582i \(0.953173\pi\)
\(674\) 135.078 77.9872i 0.200412 0.115708i
\(675\) 0 0
\(676\) 167.513 290.141i 0.247800 0.429202i
\(677\) 385.908 + 103.404i 0.570027 + 0.152738i 0.532309 0.846550i \(-0.321324\pi\)
0.0377179 + 0.999288i \(0.487991\pi\)
\(678\) −59.5983 59.5983i −0.0879031 0.0879031i
\(679\) 597.471 622.773i 0.879928 0.917191i
\(680\) 0 0
\(681\) 963.266 + 1668.42i 1.41449 + 2.44996i
\(682\) 16.3432 + 60.9936i 0.0239636 + 0.0894334i
\(683\) 919.851 246.473i 1.34678 0.360869i 0.487835 0.872936i \(-0.337787\pi\)
0.858945 + 0.512067i \(0.171120\pi\)
\(684\) −703.702 + 406.283i −1.02880 + 0.593980i
\(685\) 0 0
\(686\) 475.444 + 96.1812i 0.693067 + 0.140206i
\(687\) 165.332 165.332i 0.240657 0.240657i
\(688\) −48.4290 + 180.740i −0.0703910 + 0.262703i
\(689\) −14.2119 8.20522i −0.0206268 0.0119089i
\(690\) 0 0
\(691\) 235.417 + 407.754i 0.340690 + 0.590093i 0.984561 0.175042i \(-0.0560060\pi\)
−0.643871 + 0.765134i \(0.722673\pi\)
\(692\) 355.016 355.016i 0.513028 0.513028i
\(693\) −2.31636 111.714i −0.00334251 0.161203i
\(694\) 476.747i 0.686955i
\(695\) 0 0
\(696\) 52.7250 91.3224i 0.0757543 0.131210i
\(697\) 420.173 + 1568.11i 0.602831 + 2.24980i
\(698\) −105.234 + 392.740i −0.150765 + 0.562664i
\(699\) 530.602i 0.759088i
\(700\) 0 0
\(701\) −1335.50 −1.90514 −0.952569 0.304322i \(-0.901570\pi\)
−0.952569 + 0.304322i \(0.901570\pi\)
\(702\) 66.2463 + 17.7506i 0.0943679 + 0.0252858i
\(703\) 192.021 51.4518i 0.273145 0.0731890i
\(704\) 6.57302 + 3.79493i 0.00933667 + 0.00539053i
\(705\) 0 0
\(706\) 234.554 0.332229
\(707\) 170.204 309.445i 0.240742 0.437688i
\(708\) 361.088 + 361.088i 0.510012 + 0.510012i
\(709\) −1150.06 + 663.986i −1.62208 + 0.936510i −0.635722 + 0.771918i \(0.719297\pi\)
−0.986362 + 0.164592i \(0.947369\pi\)
\(710\) 0 0
\(711\) 596.440 1033.06i 0.838875 1.45297i
\(712\) 428.250 + 114.749i 0.601475 + 0.161165i
\(713\) −188.612 188.612i −0.264532 0.264532i
\(714\) −426.700 1469.87i −0.597618 2.05865i
\(715\) 0 0
\(716\) −54.0621 93.6384i −0.0755058 0.130780i
\(717\) −5.26572 19.6519i −0.00734410 0.0274086i
\(718\) 511.585 137.079i 0.712515 0.190918i
\(719\) −244.147 + 140.958i −0.339564 + 0.196048i −0.660079 0.751196i \(-0.729477\pi\)
0.320515 + 0.947243i \(0.396144\pi\)
\(720\) 0 0
\(721\) −241.588 + 982.668i −0.335073 + 1.36292i
\(722\) 222.098 222.098i 0.307616 0.307616i
\(723\) −391.687 + 1461.80i −0.541753 + 2.02185i
\(724\) 348.928 + 201.453i 0.481944 + 0.278251i
\(725\) 0 0
\(726\) −431.567 747.497i −0.594445 1.02961i
\(727\) −830.098 + 830.098i −1.14181 + 1.14181i −0.153694 + 0.988118i \(0.549117\pi\)
−0.988118 + 0.153694i \(0.950883\pi\)
\(728\) −0.500544 24.1403i −0.000687561 0.0331597i
\(729\) 966.430i 1.32569i
\(730\) 0 0
\(731\) −711.598 + 1232.52i −0.973458 + 1.68608i
\(732\) −119.679 446.647i −0.163496 0.610174i
\(733\) −308.773 + 1152.36i −0.421245 + 1.57211i 0.350743 + 0.936472i \(0.385929\pi\)
−0.771988 + 0.635637i \(0.780737\pi\)
\(734\) 46.1721i 0.0629048i
\(735\) 0 0
\(736\) −32.0610 −0.0435612
\(737\) 62.6163 + 16.7780i 0.0849610 + 0.0227652i
\(738\) 1226.40 328.614i 1.66179 0.445276i
\(739\) 491.205 + 283.597i 0.664688 + 0.383758i 0.794061 0.607838i \(-0.207963\pi\)
−0.129373 + 0.991596i \(0.541296\pi\)
\(740\) 0 0
\(741\) −149.653 −0.201960
\(742\) 133.182 2.76151i 0.179491 0.00372172i
\(743\) 121.240 + 121.240i 0.163176 + 0.163176i 0.783972 0.620796i \(-0.213190\pi\)
−0.620796 + 0.783972i \(0.713190\pi\)
\(744\) 585.838 338.234i 0.787417 0.454615i
\(745\) 0 0
\(746\) −521.014 + 902.423i −0.698411 + 1.20968i
\(747\) −1970.72 528.054i −2.63819 0.706900i
\(748\) 40.8201 + 40.8201i 0.0545723 + 0.0545723i
\(749\) −47.1676 11.5961i −0.0629741 0.0154821i
\(750\) 0 0
\(751\) −499.516 865.187i −0.665135 1.15205i −0.979249 0.202662i \(-0.935041\pi\)
0.314114 0.949385i \(-0.398293\pi\)
\(752\) −31.4972 117.549i −0.0418845 0.156315i
\(753\) −1475.67 + 395.404i −1.95972 + 0.525104i
\(754\) 10.9577 6.32643i 0.0145327 0.00839048i
\(755\) 0 0
\(756\) −534.649 + 155.207i −0.707208 + 0.205300i
\(757\) −290.904 + 290.904i −0.384285 + 0.384285i −0.872643 0.488358i \(-0.837596\pi\)
0.488358 + 0.872643i \(0.337596\pi\)
\(758\) −105.110 + 392.275i −0.138667 + 0.517514i
\(759\) −23.6645 13.6627i −0.0311786 0.0180010i
\(760\) 0 0
\(761\) 185.178 + 320.737i 0.243335 + 0.421468i 0.961662 0.274237i \(-0.0884253\pi\)
−0.718327 + 0.695705i \(0.755092\pi\)
\(762\) −577.416 + 577.416i −0.757764 + 0.757764i
\(763\) −299.786 164.892i −0.392905 0.216110i
\(764\) 351.483i 0.460056i
\(765\) 0 0
\(766\) 323.016 559.479i 0.421691 0.730391i
\(767\) 15.8587 + 59.1853i 0.0206762 + 0.0771647i
\(768\) 21.0444 78.5389i 0.0274016 0.102264i
\(769\) 615.359i 0.800207i 0.916470 + 0.400103i \(0.131026\pi\)
−0.916470 + 0.400103i \(0.868974\pi\)
\(770\) 0 0
\(771\) 1679.35 2.17814
\(772\) −100.820 27.0147i −0.130596 0.0349931i
\(773\) −814.698 + 218.298i −1.05394 + 0.282403i −0.743880 0.668313i \(-0.767017\pi\)
−0.310063 + 0.950716i \(0.600350\pi\)
\(774\) 963.945 + 556.534i 1.24541 + 0.719036i
\(775\) 0 0
\(776\) 348.716 0.449376
\(777\) 292.792 6.07099i 0.376824 0.00781337i
\(778\) −543.189 543.189i −0.698187 0.698187i
\(779\) −1115.88 + 644.255i −1.43246 + 0.827029i
\(780\) 0 0
\(781\) −5.65461 + 9.79407i −0.00724021 + 0.0125404i
\(782\) −235.546 63.1144i −0.301210 0.0807090i
\(783\) −206.289 206.289i −0.263460 0.263460i
\(784\) 104.952 + 165.533i 0.133867 + 0.211139i
\(785\) 0 0
\(786\) 90.1435 + 156.133i 0.114686 + 0.198643i
\(787\) −117.934 440.137i −0.149853 0.559259i −0.999491 0.0318931i \(-0.989846\pi\)
0.849638 0.527366i \(-0.176820\pi\)
\(788\) 171.622 45.9858i 0.217794 0.0583577i
\(789\) −1665.99 + 961.857i −2.11151 + 1.21908i
\(790\) 0 0
\(791\) 59.2401 + 56.8333i 0.0748927 + 0.0718500i
\(792\) 31.9250 31.9250i 0.0403094 0.0403094i
\(793\) 14.3602 53.5928i 0.0181086 0.0675824i
\(794\) 782.528 + 451.793i 0.985551 + 0.569008i
\(795\) 0 0
\(796\) −25.9383 44.9265i −0.0325858 0.0564403i
\(797\) 1040.82 1040.82i 1.30592 1.30592i 0.381592 0.924331i \(-0.375376\pi\)
0.924331 0.381592i \(-0.124624\pi\)
\(798\) 1039.23 629.079i 1.30229 0.788319i
\(799\) 925.614i 1.15847i
\(800\) 0 0
\(801\) 1318.67 2284.00i 1.64628 2.85144i
\(802\) −163.713 610.985i −0.204131 0.761827i
\(803\) −13.5245 + 50.4742i −0.0168425 + 0.0628571i
\(804\) 694.465i 0.863762i
\(805\) 0 0
\(806\) 81.1687 0.100706
\(807\) 711.257 + 190.581i 0.881360 + 0.236160i
\(808\) 137.838 36.9336i 0.170592 0.0457099i
\(809\) −192.279 111.012i −0.237674 0.137221i 0.376433 0.926444i \(-0.377150\pi\)
−0.614107 + 0.789222i \(0.710484\pi\)
\(810\) 0 0
\(811\) 1418.65 1.74926 0.874632 0.484788i \(-0.161103\pi\)
0.874632 + 0.484788i \(0.161103\pi\)
\(812\) −49.4996 + 89.9941i −0.0609600 + 0.110830i
\(813\) −1188.06 1188.06i −1.46132 1.46132i
\(814\) −9.56585 + 5.52284i −0.0117517 + 0.00678482i
\(815\) 0 0
\(816\) 309.219 535.583i 0.378945 0.656351i
\(817\) −1091.10 292.359i −1.33549 0.357845i
\(818\) 23.0666 + 23.0666i 0.0281988 + 0.0281988i
\(819\) −139.478 34.2904i −0.170302 0.0418686i
\(820\) 0 0
\(821\) 192.277 + 333.033i 0.234198 + 0.405643i 0.959039 0.283273i \(-0.0914202\pi\)
−0.724841 + 0.688916i \(0.758087\pi\)
\(822\) −127.221 474.794i −0.154770 0.577608i
\(823\) 64.4885 17.2796i 0.0783578 0.0209959i −0.219427 0.975629i \(-0.570419\pi\)
0.297785 + 0.954633i \(0.403752\pi\)
\(824\) −354.102 + 204.441i −0.429735 + 0.248108i
\(825\) 0 0
\(826\) −358.918 344.336i −0.434525 0.416872i
\(827\) −595.969 + 595.969i −0.720639 + 0.720639i −0.968735 0.248096i \(-0.920195\pi\)
0.248096 + 0.968735i \(0.420195\pi\)
\(828\) −49.3612 + 184.219i −0.0596150 + 0.222486i
\(829\) 609.282 + 351.769i 0.734960 + 0.424329i 0.820234 0.572028i \(-0.193843\pi\)
−0.0852739 + 0.996358i \(0.527177\pi\)
\(830\) 0 0
\(831\) 199.709 + 345.905i 0.240323 + 0.416252i
\(832\) 6.89871 6.89871i 0.00829172 0.00829172i
\(833\) 445.198 + 1422.74i 0.534451 + 1.70798i
\(834\) 483.711i 0.579989i
\(835\) 0 0
\(836\) −22.9095 + 39.6804i −0.0274037 + 0.0474645i
\(837\) −484.381 1807.74i −0.578711 2.15978i
\(838\) 184.035 686.826i 0.219612 0.819602i
\(839\) 3.00042i 0.00357618i −0.999998 0.00178809i \(-0.999431\pi\)
0.999998 0.00178809i \(-0.000569167\pi\)
\(840\) 0 0
\(841\) 787.178 0.936002
\(842\) 66.2382 + 17.7485i 0.0786677 + 0.0210789i
\(843\) 1683.02 450.963i 1.99646 0.534950i
\(844\) −387.417 223.675i −0.459025 0.265018i
\(845\) 0 0
\(846\) −723.915 −0.855691
\(847\) 435.352 + 719.197i 0.513993 + 0.849110i
\(848\) 38.0603 + 38.0603i 0.0448824 + 0.0448824i
\(849\) 408.755 235.995i 0.481454 0.277968i
\(850\) 0 0
\(851\) 23.3295 40.4079i 0.0274143 0.0474829i
\(852\) 117.026 + 31.3571i 0.137355 + 0.0368041i
\(853\) −657.357 657.357i −0.770641 0.770641i 0.207577 0.978219i \(-0.433442\pi\)
−0.978219 + 0.207577i \(0.933442\pi\)
\(854\) 125.561 + 432.528i 0.147027 + 0.506473i
\(855\) 0 0
\(856\) −9.81306 16.9967i −0.0114639 0.0198560i
\(857\) 273.963 + 1022.44i 0.319677 + 1.19305i 0.919556 + 0.392960i \(0.128549\pi\)
−0.599879 + 0.800091i \(0.704784\pi\)
\(858\) 8.03187 2.15213i 0.00936115 0.00250831i
\(859\) 747.383 431.502i 0.870062 0.502331i 0.00269328 0.999996i \(-0.499143\pi\)
0.867369 + 0.497666i \(0.165809\pi\)
\(860\) 0 0
\(861\) −1822.92 + 529.187i −2.11721 + 0.614619i
\(862\) 371.451 371.451i 0.430918 0.430918i
\(863\) −315.238 + 1176.48i −0.365282 + 1.36325i 0.501757 + 0.865009i \(0.332687\pi\)
−0.867039 + 0.498241i \(0.833980\pi\)
\(864\) −194.812 112.475i −0.225477 0.130179i
\(865\) 0 0
\(866\) −449.707 778.916i −0.519292 0.899441i
\(867\) 2287.61 2287.61i 2.63854 2.63854i
\(868\) −563.658 + 341.200i −0.649376 + 0.393088i
\(869\) 67.2641i 0.0774041i
\(870\) 0 0
\(871\) 41.6641 72.1644i 0.0478348 0.0828523i
\(872\) −35.7808 133.536i −0.0410330 0.153137i
\(873\) 536.884 2003.68i 0.614988 2.29516i
\(874\) 193.548i 0.221451i
\(875\) 0 0
\(876\) 559.800 0.639041
\(877\) −1309.03 350.753i −1.49262 0.399946i −0.581999 0.813190i \(-0.697729\pi\)
−0.910620 + 0.413244i \(0.864396\pi\)
\(878\) −802.540 + 215.040i −0.914055 + 0.244920i
\(879\) −2148.98 1240.72i −2.44481 1.41151i
\(880\) 0 0
\(881\) 906.106 1.02850 0.514248 0.857641i \(-0.328071\pi\)
0.514248 + 0.857641i \(0.328071\pi\)
\(882\) 1112.71 348.185i 1.26158 0.394768i
\(883\) 479.615 + 479.615i 0.543166 + 0.543166i 0.924455 0.381290i \(-0.124520\pi\)
−0.381290 + 0.924455i \(0.624520\pi\)
\(884\) 64.2641 37.1029i 0.0726969 0.0419716i
\(885\) 0 0
\(886\) −3.35781 + 5.81590i −0.00378986 + 0.00656422i
\(887\) 372.066 + 99.6947i 0.419465 + 0.112395i 0.462377 0.886683i \(-0.346997\pi\)
−0.0429116 + 0.999079i \(0.513663\pi\)
\(888\) 83.6729 + 83.6729i 0.0942262 + 0.0942262i
\(889\) 550.628 573.946i 0.619379 0.645608i
\(890\) 0 0
\(891\) −24.0304 41.6218i −0.0269701 0.0467136i
\(892\) 96.5252 + 360.237i 0.108212 + 0.403853i
\(893\) 709.626 190.144i 0.794654 0.212927i
\(894\) 373.553 215.671i 0.417844 0.241242i
\(895\) 0 0
\(896\) −18.9072 + 76.9059i −0.0211018 + 0.0858325i
\(897\) −24.8371 + 24.8371i −0.0276891 + 0.0276891i
\(898\) −14.8744 + 55.5119i −0.0165639 + 0.0618172i
\(899\) −299.015 172.636i −0.332608 0.192031i
\(900\) 0 0
\(901\) 204.697 + 354.546i 0.227189 + 0.393503i
\(902\) 50.6245 50.6245i 0.0561248 0.0561248i
\(903\) −1458.05 801.975i −1.61468 0.888123i
\(904\) 33.1710i 0.0366935i
\(905\) 0 0
\(906\) 171.778 297.528i 0.189600 0.328397i
\(907\) −211.737 790.213i −0.233448 0.871238i −0.978842 0.204615i \(-0.934406\pi\)
0.745395 0.666623i \(-0.232261\pi\)
\(908\) 196.237 732.367i 0.216120 0.806572i
\(909\) 848.863i 0.933843i
\(910\) 0 0
\(911\) 719.634 0.789939 0.394969 0.918694i \(-0.370755\pi\)
0.394969 + 0.918694i \(0.370755\pi\)
\(912\) 474.128 + 127.042i 0.519877 + 0.139301i
\(913\) −111.125 + 29.7759i −0.121714 + 0.0326133i
\(914\) 402.607 + 232.446i 0.440490 + 0.254317i
\(915\) 0 0
\(916\) −92.0195 −0.100458
\(917\) −90.9341 150.222i −0.0991648 0.163819i
\(918\) −1209.83 1209.83i −1.31790 1.31790i
\(919\) −395.313 + 228.234i −0.430156 + 0.248351i −0.699413 0.714718i \(-0.746555\pi\)
0.269257 + 0.963068i \(0.413222\pi\)
\(920\) 0 0
\(921\) −1236.49 + 2141.66i −1.34255 + 2.32537i
\(922\) 88.4582 + 23.7023i 0.0959416 + 0.0257075i
\(923\) 10.2794 + 10.2794i 0.0111369 + 0.0111369i
\(924\) −46.7288 + 48.7077i −0.0505723 + 0.0527140i
\(925\) 0 0
\(926\) 604.400 + 1046.85i 0.652700 + 1.13051i
\(927\) 629.515 + 2349.38i 0.679088 + 2.53439i
\(928\) −40.0866 + 10.7412i −0.0431968 + 0.0115745i
\(929\) 260.770 150.556i 0.280700 0.162062i −0.353040 0.935608i \(-0.614852\pi\)
0.633740 + 0.773546i \(0.281519\pi\)
\(930\) 0 0
\(931\) −999.298 + 633.579i −1.07336 + 0.680536i
\(932\) −147.660 + 147.660i −0.158434 + 0.158434i
\(933\) −434.461 + 1621.43i −0.465660 + 1.73787i
\(934\) −437.712 252.713i −0.468643 0.270571i
\(935\) 0 0
\(936\) −29.0178 50.2604i −0.0310020 0.0536970i
\(937\) −201.407 + 201.407i −0.214949 + 0.214949i −0.806366 0.591417i \(-0.798569\pi\)
0.591417 + 0.806366i \(0.298569\pi\)
\(938\) 14.0223 + 676.268i 0.0149491 + 0.720968i
\(939\) 435.141i 0.463409i
\(940\) 0 0
\(941\) 235.272 407.502i 0.250023 0.433052i −0.713509 0.700646i \(-0.752895\pi\)
0.963532 + 0.267594i \(0.0862285\pi\)
\(942\) 194.542 + 726.041i 0.206520 + 0.770745i
\(943\) −78.2737 + 292.121i −0.0830050 + 0.309779i
\(944\) 200.973i 0.212895i
\(945\) 0 0
\(946\) 62.7637 0.0663464
\(947\) 273.951 + 73.4049i 0.289283 + 0.0775131i 0.400542 0.916278i \(-0.368822\pi\)
−0.111259 + 0.993791i \(0.535488\pi\)
\(948\) −696.040 + 186.503i −0.734219 + 0.196733i
\(949\) 58.1708 + 33.5849i 0.0612970 + 0.0353898i
\(950\) 0 0
\(951\) 895.451 0.941589
\(952\) −290.302 + 527.793i −0.304940 + 0.554404i
\(953\) −627.876 627.876i −0.658842 0.658842i 0.296264 0.955106i \(-0.404259\pi\)
−0.955106 + 0.296264i \(0.904259\pi\)
\(954\) 277.288 160.092i 0.290658 0.167811i
\(955\) 0 0
\(956\) −4.00351 + 6.93428i −0.00418777 + 0.00725343i
\(957\) −34.1656 9.15465i −0.0357008 0.00956599i
\(958\) −587.359 587.359i −0.613109 0.613109i
\(959\) 133.474 + 459.785i 0.139180 + 0.479442i
\(960\) 0 0
\(961\) −626.971 1085.94i −0.652415 1.13002i
\(962\) 3.67483 + 13.7147i 0.00381999 + 0.0142564i
\(963\) −112.769 + 30.2164i −0.117102 + 0.0313774i
\(964\) 515.802 297.798i 0.535064 0.308919i
\(965\) 0 0
\(966\) 68.0708 276.881i 0.0704666 0.286626i
\(967\) 929.872 929.872i 0.961604 0.961604i −0.0376852 0.999290i \(-0.511998\pi\)
0.999290 + 0.0376852i \(0.0119984\pi\)
\(968\) −87.9192 + 328.119i −0.0908257 + 0.338966i
\(969\) 3233.24 + 1866.71i 3.33667 + 1.92643i
\(970\) 0 0
\(971\) −628.982 1089.43i −0.647767 1.12196i −0.983655 0.180063i \(-0.942370\pi\)
0.335888 0.941902i \(-0.390964\pi\)
\(972\) 142.069 142.069i 0.146161 0.146161i
\(973\) 9.76686 + 471.037i 0.0100379 + 0.484108i
\(974\) 804.435i 0.825909i
\(975\) 0 0
\(976\) −90.9914 + 157.602i −0.0932289 + 0.161477i
\(977\) −48.9808 182.799i −0.0501339 0.187102i 0.936318 0.351153i \(-0.114210\pi\)
−0.986452 + 0.164051i \(0.947544\pi\)
\(978\) −76.4674 + 285.380i −0.0781875 + 0.291800i
\(979\) 148.714i 0.151904i
\(980\) 0 0
\(981\) −822.367 −0.838295
\(982\) 662.573 + 177.536i 0.674718 + 0.180790i
\(983\) 1355.86 363.301i 1.37930 0.369583i 0.508436 0.861100i \(-0.330224\pi\)
0.870868 + 0.491516i \(0.163557\pi\)
\(984\) −664.222 383.489i −0.675023 0.389725i
\(985\) 0 0
\(986\) −315.654 −0.320135
\(987\) 1082.03 22.4358i 1.09629 0.0227313i
\(988\) 41.6465 + 41.6465i 0.0421523 + 0.0421523i
\(989\) −229.606 + 132.563i −0.232159 + 0.134037i
\(990\) 0 0
\(991\) 258.071 446.992i 0.260414 0.451051i −0.705938 0.708274i \(-0.749474\pi\)
0.966352 + 0.257223i \(0.0828075\pi\)
\(992\) −257.158 68.9052i −0.259232 0.0694609i
\(993\) 1155.18 + 1155.18i 1.16332 + 1.16332i
\(994\) −114.593 28.1725i −0.115285 0.0283426i
\(995\) 0 0
\(996\) 616.234 + 1067.35i 0.618709 + 1.07164i
\(997\) −341.950 1276.18i −0.342979 1.28002i −0.894955 0.446155i \(-0.852793\pi\)
0.551976 0.833860i \(-0.313874\pi\)
\(998\) 789.039 211.422i 0.790620 0.211846i
\(999\) 283.514 163.687i 0.283798 0.163851i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.3.p.e.193.1 16
5.2 odd 4 inner 350.3.p.e.207.4 16
5.3 odd 4 70.3.l.c.67.1 yes 16
5.4 even 2 70.3.l.c.53.4 yes 16
7.2 even 3 inner 350.3.p.e.93.4 16
35.2 odd 12 inner 350.3.p.e.107.1 16
35.3 even 12 490.3.f.p.197.4 8
35.4 even 6 490.3.f.o.393.1 8
35.9 even 6 70.3.l.c.23.1 16
35.18 odd 12 490.3.f.o.197.1 8
35.23 odd 12 70.3.l.c.37.4 yes 16
35.24 odd 6 490.3.f.p.393.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.3.l.c.23.1 16 35.9 even 6
70.3.l.c.37.4 yes 16 35.23 odd 12
70.3.l.c.53.4 yes 16 5.4 even 2
70.3.l.c.67.1 yes 16 5.3 odd 4
350.3.p.e.93.4 16 7.2 even 3 inner
350.3.p.e.107.1 16 35.2 odd 12 inner
350.3.p.e.193.1 16 1.1 even 1 trivial
350.3.p.e.207.4 16 5.2 odd 4 inner
490.3.f.o.197.1 8 35.18 odd 12
490.3.f.o.393.1 8 35.4 even 6
490.3.f.p.197.4 8 35.3 even 12
490.3.f.p.393.4 8 35.24 odd 6