Properties

Label 350.3.p.e.207.2
Level $350$
Weight $3$
Character 350.207
Analytic conductor $9.537$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,3,Mod(93,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 4]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.93");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 350.p (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.53680925261\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} - 8 x^{13} - 722 x^{12} + 1354 x^{11} - 1232 x^{10} + 9306 x^{9} + \cdots + 52200625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 207.2
Root \(-1.13099 - 0.303047i\) of defining polynomial
Character \(\chi\) \(=\) 350.207
Dual form 350.3.p.e.93.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.366025 + 1.36603i) q^{2} +(-0.303047 - 1.13099i) q^{3} +(-1.73205 - 1.00000i) q^{4} +1.65588 q^{6} +(-4.91991 + 4.97940i) q^{7} +(2.00000 - 2.00000i) q^{8} +(6.60693 - 3.81451i) q^{9} +O(q^{10})\) \(q+(-0.366025 + 1.36603i) q^{2} +(-0.303047 - 1.13099i) q^{3} +(-1.73205 - 1.00000i) q^{4} +1.65588 q^{6} +(-4.91991 + 4.97940i) q^{7} +(2.00000 - 2.00000i) q^{8} +(6.60693 - 3.81451i) q^{9} +(-6.06635 + 10.5072i) q^{11} +(-0.606095 + 2.26198i) q^{12} +(8.70195 - 8.70195i) q^{13} +(-5.00118 - 8.54331i) q^{14} +(2.00000 + 3.46410i) q^{16} +(-5.40994 + 1.44959i) q^{17} +(2.79242 + 10.4214i) q^{18} +(-26.9104 + 15.5367i) q^{19} +(7.12261 + 4.05537i) q^{21} +(-12.1327 - 12.1327i) q^{22} +(-30.1513 - 8.07902i) q^{23} +(-2.86807 - 1.65588i) q^{24} +(8.70195 + 15.0722i) q^{26} +(-13.7679 - 13.7679i) q^{27} +(13.5009 - 3.70467i) q^{28} +25.2388i q^{29} +(-13.4239 + 23.2509i) q^{31} +(-5.46410 + 1.46410i) q^{32} +(13.7219 + 3.67678i) q^{33} -7.92070i q^{34} -15.2581 q^{36} +(-14.8935 + 55.5832i) q^{37} +(-11.3737 - 42.4472i) q^{38} +(-12.4789 - 7.20470i) q^{39} -45.8087 q^{41} +(-8.14679 + 8.24530i) q^{42} +(-18.2199 + 18.2199i) q^{43} +(21.0144 - 12.1327i) q^{44} +(22.0723 - 38.2303i) q^{46} +(1.44959 - 5.40994i) q^{47} +(3.31176 - 3.31176i) q^{48} +(-0.588922 - 48.9965i) q^{49} +(3.27894 + 5.67928i) q^{51} +(-23.7742 + 6.37027i) q^{52} +(-8.58361 - 32.0345i) q^{53} +(23.8466 - 13.7679i) q^{54} +(0.118982 + 19.7986i) q^{56} +(25.7270 + 25.7270i) q^{57} +(-34.4769 - 9.23806i) q^{58} +(51.0186 + 29.4556i) q^{59} +(-37.7986 - 65.4691i) q^{61} +(-26.8478 - 26.8478i) q^{62} +(-13.5115 + 51.6657i) q^{63} -8.00000i q^{64} +(-10.0452 + 17.3987i) q^{66} +(54.1813 - 14.5178i) q^{67} +(10.8199 + 2.89918i) q^{68} +36.5491i q^{69} +22.2886 q^{71} +(5.58484 - 20.8429i) q^{72} +(0.862368 + 3.21840i) q^{73} +(-70.4767 - 40.6897i) q^{74} +62.1470 q^{76} +(-22.4738 - 81.9014i) q^{77} +(14.4094 - 14.4094i) q^{78} +(-37.4851 + 21.6420i) q^{79} +(22.9317 - 39.7188i) q^{81} +(16.7671 - 62.5758i) q^{82} +(35.1320 - 35.1320i) q^{83} +(-8.28136 - 14.1467i) q^{84} +(-18.2199 - 31.5578i) q^{86} +(28.5448 - 7.64857i) q^{87} +(8.88175 + 33.1471i) q^{88} +(11.8780 - 6.85780i) q^{89} +(0.517689 + 86.1433i) q^{91} +(44.1446 + 44.1446i) q^{92} +(30.3645 + 8.13615i) q^{93} +(6.85953 + 3.96035i) q^{94} +(3.31176 + 5.73614i) q^{96} +(58.3777 + 58.3777i) q^{97} +(67.1460 + 17.1295i) q^{98} +92.5606i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{2} - 2 q^{3} - 8 q^{6} - 12 q^{7} + 32 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 8 q^{2} - 2 q^{3} - 8 q^{6} - 12 q^{7} + 32 q^{8} + 40 q^{11} - 4 q^{12} - 16 q^{13} + 32 q^{16} - 46 q^{17} + 52 q^{18} - 20 q^{21} + 80 q^{22} - 54 q^{23} - 16 q^{26} + 52 q^{27} + 36 q^{28} - 208 q^{31} - 32 q^{32} + 22 q^{33} + 208 q^{36} + 38 q^{37} - 36 q^{38} - 72 q^{41} - 184 q^{42} - 144 q^{43} + 108 q^{46} - 46 q^{47} - 16 q^{48} - 136 q^{51} + 16 q^{52} - 30 q^{53} - 48 q^{56} + 492 q^{57} - 132 q^{58} - 120 q^{61} - 416 q^{62} + 292 q^{63} - 44 q^{66} + 74 q^{67} + 92 q^{68} + 16 q^{71} + 104 q^{72} + 54 q^{73} - 144 q^{76} - 570 q^{77} - 168 q^{78} + 244 q^{81} - 36 q^{82} - 64 q^{83} - 144 q^{86} + 236 q^{87} + 80 q^{88} + 336 q^{91} + 216 q^{92} - 142 q^{93} - 16 q^{96} - 136 q^{97} + 268 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 + 1.36603i −0.183013 + 0.683013i
\(3\) −0.303047 1.13099i −0.101016 0.376996i 0.896847 0.442341i \(-0.145852\pi\)
−0.997863 + 0.0653449i \(0.979185\pi\)
\(4\) −1.73205 1.00000i −0.433013 0.250000i
\(5\) 0 0
\(6\) 1.65588 0.275980
\(7\) −4.91991 + 4.97940i −0.702845 + 0.711343i
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 6.60693 3.81451i 0.734104 0.423835i
\(10\) 0 0
\(11\) −6.06635 + 10.5072i −0.551486 + 0.955202i 0.446682 + 0.894693i \(0.352606\pi\)
−0.998168 + 0.0605088i \(0.980728\pi\)
\(12\) −0.606095 + 2.26198i −0.0505079 + 0.188498i
\(13\) 8.70195 8.70195i 0.669380 0.669380i −0.288192 0.957573i \(-0.593054\pi\)
0.957573 + 0.288192i \(0.0930542\pi\)
\(14\) −5.00118 8.54331i −0.357227 0.610237i
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −5.40994 + 1.44959i −0.318232 + 0.0852699i −0.414399 0.910095i \(-0.636008\pi\)
0.0961674 + 0.995365i \(0.469342\pi\)
\(18\) 2.79242 + 10.4214i 0.155134 + 0.578969i
\(19\) −26.9104 + 15.5367i −1.41634 + 0.817723i −0.995975 0.0896326i \(-0.971431\pi\)
−0.420363 + 0.907356i \(0.638097\pi\)
\(20\) 0 0
\(21\) 7.12261 + 4.05537i 0.339172 + 0.193113i
\(22\) −12.1327 12.1327i −0.551486 0.551486i
\(23\) −30.1513 8.07902i −1.31093 0.351262i −0.465355 0.885124i \(-0.654073\pi\)
−0.845571 + 0.533862i \(0.820740\pi\)
\(24\) −2.86807 1.65588i −0.119503 0.0689951i
\(25\) 0 0
\(26\) 8.70195 + 15.0722i 0.334690 + 0.579700i
\(27\) −13.7679 13.7679i −0.509920 0.509920i
\(28\) 13.5009 3.70467i 0.482177 0.132310i
\(29\) 25.2388i 0.870305i 0.900357 + 0.435153i \(0.143306\pi\)
−0.900357 + 0.435153i \(0.856694\pi\)
\(30\) 0 0
\(31\) −13.4239 + 23.2509i −0.433029 + 0.750028i −0.997132 0.0756762i \(-0.975888\pi\)
0.564104 + 0.825704i \(0.309222\pi\)
\(32\) −5.46410 + 1.46410i −0.170753 + 0.0457532i
\(33\) 13.7219 + 3.67678i 0.415816 + 0.111418i
\(34\) 7.92070i 0.232962i
\(35\) 0 0
\(36\) −15.2581 −0.423835
\(37\) −14.8935 + 55.5832i −0.402526 + 1.50225i 0.406047 + 0.913852i \(0.366907\pi\)
−0.808573 + 0.588396i \(0.799760\pi\)
\(38\) −11.3737 42.4472i −0.299307 1.11703i
\(39\) −12.4789 7.20470i −0.319972 0.184736i
\(40\) 0 0
\(41\) −45.8087 −1.11728 −0.558642 0.829409i \(-0.688678\pi\)
−0.558642 + 0.829409i \(0.688678\pi\)
\(42\) −8.14679 + 8.24530i −0.193971 + 0.196317i
\(43\) −18.2199 + 18.2199i −0.423719 + 0.423719i −0.886482 0.462763i \(-0.846858\pi\)
0.462763 + 0.886482i \(0.346858\pi\)
\(44\) 21.0144 12.1327i 0.477601 0.275743i
\(45\) 0 0
\(46\) 22.0723 38.2303i 0.479832 0.831094i
\(47\) 1.44959 5.40994i 0.0308423 0.115105i −0.948789 0.315912i \(-0.897690\pi\)
0.979631 + 0.200807i \(0.0643563\pi\)
\(48\) 3.31176 3.31176i 0.0689951 0.0689951i
\(49\) −0.588922 48.9965i −0.0120188 0.999928i
\(50\) 0 0
\(51\) 3.27894 + 5.67928i 0.0642929 + 0.111358i
\(52\) −23.7742 + 6.37027i −0.457195 + 0.122505i
\(53\) −8.58361 32.0345i −0.161955 0.604424i −0.998409 0.0563871i \(-0.982042\pi\)
0.836454 0.548037i \(-0.184625\pi\)
\(54\) 23.8466 13.7679i 0.441604 0.254960i
\(55\) 0 0
\(56\) 0.118982 + 19.7986i 0.00212468 + 0.353547i
\(57\) 25.7270 + 25.7270i 0.451351 + 0.451351i
\(58\) −34.4769 9.23806i −0.594429 0.159277i
\(59\) 51.0186 + 29.4556i 0.864722 + 0.499248i 0.865591 0.500752i \(-0.166943\pi\)
−0.000868446 1.00000i \(0.500276\pi\)
\(60\) 0 0
\(61\) −37.7986 65.4691i −0.619649 1.07326i −0.989550 0.144193i \(-0.953941\pi\)
0.369900 0.929072i \(-0.379392\pi\)
\(62\) −26.8478 26.8478i −0.433029 0.433029i
\(63\) −13.5115 + 51.6657i −0.214469 + 0.820090i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) −10.0452 + 17.3987i −0.152199 + 0.263617i
\(67\) 54.1813 14.5178i 0.808676 0.216684i 0.169286 0.985567i \(-0.445854\pi\)
0.639390 + 0.768883i \(0.279187\pi\)
\(68\) 10.8199 + 2.89918i 0.159116 + 0.0426350i
\(69\) 36.5491i 0.529697i
\(70\) 0 0
\(71\) 22.2886 0.313924 0.156962 0.987605i \(-0.449830\pi\)
0.156962 + 0.987605i \(0.449830\pi\)
\(72\) 5.58484 20.8429i 0.0775672 0.289485i
\(73\) 0.862368 + 3.21840i 0.0118133 + 0.0440877i 0.971581 0.236708i \(-0.0760684\pi\)
−0.959768 + 0.280795i \(0.909402\pi\)
\(74\) −70.4767 40.6897i −0.952387 0.549861i
\(75\) 0 0
\(76\) 62.1470 0.817723
\(77\) −22.4738 81.9014i −0.291867 1.06365i
\(78\) 14.4094 14.4094i 0.184736 0.184736i
\(79\) −37.4851 + 21.6420i −0.474495 + 0.273950i −0.718119 0.695920i \(-0.754997\pi\)
0.243625 + 0.969870i \(0.421663\pi\)
\(80\) 0 0
\(81\) 22.9317 39.7188i 0.283107 0.490356i
\(82\) 16.7671 62.5758i 0.204477 0.763120i
\(83\) 35.1320 35.1320i 0.423277 0.423277i −0.463053 0.886331i \(-0.653246\pi\)
0.886331 + 0.463053i \(0.153246\pi\)
\(84\) −8.28136 14.1467i −0.0985876 0.168413i
\(85\) 0 0
\(86\) −18.2199 31.5578i −0.211860 0.366951i
\(87\) 28.5448 7.64857i 0.328102 0.0879146i
\(88\) 8.88175 + 33.1471i 0.100929 + 0.376672i
\(89\) 11.8780 6.85780i 0.133461 0.0770539i −0.431783 0.901978i \(-0.642115\pi\)
0.565244 + 0.824924i \(0.308782\pi\)
\(90\) 0 0
\(91\) 0.517689 + 86.1433i 0.00568889 + 0.946630i
\(92\) 44.1446 + 44.1446i 0.479832 + 0.479832i
\(93\) 30.3645 + 8.13615i 0.326500 + 0.0874855i
\(94\) 6.85953 + 3.96035i 0.0729737 + 0.0421314i
\(95\) 0 0
\(96\) 3.31176 + 5.73614i 0.0344975 + 0.0597515i
\(97\) 58.3777 + 58.3777i 0.601832 + 0.601832i 0.940798 0.338967i \(-0.110077\pi\)
−0.338967 + 0.940798i \(0.610077\pi\)
\(98\) 67.1460 + 17.1295i 0.685163 + 0.174790i
\(99\) 92.5606i 0.934956i
\(100\) 0 0
\(101\) 4.64552 8.04628i 0.0459953 0.0796661i −0.842111 0.539304i \(-0.818687\pi\)
0.888106 + 0.459638i \(0.152021\pi\)
\(102\) −8.95822 + 2.40035i −0.0878257 + 0.0235328i
\(103\) 43.9758 + 11.7833i 0.426950 + 0.114401i 0.465894 0.884841i \(-0.345733\pi\)
−0.0389443 + 0.999241i \(0.512399\pi\)
\(104\) 34.8078i 0.334690i
\(105\) 0 0
\(106\) 46.9017 0.442469
\(107\) −17.8577 + 66.6460i −0.166895 + 0.622860i 0.830896 + 0.556428i \(0.187828\pi\)
−0.997791 + 0.0664323i \(0.978838\pi\)
\(108\) 10.0788 + 37.6145i 0.0933219 + 0.348282i
\(109\) 145.704 + 84.1220i 1.33673 + 0.771761i 0.986321 0.164836i \(-0.0527094\pi\)
0.350409 + 0.936597i \(0.386043\pi\)
\(110\) 0 0
\(111\) 67.3774 0.607003
\(112\) −27.0890 7.08427i −0.241866 0.0632524i
\(113\) −133.637 + 133.637i −1.18263 + 1.18263i −0.203573 + 0.979060i \(0.565255\pi\)
−0.979060 + 0.203573i \(0.934745\pi\)
\(114\) −44.5605 + 25.7270i −0.390881 + 0.225675i
\(115\) 0 0
\(116\) 25.2388 43.7150i 0.217576 0.376853i
\(117\) 24.2995 90.6869i 0.207688 0.775101i
\(118\) −58.9112 + 58.9112i −0.499248 + 0.499248i
\(119\) 19.3983 34.0701i 0.163011 0.286304i
\(120\) 0 0
\(121\) −13.1011 22.6918i −0.108274 0.187535i
\(122\) 103.268 27.6705i 0.846457 0.226807i
\(123\) 13.8822 + 51.8091i 0.112863 + 0.421212i
\(124\) 46.5017 26.8478i 0.375014 0.216514i
\(125\) 0 0
\(126\) −65.6310 37.3680i −0.520881 0.296572i
\(127\) 91.8825 + 91.8825i 0.723484 + 0.723484i 0.969313 0.245829i \(-0.0790601\pi\)
−0.245829 + 0.969313i \(0.579060\pi\)
\(128\) 10.9282 + 2.92820i 0.0853766 + 0.0228766i
\(129\) 26.1280 + 15.0850i 0.202543 + 0.116938i
\(130\) 0 0
\(131\) −52.4303 90.8119i −0.400231 0.693221i 0.593522 0.804817i \(-0.297737\pi\)
−0.993754 + 0.111597i \(0.964403\pi\)
\(132\) −20.0903 20.0903i −0.152199 0.152199i
\(133\) 55.0332 210.437i 0.413784 1.58224i
\(134\) 79.3269i 0.591992i
\(135\) 0 0
\(136\) −7.92070 + 13.7191i −0.0582404 + 0.100875i
\(137\) −29.5092 + 7.90696i −0.215395 + 0.0577150i −0.364903 0.931046i \(-0.618898\pi\)
0.149508 + 0.988761i \(0.452231\pi\)
\(138\) −49.9270 13.3779i −0.361790 0.0969413i
\(139\) 254.693i 1.83232i −0.400809 0.916162i \(-0.631271\pi\)
0.400809 0.916162i \(-0.368729\pi\)
\(140\) 0 0
\(141\) −6.55787 −0.0465097
\(142\) −8.15819 + 30.4468i −0.0574520 + 0.214414i
\(143\) 38.6442 + 144.222i 0.270239 + 1.00855i
\(144\) 26.4277 + 15.2581i 0.183526 + 0.105959i
\(145\) 0 0
\(146\) −4.71207 −0.0322744
\(147\) −55.2359 + 15.5143i −0.375755 + 0.105540i
\(148\) 81.3794 81.3794i 0.549861 0.549861i
\(149\) −231.769 + 133.812i −1.55550 + 0.898067i −0.557819 + 0.829962i \(0.688362\pi\)
−0.997678 + 0.0681047i \(0.978305\pi\)
\(150\) 0 0
\(151\) −14.9718 + 25.9319i −0.0991509 + 0.171734i −0.911333 0.411669i \(-0.864946\pi\)
0.812183 + 0.583403i \(0.198279\pi\)
\(152\) −22.7474 + 84.8943i −0.149654 + 0.558515i
\(153\) −30.2136 + 30.2136i −0.197475 + 0.197475i
\(154\) 120.105 0.721788i 0.779905 0.00468693i
\(155\) 0 0
\(156\) 14.4094 + 24.9578i 0.0923679 + 0.159986i
\(157\) 223.097 59.7786i 1.42100 0.380755i 0.535160 0.844751i \(-0.320251\pi\)
0.885838 + 0.463995i \(0.153585\pi\)
\(158\) −15.8431 59.1271i −0.100272 0.374222i
\(159\) −33.6294 + 19.4159i −0.211506 + 0.122113i
\(160\) 0 0
\(161\) 188.570 110.387i 1.17125 0.685636i
\(162\) 45.8633 + 45.8633i 0.283107 + 0.283107i
\(163\) 173.332 + 46.4442i 1.06339 + 0.284934i 0.747773 0.663954i \(-0.231123\pi\)
0.315614 + 0.948888i \(0.397790\pi\)
\(164\) 79.3429 + 45.8087i 0.483798 + 0.279321i
\(165\) 0 0
\(166\) 35.1320 + 60.8505i 0.211639 + 0.366569i
\(167\) −76.3559 76.3559i −0.457221 0.457221i 0.440521 0.897742i \(-0.354794\pi\)
−0.897742 + 0.440521i \(0.854794\pi\)
\(168\) 22.3560 6.13449i 0.133071 0.0365148i
\(169\) 17.5523i 0.103860i
\(170\) 0 0
\(171\) −118.530 + 205.300i −0.693159 + 1.20059i
\(172\) 49.7777 13.3379i 0.289405 0.0775460i
\(173\) −20.6797 5.54111i −0.119536 0.0320296i 0.198555 0.980090i \(-0.436375\pi\)
−0.318091 + 0.948060i \(0.603042\pi\)
\(174\) 41.7925i 0.240187i
\(175\) 0 0
\(176\) −48.5308 −0.275743
\(177\) 17.8529 66.6279i 0.100864 0.376429i
\(178\) 5.02025 + 18.7358i 0.0282037 + 0.105258i
\(179\) −142.223 82.1127i −0.794544 0.458730i 0.0470161 0.998894i \(-0.485029\pi\)
−0.841560 + 0.540164i \(0.818362\pi\)
\(180\) 0 0
\(181\) 266.876 1.47446 0.737228 0.675644i \(-0.236135\pi\)
0.737228 + 0.675644i \(0.236135\pi\)
\(182\) −117.863 30.8235i −0.647601 0.169360i
\(183\) −62.5900 + 62.5900i −0.342022 + 0.342022i
\(184\) −76.4606 + 44.1446i −0.415547 + 0.239916i
\(185\) 0 0
\(186\) −22.2284 + 38.5007i −0.119507 + 0.206993i
\(187\) 17.5874 65.6371i 0.0940503 0.351001i
\(188\) −7.92070 + 7.92070i −0.0421314 + 0.0421314i
\(189\) 136.292 0.819066i 0.721123 0.00433368i
\(190\) 0 0
\(191\) −96.3019 166.800i −0.504198 0.873297i −0.999988 0.00485444i \(-0.998455\pi\)
0.495790 0.868442i \(-0.334879\pi\)
\(192\) −9.04791 + 2.42438i −0.0471245 + 0.0126270i
\(193\) −39.9124 148.955i −0.206800 0.771787i −0.988893 0.148626i \(-0.952515\pi\)
0.782094 0.623161i \(-0.214152\pi\)
\(194\) −101.113 + 58.3777i −0.521201 + 0.300916i
\(195\) 0 0
\(196\) −47.9764 + 85.4533i −0.244778 + 0.435986i
\(197\) −137.941 137.941i −0.700210 0.700210i 0.264246 0.964455i \(-0.414877\pi\)
−0.964455 + 0.264246i \(0.914877\pi\)
\(198\) −126.440 33.8795i −0.638587 0.171109i
\(199\) 53.0439 + 30.6249i 0.266552 + 0.153894i 0.627320 0.778762i \(-0.284152\pi\)
−0.360767 + 0.932656i \(0.617485\pi\)
\(200\) 0 0
\(201\) −32.8390 56.8788i −0.163378 0.282979i
\(202\) 9.29104 + 9.29104i 0.0459953 + 0.0459953i
\(203\) −125.674 124.173i −0.619086 0.611689i
\(204\) 13.1157i 0.0642929i
\(205\) 0 0
\(206\) −32.1925 + 55.7591i −0.156274 + 0.270675i
\(207\) −230.025 + 61.6351i −1.11123 + 0.297754i
\(208\) 47.5483 + 12.7405i 0.228598 + 0.0612526i
\(209\) 377.005i 1.80385i
\(210\) 0 0
\(211\) −147.425 −0.698695 −0.349348 0.936993i \(-0.613597\pi\)
−0.349348 + 0.936993i \(0.613597\pi\)
\(212\) −17.1672 + 64.0690i −0.0809775 + 0.302212i
\(213\) −6.75450 25.2081i −0.0317113 0.118348i
\(214\) −84.5037 48.7883i −0.394877 0.227983i
\(215\) 0 0
\(216\) −55.0714 −0.254960
\(217\) −49.7311 181.235i −0.229175 0.835185i
\(218\) −168.244 + 168.244i −0.771761 + 0.771761i
\(219\) 3.37864 1.95066i 0.0154276 0.00890711i
\(220\) 0 0
\(221\) −34.4628 + 59.6912i −0.155940 + 0.270096i
\(222\) −24.6618 + 92.0392i −0.111089 + 0.414591i
\(223\) 168.214 168.214i 0.754322 0.754322i −0.220961 0.975283i \(-0.570919\pi\)
0.975283 + 0.220961i \(0.0709192\pi\)
\(224\) 19.5925 34.4112i 0.0874667 0.153622i
\(225\) 0 0
\(226\) −133.637 231.467i −0.591316 1.02419i
\(227\) −341.611 + 91.5345i −1.50490 + 0.403236i −0.914736 0.404051i \(-0.867602\pi\)
−0.590159 + 0.807287i \(0.700935\pi\)
\(228\) −18.8335 70.2875i −0.0826030 0.308278i
\(229\) 168.586 97.3332i 0.736184 0.425036i −0.0844964 0.996424i \(-0.526928\pi\)
0.820680 + 0.571388i \(0.193595\pi\)
\(230\) 0 0
\(231\) −85.8189 + 50.2376i −0.371510 + 0.217479i
\(232\) 50.4777 + 50.4777i 0.217576 + 0.217576i
\(233\) −299.146 80.1559i −1.28389 0.344017i −0.448552 0.893757i \(-0.648060\pi\)
−0.835336 + 0.549740i \(0.814727\pi\)
\(234\) 114.986 + 66.3874i 0.491395 + 0.283707i
\(235\) 0 0
\(236\) −58.9112 102.037i −0.249624 0.432361i
\(237\) 35.8366 + 35.8366i 0.151209 + 0.151209i
\(238\) 39.4404 + 38.9692i 0.165716 + 0.163736i
\(239\) 17.4917i 0.0731870i −0.999330 0.0365935i \(-0.988349\pi\)
0.999330 0.0365935i \(-0.0116507\pi\)
\(240\) 0 0
\(241\) −48.6715 + 84.3015i −0.201956 + 0.349799i −0.949159 0.314798i \(-0.898063\pi\)
0.747202 + 0.664597i \(0.231397\pi\)
\(242\) 35.7929 9.59067i 0.147904 0.0396309i
\(243\) −221.136 59.2532i −0.910025 0.243840i
\(244\) 151.194i 0.619649i
\(245\) 0 0
\(246\) −75.8537 −0.308348
\(247\) −98.9732 + 369.373i −0.400701 + 1.49544i
\(248\) 19.6539 + 73.3495i 0.0792498 + 0.295764i
\(249\) −50.3806 29.0872i −0.202332 0.116816i
\(250\) 0 0
\(251\) 22.0051 0.0876697 0.0438348 0.999039i \(-0.486042\pi\)
0.0438348 + 0.999039i \(0.486042\pi\)
\(252\) 75.0683 75.9760i 0.297890 0.301492i
\(253\) 267.796 267.796i 1.05848 1.05848i
\(254\) −159.145 + 91.8825i −0.626556 + 0.361742i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −68.3382 + 255.042i −0.265908 + 0.992380i 0.695785 + 0.718250i \(0.255057\pi\)
−0.961693 + 0.274130i \(0.911610\pi\)
\(258\) −30.1700 + 30.1700i −0.116938 + 0.116938i
\(259\) −203.497 347.625i −0.785701 1.34218i
\(260\) 0 0
\(261\) 96.2739 + 166.751i 0.368866 + 0.638894i
\(262\) 143.242 38.3816i 0.546726 0.146495i
\(263\) 67.1391 + 250.567i 0.255282 + 0.952724i 0.967934 + 0.251207i \(0.0808273\pi\)
−0.712652 + 0.701518i \(0.752506\pi\)
\(264\) 34.7974 20.0903i 0.131808 0.0760996i
\(265\) 0 0
\(266\) 267.319 + 152.202i 1.00496 + 0.572189i
\(267\) −11.3557 11.3557i −0.0425307 0.0425307i
\(268\) −108.363 29.0357i −0.404338 0.108342i
\(269\) 332.165 + 191.775i 1.23481 + 0.712920i 0.968029 0.250837i \(-0.0807057\pi\)
0.266784 + 0.963756i \(0.414039\pi\)
\(270\) 0 0
\(271\) 208.466 + 361.074i 0.769247 + 1.33237i 0.937972 + 0.346712i \(0.112702\pi\)
−0.168725 + 0.985663i \(0.553965\pi\)
\(272\) −15.8414 15.8414i −0.0582404 0.0582404i
\(273\) 97.2702 26.6910i 0.356301 0.0977693i
\(274\) 43.2044i 0.157680i
\(275\) 0 0
\(276\) 36.5491 63.3049i 0.132424 0.229366i
\(277\) −370.628 + 99.3094i −1.33801 + 0.358518i −0.855694 0.517482i \(-0.826870\pi\)
−0.482312 + 0.876000i \(0.660203\pi\)
\(278\) 347.917 + 93.2241i 1.25150 + 0.335338i
\(279\) 204.822i 0.734131i
\(280\) 0 0
\(281\) 41.8655 0.148988 0.0744938 0.997221i \(-0.476266\pi\)
0.0744938 + 0.997221i \(0.476266\pi\)
\(282\) 2.40035 8.95822i 0.00851187 0.0317667i
\(283\) 23.4794 + 87.6264i 0.0829662 + 0.309634i 0.994921 0.100656i \(-0.0320941\pi\)
−0.911955 + 0.410290i \(0.865427\pi\)
\(284\) −38.6050 22.2886i −0.135933 0.0784809i
\(285\) 0 0
\(286\) −211.156 −0.738308
\(287\) 225.375 228.100i 0.785277 0.794773i
\(288\) −30.5161 + 30.5161i −0.105959 + 0.105959i
\(289\) −223.115 + 128.816i −0.772025 + 0.445729i
\(290\) 0 0
\(291\) 48.3333 83.7157i 0.166094 0.287683i
\(292\) 1.72474 6.43680i 0.00590663 0.0220438i
\(293\) 238.524 238.524i 0.814077 0.814077i −0.171166 0.985242i \(-0.554753\pi\)
0.985242 + 0.171166i \(0.0547533\pi\)
\(294\) −0.975185 81.1323i −0.00331696 0.275960i
\(295\) 0 0
\(296\) 81.3794 + 140.953i 0.274931 + 0.476194i
\(297\) 228.182 61.1413i 0.768291 0.205863i
\(298\) −97.9572 365.581i −0.328715 1.22678i
\(299\) −332.678 + 192.072i −1.11264 + 0.642381i
\(300\) 0 0
\(301\) −1.08392 180.365i −0.00360108 0.599218i
\(302\) −29.9436 29.9436i −0.0991509 0.0991509i
\(303\) −10.5081 2.81563i −0.0346801 0.00929249i
\(304\) −107.642 62.1470i −0.354085 0.204431i
\(305\) 0 0
\(306\) −30.2136 52.3315i −0.0987373 0.171018i
\(307\) −318.085 318.085i −1.03611 1.03611i −0.999323 0.0367853i \(-0.988288\pi\)
−0.0367853 0.999323i \(-0.511712\pi\)
\(308\) −42.9756 + 164.331i −0.139531 + 0.533543i
\(309\) 53.3070i 0.172515i
\(310\) 0 0
\(311\) −139.353 + 241.366i −0.448079 + 0.776096i −0.998261 0.0589489i \(-0.981225\pi\)
0.550182 + 0.835045i \(0.314558\pi\)
\(312\) −39.3672 + 10.5484i −0.126177 + 0.0338090i
\(313\) −290.116 77.7362i −0.926887 0.248359i −0.236360 0.971666i \(-0.575955\pi\)
−0.690527 + 0.723307i \(0.742621\pi\)
\(314\) 326.636i 1.04024i
\(315\) 0 0
\(316\) 86.5681 0.273950
\(317\) 14.3109 53.4088i 0.0451446 0.168482i −0.939673 0.342074i \(-0.888871\pi\)
0.984818 + 0.173592i \(0.0555373\pi\)
\(318\) −14.2134 53.0453i −0.0446964 0.166809i
\(319\) −265.190 153.108i −0.831317 0.479961i
\(320\) 0 0
\(321\) 80.7876 0.251675
\(322\) 81.7705 + 297.997i 0.253946 + 0.925456i
\(323\) 123.062 123.062i 0.380997 0.380997i
\(324\) −79.4376 + 45.8633i −0.245178 + 0.141553i
\(325\) 0 0
\(326\) −126.888 + 219.776i −0.389227 + 0.674161i
\(327\) 50.9859 190.282i 0.155920 0.581902i
\(328\) −91.6173 + 91.6173i −0.279321 + 0.279321i
\(329\) 19.8064 + 33.8345i 0.0602019 + 0.102840i
\(330\) 0 0
\(331\) 102.565 + 177.647i 0.309863 + 0.536698i 0.978332 0.207041i \(-0.0663835\pi\)
−0.668469 + 0.743740i \(0.733050\pi\)
\(332\) −95.9825 + 25.7184i −0.289104 + 0.0774651i
\(333\) 113.623 + 424.046i 0.341209 + 1.27341i
\(334\) 132.252 76.3559i 0.395965 0.228611i
\(335\) 0 0
\(336\) 0.197021 + 32.7842i 0.000586371 + 0.0975720i
\(337\) 399.822 + 399.822i 1.18641 + 1.18641i 0.978052 + 0.208363i \(0.0668134\pi\)
0.208363 + 0.978052i \(0.433187\pi\)
\(338\) −23.9769 6.42458i −0.0709374 0.0190076i
\(339\) 191.641 + 110.644i 0.565312 + 0.326383i
\(340\) 0 0
\(341\) −162.868 282.096i −0.477619 0.827260i
\(342\) −237.060 237.060i −0.693159 0.693159i
\(343\) 246.871 + 238.126i 0.719739 + 0.694244i
\(344\) 72.8797i 0.211860i
\(345\) 0 0
\(346\) 15.1386 26.2208i 0.0437532 0.0757828i
\(347\) 459.142 123.027i 1.32318 0.354544i 0.473009 0.881058i \(-0.343168\pi\)
0.850167 + 0.526514i \(0.176501\pi\)
\(348\) −57.0897 15.2971i −0.164051 0.0439573i
\(349\) 282.718i 0.810080i −0.914299 0.405040i \(-0.867258\pi\)
0.914299 0.405040i \(-0.132742\pi\)
\(350\) 0 0
\(351\) −239.614 −0.682662
\(352\) 17.7635 66.2943i 0.0504645 0.188336i
\(353\) 72.0991 + 269.078i 0.204247 + 0.762259i 0.989678 + 0.143310i \(0.0457747\pi\)
−0.785431 + 0.618949i \(0.787559\pi\)
\(354\) 84.4808 + 48.7750i 0.238646 + 0.137783i
\(355\) 0 0
\(356\) −27.4312 −0.0770539
\(357\) −44.4115 11.6144i −0.124402 0.0325334i
\(358\) 164.225 164.225i 0.458730 0.458730i
\(359\) 582.216 336.143i 1.62177 0.936330i 0.635326 0.772244i \(-0.280866\pi\)
0.986446 0.164086i \(-0.0524675\pi\)
\(360\) 0 0
\(361\) 302.281 523.565i 0.837343 1.45032i
\(362\) −97.6835 + 364.560i −0.269844 + 1.00707i
\(363\) −21.6939 + 21.6939i −0.0597627 + 0.0597627i
\(364\) 85.2467 149.722i 0.234194 0.411325i
\(365\) 0 0
\(366\) −62.5900 108.409i −0.171011 0.296200i
\(367\) 111.422 29.8554i 0.303602 0.0813499i −0.103802 0.994598i \(-0.533101\pi\)
0.407404 + 0.913248i \(0.366434\pi\)
\(368\) −32.3161 120.605i −0.0878154 0.327732i
\(369\) −302.655 + 174.738i −0.820203 + 0.473544i
\(370\) 0 0
\(371\) 201.743 + 114.866i 0.543782 + 0.309611i
\(372\) −44.4568 44.4568i −0.119507 0.119507i
\(373\) −27.9301 7.48386i −0.0748797 0.0200640i 0.221185 0.975232i \(-0.429008\pi\)
−0.296064 + 0.955168i \(0.595674\pi\)
\(374\) 83.2245 + 48.0497i 0.222525 + 0.128475i
\(375\) 0 0
\(376\) −7.92070 13.7191i −0.0210657 0.0364868i
\(377\) 219.627 + 219.627i 0.582565 + 0.582565i
\(378\) −48.7676 + 186.479i −0.129015 + 0.493330i
\(379\) 203.578i 0.537145i 0.963259 + 0.268573i \(0.0865519\pi\)
−0.963259 + 0.268573i \(0.913448\pi\)
\(380\) 0 0
\(381\) 76.0733 131.763i 0.199667 0.345834i
\(382\) 263.102 70.4978i 0.688748 0.184549i
\(383\) −248.929 66.7003i −0.649945 0.174152i −0.0812409 0.996694i \(-0.525888\pi\)
−0.568704 + 0.822542i \(0.692555\pi\)
\(384\) 13.2471i 0.0344975i
\(385\) 0 0
\(386\) 218.085 0.564988
\(387\) −50.8776 + 189.878i −0.131467 + 0.490641i
\(388\) −42.7354 159.491i −0.110143 0.411059i
\(389\) 272.609 + 157.391i 0.700793 + 0.404603i 0.807643 0.589672i \(-0.200743\pi\)
−0.106850 + 0.994275i \(0.534076\pi\)
\(390\) 0 0
\(391\) 174.828 0.447130
\(392\) −99.1708 96.8151i −0.252987 0.246977i
\(393\) −86.8183 + 86.8183i −0.220912 + 0.220912i
\(394\) 238.921 137.941i 0.606399 0.350105i
\(395\) 0 0
\(396\) 92.5606 160.320i 0.233739 0.404848i
\(397\) 5.61021 20.9376i 0.0141315 0.0527395i −0.958500 0.285092i \(-0.907976\pi\)
0.972632 + 0.232353i \(0.0746424\pi\)
\(398\) −61.2499 + 61.2499i −0.153894 + 0.153894i
\(399\) −254.680 + 1.53053i −0.638295 + 0.00383591i
\(400\) 0 0
\(401\) −291.159 504.302i −0.726082 1.25761i −0.958527 0.285001i \(-0.908006\pi\)
0.232445 0.972609i \(-0.425327\pi\)
\(402\) 89.7178 24.0398i 0.223179 0.0598005i
\(403\) 85.5138 + 319.142i 0.212193 + 0.791915i
\(404\) −16.0926 + 9.29104i −0.0398331 + 0.0229976i
\(405\) 0 0
\(406\) 215.623 126.224i 0.531092 0.310897i
\(407\) −493.676 493.676i −1.21296 1.21296i
\(408\) 17.9164 + 4.80069i 0.0439128 + 0.0117664i
\(409\) 320.292 + 184.921i 0.783109 + 0.452128i 0.837531 0.546390i \(-0.183998\pi\)
−0.0544217 + 0.998518i \(0.517332\pi\)
\(410\) 0 0
\(411\) 17.8853 + 30.9783i 0.0435167 + 0.0753731i
\(412\) −64.3851 64.3851i −0.156274 0.156274i
\(413\) −397.679 + 109.123i −0.962902 + 0.264221i
\(414\) 336.780i 0.813479i
\(415\) 0 0
\(416\) −34.8078 + 60.2889i −0.0836726 + 0.144925i
\(417\) −288.055 + 77.1840i −0.690779 + 0.185094i
\(418\) 514.998 + 137.993i 1.23205 + 0.330128i
\(419\) 29.9924i 0.0715809i −0.999359 0.0357904i \(-0.988605\pi\)
0.999359 0.0357904i \(-0.0113949\pi\)
\(420\) 0 0
\(421\) −59.1882 −0.140590 −0.0702948 0.997526i \(-0.522394\pi\)
−0.0702948 + 0.997526i \(0.522394\pi\)
\(422\) 53.9612 201.386i 0.127870 0.477218i
\(423\) −11.0590 41.2726i −0.0261441 0.0975711i
\(424\) −81.2362 46.9017i −0.191595 0.110617i
\(425\) 0 0
\(426\) 36.9073 0.0866368
\(427\) 511.963 + 133.888i 1.19898 + 0.313555i
\(428\) 97.5765 97.5765i 0.227983 0.227983i
\(429\) 151.403 87.4124i 0.352920 0.203758i
\(430\) 0 0
\(431\) −337.935 + 585.320i −0.784072 + 1.35805i 0.145481 + 0.989361i \(0.453527\pi\)
−0.929552 + 0.368691i \(0.879806\pi\)
\(432\) 20.1575 75.2289i 0.0466610 0.174141i
\(433\) 202.377 202.377i 0.467382 0.467382i −0.433683 0.901065i \(-0.642786\pi\)
0.901065 + 0.433683i \(0.142786\pi\)
\(434\) 265.775 1.59721i 0.612384 0.00368020i
\(435\) 0 0
\(436\) −168.244 291.407i −0.385881 0.668365i
\(437\) 936.906 251.043i 2.14395 0.574470i
\(438\) 1.42798 + 5.32929i 0.00326023 + 0.0121673i
\(439\) −137.892 + 79.6122i −0.314106 + 0.181349i −0.648762 0.760991i \(-0.724713\pi\)
0.334657 + 0.942340i \(0.391380\pi\)
\(440\) 0 0
\(441\) −190.789 321.470i −0.432627 0.728957i
\(442\) −68.9255 68.9255i −0.155940 0.155940i
\(443\) −144.806 38.8006i −0.326875 0.0875859i 0.0916496 0.995791i \(-0.470786\pi\)
−0.418525 + 0.908205i \(0.637453\pi\)
\(444\) −116.701 67.3774i −0.262840 0.151751i
\(445\) 0 0
\(446\) 168.214 + 291.355i 0.377161 + 0.653262i
\(447\) 221.577 + 221.577i 0.495698 + 0.495698i
\(448\) 39.8352 + 39.3593i 0.0889179 + 0.0878556i
\(449\) 634.911i 1.41406i 0.707185 + 0.707028i \(0.249965\pi\)
−0.707185 + 0.707028i \(0.750035\pi\)
\(450\) 0 0
\(451\) 277.891 481.322i 0.616167 1.06723i
\(452\) 365.104 97.8294i 0.807753 0.216437i
\(453\) 33.8658 + 9.07433i 0.0747590 + 0.0200316i
\(454\) 500.154i 1.10166i
\(455\) 0 0
\(456\) 102.908 0.225675
\(457\) 51.8803 193.620i 0.113524 0.423676i −0.885649 0.464356i \(-0.846286\pi\)
0.999172 + 0.0406802i \(0.0129525\pi\)
\(458\) 71.2529 + 265.919i 0.155574 + 0.580610i
\(459\) 94.4410 + 54.5255i 0.205754 + 0.118792i
\(460\) 0 0
\(461\) −406.211 −0.881151 −0.440576 0.897715i \(-0.645226\pi\)
−0.440576 + 0.897715i \(0.645226\pi\)
\(462\) −37.2139 135.619i −0.0805497 0.293548i
\(463\) −288.227 + 288.227i −0.622520 + 0.622520i −0.946175 0.323655i \(-0.895088\pi\)
0.323655 + 0.946175i \(0.395088\pi\)
\(464\) −87.4299 + 50.4777i −0.188427 + 0.108788i
\(465\) 0 0
\(466\) 218.990 379.302i 0.469936 0.813952i
\(467\) −21.9936 + 82.0814i −0.0470956 + 0.175763i −0.985468 0.169864i \(-0.945667\pi\)
0.938372 + 0.345627i \(0.112334\pi\)
\(468\) −132.775 + 132.775i −0.283707 + 0.283707i
\(469\) −194.277 + 341.217i −0.414237 + 0.727542i
\(470\) 0 0
\(471\) −135.218 234.204i −0.287086 0.497248i
\(472\) 160.948 43.1260i 0.340993 0.0913687i
\(473\) −80.9123 301.969i −0.171062 0.638412i
\(474\) −62.0708 + 35.8366i −0.130951 + 0.0756047i
\(475\) 0 0
\(476\) −67.6690 + 39.6128i −0.142162 + 0.0832202i
\(477\) −178.907 178.907i −0.375068 0.375068i
\(478\) 23.8941 + 6.40240i 0.0499876 + 0.0133942i
\(479\) 21.9122 + 12.6510i 0.0457458 + 0.0264114i 0.522698 0.852518i \(-0.324925\pi\)
−0.476953 + 0.878929i \(0.658259\pi\)
\(480\) 0 0
\(481\) 354.080 + 613.284i 0.736132 + 1.27502i
\(482\) −97.3430 97.3430i −0.201956 0.201956i
\(483\) −181.993 179.818i −0.376796 0.372295i
\(484\) 52.4044i 0.108274i
\(485\) 0 0
\(486\) 161.883 280.389i 0.333092 0.576933i
\(487\) −213.967 + 57.3322i −0.439357 + 0.117725i −0.471715 0.881751i \(-0.656365\pi\)
0.0323584 + 0.999476i \(0.489698\pi\)
\(488\) −206.535 55.3410i −0.423228 0.113404i
\(489\) 210.111i 0.429676i
\(490\) 0 0
\(491\) −388.049 −0.790325 −0.395162 0.918611i \(-0.629312\pi\)
−0.395162 + 0.918611i \(0.629312\pi\)
\(492\) 27.7644 103.618i 0.0564317 0.210606i
\(493\) −36.5859 136.541i −0.0742108 0.276959i
\(494\) −468.346 270.400i −0.948069 0.547368i
\(495\) 0 0
\(496\) −107.391 −0.216514
\(497\) −109.658 + 110.984i −0.220640 + 0.223308i
\(498\) 58.1745 58.1745i 0.116816 0.116816i
\(499\) −73.8171 + 42.6183i −0.147930 + 0.0854075i −0.572138 0.820157i \(-0.693886\pi\)
0.424208 + 0.905565i \(0.360553\pi\)
\(500\) 0 0
\(501\) −63.2182 + 109.497i −0.126184 + 0.218557i
\(502\) −8.05442 + 30.0595i −0.0160447 + 0.0598795i
\(503\) 25.3086 25.3086i 0.0503154 0.0503154i −0.681501 0.731817i \(-0.738673\pi\)
0.731817 + 0.681501i \(0.238673\pi\)
\(504\) 76.3083 + 130.354i 0.151405 + 0.258640i
\(505\) 0 0
\(506\) 267.796 + 463.837i 0.529242 + 0.916673i
\(507\) 19.8514 5.31917i 0.0391547 0.0104915i
\(508\) −67.2627 251.028i −0.132407 0.494149i
\(509\) 487.485 281.450i 0.957731 0.552946i 0.0622572 0.998060i \(-0.480170\pi\)
0.895474 + 0.445114i \(0.146837\pi\)
\(510\) 0 0
\(511\) −20.2685 11.5402i −0.0396644 0.0225835i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 584.406 + 156.591i 1.13919 + 0.305246i
\(514\) −323.380 186.704i −0.629144 0.363236i
\(515\) 0 0
\(516\) −30.1700 52.2560i −0.0584690 0.101271i
\(517\) 48.0497 + 48.0497i 0.0929395 + 0.0929395i
\(518\) 549.349 150.742i 1.06052 0.291007i
\(519\) 25.0677i 0.0483001i
\(520\) 0 0
\(521\) 91.2668 158.079i 0.175176 0.303414i −0.765046 0.643976i \(-0.777284\pi\)
0.940222 + 0.340561i \(0.110617\pi\)
\(522\) −263.025 + 70.4774i −0.503880 + 0.135014i
\(523\) 333.855 + 89.4563i 0.638347 + 0.171044i 0.563454 0.826147i \(-0.309472\pi\)
0.0748922 + 0.997192i \(0.476139\pi\)
\(524\) 209.721i 0.400231i
\(525\) 0 0
\(526\) −366.855 −0.697443
\(527\) 38.9182 145.245i 0.0738487 0.275607i
\(528\) 14.7071 + 54.8877i 0.0278544 + 0.103954i
\(529\) 385.703 + 222.686i 0.729118 + 0.420956i
\(530\) 0 0
\(531\) 449.435 0.846394
\(532\) −305.758 + 309.455i −0.574732 + 0.581682i
\(533\) −398.625 + 398.625i −0.747888 + 0.747888i
\(534\) 19.6686 11.3557i 0.0368327 0.0212654i
\(535\) 0 0
\(536\) 79.3269 137.398i 0.147998 0.256340i
\(537\) −49.7681 + 185.737i −0.0926779 + 0.345879i
\(538\) −383.551 + 383.551i −0.712920 + 0.712920i
\(539\) 518.389 + 291.042i 0.961761 + 0.539966i
\(540\) 0 0
\(541\) 336.860 + 583.458i 0.622661 + 1.07848i 0.988988 + 0.147995i \(0.0472818\pi\)
−0.366327 + 0.930486i \(0.619385\pi\)
\(542\) −569.540 + 152.608i −1.05081 + 0.281564i
\(543\) −80.8762 301.834i −0.148943 0.555864i
\(544\) 27.4381 15.8414i 0.0504377 0.0291202i
\(545\) 0 0
\(546\) 0.857232 + 142.643i 0.00157002 + 0.261251i
\(547\) 269.330 + 269.330i 0.492377 + 0.492377i 0.909054 0.416678i \(-0.136806\pi\)
−0.416678 + 0.909054i \(0.636806\pi\)
\(548\) 59.0183 + 15.8139i 0.107698 + 0.0288575i
\(549\) −499.466 288.367i −0.909774 0.525258i
\(550\) 0 0
\(551\) −392.129 679.188i −0.711669 1.23265i
\(552\) 73.0982 + 73.0982i 0.132424 + 0.132424i
\(553\) 76.6589 293.130i 0.138624 0.530073i
\(554\) 542.637i 0.979489i
\(555\) 0 0
\(556\) −254.693 + 441.141i −0.458081 + 0.793419i
\(557\) 31.9552 8.56238i 0.0573703 0.0153723i −0.230020 0.973186i \(-0.573879\pi\)
0.287390 + 0.957814i \(0.407212\pi\)
\(558\) −279.793 74.9702i −0.501421 0.134355i
\(559\) 317.097i 0.567258i
\(560\) 0 0
\(561\) −79.5646 −0.141826
\(562\) −15.3238 + 57.1893i −0.0272666 + 0.101760i
\(563\) 33.5416 + 125.179i 0.0595766 + 0.222343i 0.989295 0.145928i \(-0.0466167\pi\)
−0.929719 + 0.368271i \(0.879950\pi\)
\(564\) 11.3586 + 6.55787i 0.0201393 + 0.0116274i
\(565\) 0 0
\(566\) −128.294 −0.226668
\(567\) 84.9542 + 309.599i 0.149831 + 0.546030i
\(568\) 44.5772 44.5772i 0.0784809 0.0784809i
\(569\) −781.667 + 451.296i −1.37376 + 0.793139i −0.991399 0.130876i \(-0.958221\pi\)
−0.382358 + 0.924014i \(0.624888\pi\)
\(570\) 0 0
\(571\) −111.294 + 192.767i −0.194911 + 0.337595i −0.946871 0.321613i \(-0.895775\pi\)
0.751961 + 0.659208i \(0.229108\pi\)
\(572\) 77.2885 288.445i 0.135120 0.504274i
\(573\) −159.464 + 159.464i −0.278298 + 0.278298i
\(574\) 229.097 + 391.358i 0.399124 + 0.681808i
\(575\) 0 0
\(576\) −30.5161 52.8555i −0.0529794 0.0917629i
\(577\) −971.962 + 260.437i −1.68451 + 0.451363i −0.968964 0.247202i \(-0.920489\pi\)
−0.715546 + 0.698565i \(0.753822\pi\)
\(578\) −94.2996 351.931i −0.163148 0.608877i
\(579\) −156.371 + 90.2808i −0.270071 + 0.155925i
\(580\) 0 0
\(581\) 2.09005 + 347.783i 0.00359732 + 0.598594i
\(582\) 96.6665 + 96.6665i 0.166094 + 0.166094i
\(583\) 388.665 + 104.142i 0.666663 + 0.178632i
\(584\) 8.16154 + 4.71207i 0.0139752 + 0.00806861i
\(585\) 0 0
\(586\) 238.524 + 413.137i 0.407038 + 0.705011i
\(587\) 544.390 + 544.390i 0.927410 + 0.927410i 0.997538 0.0701276i \(-0.0223407\pi\)
−0.0701276 + 0.997538i \(0.522341\pi\)
\(588\) 111.186 + 28.3644i 0.189091 + 0.0482387i
\(589\) 834.254i 1.41639i
\(590\) 0 0
\(591\) −114.207 + 197.813i −0.193244 + 0.334708i
\(592\) −222.333 + 59.5739i −0.375562 + 0.100632i
\(593\) −577.944 154.860i −0.974610 0.261146i −0.263837 0.964567i \(-0.584988\pi\)
−0.710773 + 0.703421i \(0.751655\pi\)
\(594\) 334.082i 0.562428i
\(595\) 0 0
\(596\) 535.248 0.898067
\(597\) 18.5616 69.2729i 0.0310915 0.116035i
\(598\) −140.606 524.750i −0.235128 0.877508i
\(599\) 350.560 + 202.396i 0.585243 + 0.337890i 0.763214 0.646146i \(-0.223620\pi\)
−0.177972 + 0.984036i \(0.556953\pi\)
\(600\) 0 0
\(601\) −808.864 −1.34586 −0.672932 0.739705i \(-0.734965\pi\)
−0.672932 + 0.739705i \(0.734965\pi\)
\(602\) 246.780 + 64.5374i 0.409933 + 0.107205i
\(603\) 302.594 302.594i 0.501814 0.501814i
\(604\) 51.8638 29.9436i 0.0858672 0.0495755i
\(605\) 0 0
\(606\) 7.69243 13.3237i 0.0126938 0.0219863i
\(607\) −103.592 + 386.611i −0.170662 + 0.636920i 0.826588 + 0.562808i \(0.190279\pi\)
−0.997250 + 0.0741122i \(0.976388\pi\)
\(608\) 124.294 124.294i 0.204431 0.204431i
\(609\) −102.353 + 179.767i −0.168067 + 0.295183i
\(610\) 0 0
\(611\) −34.4628 59.6912i −0.0564038 0.0976943i
\(612\) 82.5451 22.1179i 0.134878 0.0361404i
\(613\) 47.3611 + 176.754i 0.0772613 + 0.288343i 0.993737 0.111748i \(-0.0356451\pi\)
−0.916475 + 0.400091i \(0.868978\pi\)
\(614\) 550.940 318.085i 0.897296 0.518054i
\(615\) 0 0
\(616\) −208.750 118.855i −0.338880 0.192947i
\(617\) −290.152 290.152i −0.470263 0.470263i 0.431737 0.902000i \(-0.357901\pi\)
−0.902000 + 0.431737i \(0.857901\pi\)
\(618\) 72.8187 + 19.5117i 0.117830 + 0.0315724i
\(619\) −982.654 567.335i −1.58749 0.916535i −0.993720 0.111898i \(-0.964307\pi\)
−0.593766 0.804638i \(-0.702360\pi\)
\(620\) 0 0
\(621\) 303.888 + 526.349i 0.489353 + 0.847584i
\(622\) −278.705 278.705i −0.448079 0.448079i
\(623\) −24.2912 + 92.8854i −0.0389907 + 0.149094i
\(624\) 57.6376i 0.0923679i
\(625\) 0 0
\(626\) 212.379 367.852i 0.339264 0.587623i
\(627\) −426.388 + 114.250i −0.680045 + 0.182218i
\(628\) −446.193 119.557i −0.710499 0.190378i
\(629\) 322.291i 0.512386i
\(630\) 0 0
\(631\) 560.917 0.888933 0.444466 0.895796i \(-0.353393\pi\)
0.444466 + 0.895796i \(0.353393\pi\)
\(632\) −31.6861 + 118.254i −0.0501362 + 0.187111i
\(633\) 44.6767 + 166.736i 0.0705793 + 0.263405i
\(634\) 67.7197 + 39.0980i 0.106813 + 0.0616687i
\(635\) 0 0
\(636\) 77.6637 0.122113
\(637\) −431.489 421.240i −0.677377 0.661287i
\(638\) 306.215 306.215i 0.479961 0.479961i
\(639\) 147.259 85.0201i 0.230453 0.133052i
\(640\) 0 0
\(641\) −446.132 + 772.723i −0.695994 + 1.20550i 0.273851 + 0.961772i \(0.411703\pi\)
−0.969845 + 0.243724i \(0.921631\pi\)
\(642\) −29.5703 + 110.358i −0.0460597 + 0.171897i
\(643\) −139.636 + 139.636i −0.217163 + 0.217163i −0.807302 0.590139i \(-0.799073\pi\)
0.590139 + 0.807302i \(0.299073\pi\)
\(644\) −437.001 + 2.62621i −0.678573 + 0.00407797i
\(645\) 0 0
\(646\) 123.062 + 213.149i 0.190498 + 0.329953i
\(647\) −1212.14 + 324.791i −1.87347 + 0.501996i −0.873592 + 0.486658i \(0.838216\pi\)
−0.999882 + 0.0153378i \(0.995118\pi\)
\(648\) −33.5743 125.301i −0.0518122 0.193366i
\(649\) −618.993 + 357.376i −0.953765 + 0.550656i
\(650\) 0 0
\(651\) −189.904 + 111.168i −0.291711 + 0.170765i
\(652\) −253.776 253.776i −0.389227 0.389227i
\(653\) 601.936 + 161.288i 0.921802 + 0.246996i 0.688355 0.725374i \(-0.258333\pi\)
0.233446 + 0.972370i \(0.425000\pi\)
\(654\) 241.268 + 139.296i 0.368911 + 0.212991i
\(655\) 0 0
\(656\) −91.6173 158.686i −0.139661 0.241899i
\(657\) 17.9742 + 17.9742i 0.0273581 + 0.0273581i
\(658\) −53.4685 + 14.6718i −0.0812591 + 0.0222975i
\(659\) 251.197i 0.381180i −0.981670 0.190590i \(-0.938960\pi\)
0.981670 0.190590i \(-0.0610401\pi\)
\(660\) 0 0
\(661\) −14.0072 + 24.2612i −0.0211909 + 0.0367038i −0.876426 0.481536i \(-0.840079\pi\)
0.855235 + 0.518240i \(0.173412\pi\)
\(662\) −280.212 + 75.0825i −0.423281 + 0.113418i
\(663\) 77.9539 + 20.8877i 0.117578 + 0.0315048i
\(664\) 140.528i 0.211639i
\(665\) 0 0
\(666\) −620.846 −0.932201
\(667\) 203.905 760.984i 0.305705 1.14091i
\(668\) 55.8964 + 208.608i 0.0836773 + 0.312288i
\(669\) −241.225 139.271i −0.360575 0.208178i
\(670\) 0 0
\(671\) 917.198 1.36691
\(672\) −44.8562 11.7307i −0.0667502 0.0174564i
\(673\) −21.1507 + 21.1507i −0.0314275 + 0.0314275i −0.722646 0.691218i \(-0.757074\pi\)
0.691218 + 0.722646i \(0.257074\pi\)
\(674\) −692.511 + 399.822i −1.02746 + 0.593207i
\(675\) 0 0
\(676\) 17.5523 30.4014i 0.0259649 0.0449725i
\(677\) 151.880 566.824i 0.224343 0.837259i −0.758324 0.651878i \(-0.773981\pi\)
0.982667 0.185381i \(-0.0593520\pi\)
\(678\) −221.288 + 221.288i −0.326383 + 0.326383i
\(679\) −577.899 + 3.47296i −0.851103 + 0.00511481i
\(680\) 0 0
\(681\) 207.049 + 358.619i 0.304036 + 0.526607i
\(682\) 444.963 119.228i 0.652439 0.174821i
\(683\) −2.99308 11.1703i −0.00438226 0.0163548i 0.963700 0.266987i \(-0.0860281\pi\)
−0.968082 + 0.250632i \(0.919361\pi\)
\(684\) 410.601 237.060i 0.600294 0.346580i
\(685\) 0 0
\(686\) −415.647 + 250.071i −0.605899 + 0.364536i
\(687\) −161.172 161.172i −0.234603 0.234603i
\(688\) −99.5555 26.6758i −0.144703 0.0387730i
\(689\) −353.456 204.068i −0.512999 0.296180i
\(690\) 0 0
\(691\) −383.714 664.611i −0.555302 0.961811i −0.997880 0.0650811i \(-0.979269\pi\)
0.442578 0.896730i \(-0.354064\pi\)
\(692\) 30.2772 + 30.2772i 0.0437532 + 0.0437532i
\(693\) −460.897 455.390i −0.665075 0.657129i
\(694\) 672.230i 0.968632i
\(695\) 0 0
\(696\) 41.7925 72.3868i 0.0600468 0.104004i
\(697\) 247.822 66.4037i 0.355555 0.0952708i
\(698\) 386.200 + 103.482i 0.553295 + 0.148255i
\(699\) 362.622i 0.518772i
\(700\) 0 0
\(701\) 601.377 0.857884 0.428942 0.903332i \(-0.358886\pi\)
0.428942 + 0.903332i \(0.358886\pi\)
\(702\) 87.7049 327.319i 0.124936 0.466266i
\(703\) −462.792 1727.16i −0.658310 2.45685i
\(704\) 84.0578 + 48.5308i 0.119400 + 0.0689357i
\(705\) 0 0
\(706\) −393.957 −0.558013
\(707\) 17.2101 + 62.7189i 0.0243424 + 0.0887113i
\(708\) −97.5500 + 97.5500i −0.137783 + 0.137783i
\(709\) 1202.79 694.434i 1.69647 0.979455i 0.747402 0.664372i \(-0.231301\pi\)
0.949064 0.315083i \(-0.102032\pi\)
\(710\) 0 0
\(711\) −165.108 + 285.975i −0.232219 + 0.402215i
\(712\) 10.0405 37.4717i 0.0141018 0.0526288i
\(713\) 592.592 592.592i 0.831125 0.831125i
\(714\) 32.1214 56.4161i 0.0449879 0.0790141i
\(715\) 0 0
\(716\) 164.225 + 284.447i 0.229365 + 0.397272i
\(717\) −19.7829 + 5.30081i −0.0275912 + 0.00739304i
\(718\) 246.073 + 918.359i 0.342721 + 1.27905i
\(719\) 380.588 219.733i 0.529330 0.305609i −0.211414 0.977397i \(-0.567807\pi\)
0.740743 + 0.671788i \(0.234473\pi\)
\(720\) 0 0
\(721\) −275.031 + 161.001i −0.381458 + 0.223302i
\(722\) 604.561 + 604.561i 0.837343 + 0.837343i
\(723\) 110.094 + 29.4995i 0.152273 + 0.0408016i
\(724\) −462.244 266.876i −0.638458 0.368614i
\(725\) 0 0
\(726\) −21.6939 37.5749i −0.0298814 0.0517561i
\(727\) 493.793 + 493.793i 0.679220 + 0.679220i 0.959824 0.280604i \(-0.0905347\pi\)
−0.280604 + 0.959824i \(0.590535\pi\)
\(728\) 173.322 + 171.251i 0.238080 + 0.235235i
\(729\) 144.711i 0.198506i
\(730\) 0 0
\(731\) 72.1573 124.980i 0.0987103 0.170971i
\(732\) 170.999 45.8191i 0.233605 0.0625944i
\(733\) 326.331 + 87.4401i 0.445199 + 0.119291i 0.474452 0.880281i \(-0.342646\pi\)
−0.0292530 + 0.999572i \(0.509313\pi\)
\(734\) 163.133i 0.222252i
\(735\) 0 0
\(736\) 176.578 0.239916
\(737\) −176.140 + 657.365i −0.238996 + 0.891947i
\(738\) −127.917 477.393i −0.173329 0.646873i
\(739\) 1077.39 + 622.034i 1.45791 + 0.841724i 0.998908 0.0467130i \(-0.0148746\pi\)
0.459000 + 0.888436i \(0.348208\pi\)
\(740\) 0 0
\(741\) 447.750 0.604251
\(742\) −230.752 + 233.543i −0.310987 + 0.314748i
\(743\) −286.451 + 286.451i −0.385533 + 0.385533i −0.873091 0.487558i \(-0.837888\pi\)
0.487558 + 0.873091i \(0.337888\pi\)
\(744\) 77.0014 44.4568i 0.103496 0.0597537i
\(745\) 0 0
\(746\) 20.4463 35.4140i 0.0274079 0.0474718i
\(747\) 98.1033 366.127i 0.131330 0.490129i
\(748\) −96.0994 + 96.0994i −0.128475 + 0.128475i
\(749\) −243.999 416.813i −0.325766 0.556493i
\(750\) 0 0
\(751\) −201.068 348.259i −0.267733 0.463728i 0.700543 0.713610i \(-0.252941\pi\)
−0.968276 + 0.249883i \(0.919608\pi\)
\(752\) 21.6398 5.79835i 0.0287763 0.00771058i
\(753\) −6.66858 24.8875i −0.00885602 0.0330511i
\(754\) −380.405 + 219.627i −0.504516 + 0.291283i
\(755\) 0 0
\(756\) −236.884 134.874i −0.313339 0.178404i
\(757\) 111.601 + 111.601i 0.147425 + 0.147425i 0.776967 0.629542i \(-0.216757\pi\)
−0.629542 + 0.776967i \(0.716757\pi\)
\(758\) −278.093 74.5147i −0.366877 0.0983044i
\(759\) −384.029 221.719i −0.505968 0.292121i
\(760\) 0 0
\(761\) −689.909 1194.96i −0.906582 1.57025i −0.818779 0.574108i \(-0.805349\pi\)
−0.0878027 0.996138i \(-0.527984\pi\)
\(762\) 152.147 + 152.147i 0.199667 + 0.199667i
\(763\) −1135.73 + 311.644i −1.48850 + 0.408446i
\(764\) 385.207i 0.504198i
\(765\) 0 0
\(766\) 182.229 315.629i 0.237896 0.412048i
\(767\) 700.282 187.640i 0.913015 0.244642i
\(768\) 18.0958 + 4.84876i 0.0235623 + 0.00631349i
\(769\) 967.610i 1.25827i 0.777296 + 0.629136i \(0.216591\pi\)
−0.777296 + 0.629136i \(0.783409\pi\)
\(770\) 0 0
\(771\) 309.159 0.400984
\(772\) −79.8247 + 297.910i −0.103400 + 0.385894i
\(773\) 261.591 + 976.271i 0.338410 + 1.26296i 0.900125 + 0.435632i \(0.143475\pi\)
−0.561715 + 0.827331i \(0.689858\pi\)
\(774\) −240.756 139.000i −0.311054 0.179587i
\(775\) 0 0
\(776\) 233.511 0.300916
\(777\) −331.491 + 335.499i −0.426629 + 0.431788i
\(778\) −314.781 + 314.781i −0.404603 + 0.404603i
\(779\) 1232.73 711.717i 1.58245 0.913629i
\(780\) 0 0
\(781\) −135.210 + 234.191i −0.173125 + 0.299860i
\(782\) −63.9915 + 238.819i −0.0818305 + 0.305396i
\(783\) 347.485 347.485i 0.443786 0.443786i
\(784\) 168.551 100.033i 0.214988 0.127593i
\(785\) 0 0
\(786\) −86.8183 150.374i −0.110456 0.191315i
\(787\) −568.747 + 152.395i −0.722677 + 0.193641i −0.601366 0.798974i \(-0.705377\pi\)
−0.121311 + 0.992615i \(0.538710\pi\)
\(788\) 100.980 + 376.863i 0.128147 + 0.478252i
\(789\) 263.041 151.867i 0.333386 0.192480i
\(790\) 0 0
\(791\) −7.95025 1322.92i −0.0100509 1.67246i
\(792\) 185.121 + 185.121i 0.233739 + 0.233739i
\(793\) −898.630 240.787i −1.13320 0.303641i
\(794\) 26.5478 + 15.3274i 0.0334355 + 0.0193040i
\(795\) 0 0
\(796\) −61.2499 106.088i −0.0769471 0.133276i
\(797\) −331.594 331.594i −0.416052 0.416052i 0.467788 0.883841i \(-0.345051\pi\)
−0.883841 + 0.467788i \(0.845051\pi\)
\(798\) 91.1285 348.459i 0.114196 0.436666i
\(799\) 31.3687i 0.0392600i
\(800\) 0 0
\(801\) 52.3183 90.6180i 0.0653162 0.113131i
\(802\) 795.461 213.143i 0.991846 0.265764i
\(803\) −39.0479 10.4628i −0.0486275 0.0130297i
\(804\) 131.356i 0.163378i
\(805\) 0 0
\(806\) −467.256 −0.579722
\(807\) 116.234 433.791i 0.144032 0.537536i
\(808\) −6.80151 25.3836i −0.00841772 0.0314153i
\(809\) −523.515 302.251i −0.647114 0.373611i 0.140236 0.990118i \(-0.455214\pi\)
−0.787350 + 0.616507i \(0.788547\pi\)
\(810\) 0 0
\(811\) −1186.18 −1.46262 −0.731309 0.682046i \(-0.761090\pi\)
−0.731309 + 0.682046i \(0.761090\pi\)
\(812\) 93.5015 + 340.748i 0.115150 + 0.419641i
\(813\) 345.195 345.195i 0.424594 0.424594i
\(814\) 855.072 493.676i 1.05046 0.606481i
\(815\) 0 0
\(816\) −13.1157 + 22.7171i −0.0160732 + 0.0278396i
\(817\) 207.228 773.384i 0.253645 0.946614i
\(818\) −369.841 + 369.841i −0.452128 + 0.452128i
\(819\) 332.015 + 567.168i 0.405391 + 0.692513i
\(820\) 0 0
\(821\) 528.493 + 915.376i 0.643718 + 1.11495i 0.984596 + 0.174845i \(0.0559424\pi\)
−0.340878 + 0.940108i \(0.610724\pi\)
\(822\) −48.8637 + 13.0930i −0.0594449 + 0.0159282i
\(823\) 151.011 + 563.580i 0.183488 + 0.684788i 0.994949 + 0.100381i \(0.0320061\pi\)
−0.811461 + 0.584407i \(0.801327\pi\)
\(824\) 111.518 64.3851i 0.135338 0.0781372i
\(825\) 0 0
\(826\) −3.50470 583.181i −0.00424298 0.706030i
\(827\) −429.765 429.765i −0.519667 0.519667i 0.397803 0.917471i \(-0.369773\pi\)
−0.917471 + 0.397803i \(0.869773\pi\)
\(828\) 460.050 + 123.270i 0.555616 + 0.148877i
\(829\) 187.412 + 108.202i 0.226070 + 0.130522i 0.608758 0.793356i \(-0.291668\pi\)
−0.382688 + 0.923878i \(0.625001\pi\)
\(830\) 0 0
\(831\) 224.636 + 389.080i 0.270320 + 0.468207i
\(832\) −69.6156 69.6156i −0.0836726 0.0836726i
\(833\) 74.2107 + 264.214i 0.0890885 + 0.317184i
\(834\) 421.741i 0.505685i
\(835\) 0 0
\(836\) −377.005 + 652.992i −0.450963 + 0.781091i
\(837\) 504.933 135.296i 0.603265 0.161644i
\(838\) 40.9704 + 10.9780i 0.0488907 + 0.0131002i
\(839\) 44.2929i 0.0527925i 0.999652 + 0.0263963i \(0.00840316\pi\)
−0.999652 + 0.0263963i \(0.991597\pi\)
\(840\) 0 0
\(841\) 204.001 0.242569
\(842\) 21.6644 80.8526i 0.0257297 0.0960245i
\(843\) −12.6872 47.3494i −0.0150501 0.0561677i
\(844\) 255.347 + 147.425i 0.302544 + 0.174674i
\(845\) 0 0
\(846\) 60.4272 0.0714270
\(847\) 177.448 + 46.4059i 0.209502 + 0.0547885i
\(848\) 93.8035 93.8035i 0.110617 0.110617i
\(849\) 91.9891 53.1099i 0.108350 0.0625559i
\(850\) 0 0
\(851\) 898.115 1555.58i 1.05536 1.82794i
\(852\) −13.5090 + 50.4163i −0.0158556 + 0.0591740i
\(853\) −451.722 + 451.722i −0.529568 + 0.529568i −0.920444 0.390875i \(-0.872172\pi\)
0.390875 + 0.920444i \(0.372172\pi\)
\(854\) −370.286 + 650.348i −0.433590 + 0.761532i
\(855\) 0 0
\(856\) 97.5765 + 169.007i 0.113991 + 0.197439i
\(857\) 115.468 30.9395i 0.134735 0.0361021i −0.190821 0.981625i \(-0.561115\pi\)
0.325556 + 0.945523i \(0.394448\pi\)
\(858\) 63.9903 + 238.815i 0.0745808 + 0.278339i
\(859\) 528.189 304.950i 0.614889 0.355006i −0.159988 0.987119i \(-0.551145\pi\)
0.774876 + 0.632113i \(0.217812\pi\)
\(860\) 0 0
\(861\) −326.277 185.771i −0.378952 0.215762i
\(862\) −675.870 675.870i −0.784072 0.784072i
\(863\) 192.008 + 51.4484i 0.222489 + 0.0596157i 0.368341 0.929691i \(-0.379926\pi\)
−0.145852 + 0.989306i \(0.546592\pi\)
\(864\) 95.3865 + 55.0714i 0.110401 + 0.0637401i
\(865\) 0 0
\(866\) 202.377 + 350.527i 0.233691 + 0.404765i
\(867\) 213.303 + 213.303i 0.246025 + 0.246025i
\(868\) −95.0985 + 363.640i −0.109560 + 0.418940i
\(869\) 525.152i 0.604317i
\(870\) 0 0
\(871\) 345.149 597.816i 0.396268 0.686356i
\(872\) 459.651 123.163i 0.527123 0.141242i
\(873\) 608.380 + 163.015i 0.696884 + 0.186729i
\(874\) 1371.73i 1.56948i
\(875\) 0 0
\(876\) −7.80263 −0.00890711
\(877\) −114.339 + 426.717i −0.130375 + 0.486565i −0.999974 0.00719299i \(-0.997710\pi\)
0.869599 + 0.493758i \(0.164377\pi\)
\(878\) −58.2802 217.505i −0.0663783 0.247727i
\(879\) −342.053 197.484i −0.389138 0.224669i
\(880\) 0 0
\(881\) −121.425 −0.137826 −0.0689131 0.997623i \(-0.521953\pi\)
−0.0689131 + 0.997623i \(0.521953\pi\)
\(882\) 508.969 142.956i 0.577063 0.162082i
\(883\) 249.667 249.667i 0.282748 0.282748i −0.551456 0.834204i \(-0.685927\pi\)
0.834204 + 0.551456i \(0.185927\pi\)
\(884\) 119.382 68.9255i 0.135048 0.0779700i
\(885\) 0 0
\(886\) 106.005 183.606i 0.119645 0.207231i
\(887\) 358.568 1338.19i 0.404248 1.50867i −0.401191 0.915995i \(-0.631403\pi\)
0.805439 0.592679i \(-0.201930\pi\)
\(888\) 134.755 134.755i 0.151751 0.151751i
\(889\) −909.574 + 5.46620i −1.02314 + 0.00614870i
\(890\) 0 0
\(891\) 278.223 + 481.896i 0.312259 + 0.540848i
\(892\) −459.569 + 123.141i −0.515212 + 0.138051i
\(893\) 45.0438 + 168.106i 0.0504410 + 0.188248i
\(894\) −383.782 + 221.577i −0.429287 + 0.247849i
\(895\) 0 0
\(896\) −68.3465 + 40.0094i −0.0762796 + 0.0446534i
\(897\) 318.048 + 318.048i 0.354569 + 0.354569i
\(898\) −867.305 232.394i −0.965819 0.258790i
\(899\) −586.825 338.804i −0.652753 0.376867i
\(900\) 0 0
\(901\) 92.8737 + 160.862i 0.103078 + 0.178537i
\(902\) 555.782 + 555.782i 0.616167 + 0.616167i
\(903\) −203.662 + 55.8850i −0.225539 + 0.0618881i
\(904\) 534.550i 0.591316i
\(905\) 0 0
\(906\) −24.7915 + 42.9402i −0.0273637 + 0.0473953i
\(907\) 713.723 191.242i 0.786905 0.210851i 0.157078 0.987586i \(-0.449792\pi\)
0.629827 + 0.776735i \(0.283126\pi\)
\(908\) 683.223 + 183.069i 0.752448 + 0.201618i
\(909\) 70.8816i 0.0779776i
\(910\) 0 0
\(911\) 619.393 0.679904 0.339952 0.940443i \(-0.389589\pi\)
0.339952 + 0.940443i \(0.389589\pi\)
\(912\) −37.6670 + 140.575i −0.0413015 + 0.154139i
\(913\) 156.017 + 582.263i 0.170884 + 0.637747i
\(914\) 245.500 + 141.740i 0.268600 + 0.155076i
\(915\) 0 0
\(916\) −389.333 −0.425036
\(917\) 710.141 + 185.715i 0.774418 + 0.202525i
\(918\) −109.051 + 109.051i −0.118792 + 0.118792i
\(919\) −505.888 + 292.074i −0.550476 + 0.317818i −0.749314 0.662215i \(-0.769617\pi\)
0.198838 + 0.980032i \(0.436283\pi\)
\(920\) 0 0
\(921\) −263.356 + 456.146i −0.285946 + 0.495272i
\(922\) 148.683 554.894i 0.161262 0.601838i
\(923\) 193.954 193.954i 0.210134 0.210134i
\(924\) 198.880 1.19520i 0.215238 0.00129350i
\(925\) 0 0
\(926\) −288.227 499.223i −0.311260 0.539118i
\(927\) 335.493 89.8950i 0.361912 0.0969741i
\(928\) −36.9522 137.908i −0.0398192 0.148607i
\(929\) −721.006 + 416.273i −0.776110 + 0.448087i −0.835050 0.550174i \(-0.814561\pi\)
0.0589398 + 0.998262i \(0.481228\pi\)
\(930\) 0 0
\(931\) 777.093 + 1309.37i 0.834687 + 1.40641i
\(932\) 437.980 + 437.980i 0.469936 + 0.469936i
\(933\) 315.212 + 84.4609i 0.337848 + 0.0905262i
\(934\) −104.075 60.0877i −0.111429 0.0643338i
\(935\) 0 0
\(936\) −132.775 229.973i −0.141853 0.245697i
\(937\) −582.131 582.131i −0.621271 0.621271i 0.324586 0.945856i \(-0.394775\pi\)
−0.945856 + 0.324586i \(0.894775\pi\)
\(938\) −395.001 390.281i −0.421110 0.416078i
\(939\) 351.675i 0.374521i
\(940\) 0 0
\(941\) 300.357 520.234i 0.319189 0.552852i −0.661130 0.750271i \(-0.729923\pi\)
0.980319 + 0.197420i \(0.0632561\pi\)
\(942\) 369.422 98.9863i 0.392167 0.105081i
\(943\) 1381.19 + 370.089i 1.46468 + 0.392459i
\(944\) 235.645i 0.249624i
\(945\) 0 0
\(946\) 442.113 0.467350
\(947\) 242.706 905.793i 0.256290 0.956486i −0.711079 0.703112i \(-0.751793\pi\)
0.967368 0.253374i \(-0.0815403\pi\)
\(948\) −26.2342 97.9075i −0.0276732 0.103278i
\(949\) 35.5106 + 20.5021i 0.0374190 + 0.0216039i
\(950\) 0 0
\(951\) −64.7416 −0.0680774
\(952\) −29.3436 106.937i −0.0308231 0.112329i
\(953\) −108.986 + 108.986i −0.114361 + 0.114361i −0.761971 0.647611i \(-0.775768\pi\)
0.647611 + 0.761971i \(0.275768\pi\)
\(954\) 309.877 178.907i 0.324818 0.187534i
\(955\) 0 0
\(956\) −17.4917 + 30.2965i −0.0182967 + 0.0316909i
\(957\) −92.7977 + 346.326i −0.0969673 + 0.361887i
\(958\) −25.3021 + 25.3021i −0.0264114 + 0.0264114i
\(959\) 105.811 185.840i 0.110334 0.193785i
\(960\) 0 0
\(961\) 120.098 + 208.016i 0.124972 + 0.216458i
\(962\) −967.364 + 259.204i −1.00558 + 0.269443i
\(963\) 136.237 + 508.444i 0.141472 + 0.527979i
\(964\) 168.603 97.3430i 0.174899 0.100978i
\(965\) 0 0
\(966\) 312.250 182.789i 0.323241 0.189222i
\(967\) 293.397 + 293.397i 0.303410 + 0.303410i 0.842346 0.538937i \(-0.181174\pi\)
−0.538937 + 0.842346i \(0.681174\pi\)
\(968\) −71.5858 19.1813i −0.0739522 0.0198154i
\(969\) −176.475 101.888i −0.182121 0.105148i
\(970\) 0 0
\(971\) 634.715 + 1099.36i 0.653672 + 1.13219i 0.982225 + 0.187707i \(0.0601056\pi\)
−0.328553 + 0.944485i \(0.606561\pi\)
\(972\) 323.766 + 323.766i 0.333092 + 0.333092i
\(973\) 1268.22 + 1253.07i 1.30341 + 1.28784i
\(974\) 313.269i 0.321631i
\(975\) 0 0
\(976\) 151.194 261.877i 0.154912 0.268316i
\(977\) −753.293 + 201.844i −0.771027 + 0.206596i −0.622825 0.782361i \(-0.714015\pi\)
−0.148202 + 0.988957i \(0.547349\pi\)
\(978\) 287.018 + 76.9061i 0.293474 + 0.0786361i
\(979\) 166.407i 0.169977i
\(980\) 0 0
\(981\) 1283.54 1.30840
\(982\) 142.036 530.085i 0.144639 0.539802i
\(983\) −472.090 1761.86i −0.480254 1.79233i −0.600541 0.799594i \(-0.705048\pi\)
0.120287 0.992739i \(-0.461618\pi\)
\(984\) 131.383 + 75.8537i 0.133519 + 0.0770871i
\(985\) 0 0
\(986\) 199.909 0.202748
\(987\) 32.2642 32.6543i 0.0326891 0.0330844i
\(988\) 540.800 540.800i 0.547368 0.547368i
\(989\) 696.553 402.155i 0.704301 0.406628i
\(990\) 0 0
\(991\) 410.849 711.611i 0.414580 0.718074i −0.580804 0.814043i \(-0.697262\pi\)
0.995384 + 0.0959694i \(0.0305951\pi\)
\(992\) 39.3079 146.699i 0.0396249 0.147882i
\(993\) 169.835 169.835i 0.171032 0.171032i
\(994\) −111.469 190.418i −0.112142 0.191568i
\(995\) 0 0
\(996\) 58.1745 + 100.761i 0.0584081 + 0.101166i
\(997\) −469.784 + 125.878i −0.471197 + 0.126257i −0.486601 0.873624i \(-0.661763\pi\)
0.0154036 + 0.999881i \(0.495097\pi\)
\(998\) −31.1988 116.435i −0.0312613 0.116669i
\(999\) 970.312 560.210i 0.971283 0.560771i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.3.p.e.207.2 16
5.2 odd 4 70.3.l.c.53.2 yes 16
5.3 odd 4 inner 350.3.p.e.193.3 16
5.4 even 2 70.3.l.c.67.3 yes 16
7.2 even 3 inner 350.3.p.e.107.3 16
35.2 odd 12 70.3.l.c.23.3 16
35.4 even 6 490.3.f.o.197.3 8
35.9 even 6 70.3.l.c.37.2 yes 16
35.17 even 12 490.3.f.p.393.2 8
35.23 odd 12 inner 350.3.p.e.93.2 16
35.24 odd 6 490.3.f.p.197.2 8
35.32 odd 12 490.3.f.o.393.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.3.l.c.23.3 16 35.2 odd 12
70.3.l.c.37.2 yes 16 35.9 even 6
70.3.l.c.53.2 yes 16 5.2 odd 4
70.3.l.c.67.3 yes 16 5.4 even 2
350.3.p.e.93.2 16 35.23 odd 12 inner
350.3.p.e.107.3 16 7.2 even 3 inner
350.3.p.e.193.3 16 5.3 odd 4 inner
350.3.p.e.207.2 16 1.1 even 1 trivial
490.3.f.o.197.3 8 35.4 even 6
490.3.f.o.393.3 8 35.32 odd 12
490.3.f.p.197.2 8 35.24 odd 6
490.3.f.p.393.2 8 35.17 even 12