Properties

Label 350.4.c.m
Level $350$
Weight $4$
Character orbit 350.c
Analytic conductor $20.651$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,4,Mod(99,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.99");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.6506685020\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 i q^{2} + 8 i q^{3} - 4 q^{4} + 16 q^{6} - 7 i q^{7} + 8 i q^{8} - 37 q^{9} - 7 q^{11} - 32 i q^{12} + 26 i q^{13} - 14 q^{14} + 16 q^{16} + 44 i q^{17} + 74 i q^{18} - 142 q^{19} + 56 q^{21} + 14 i q^{22} + \cdots + 259 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} + 32 q^{6} - 74 q^{9} - 14 q^{11} - 28 q^{14} + 32 q^{16} - 284 q^{19} + 112 q^{21} - 128 q^{24} + 104 q^{26} - 2 q^{29} + 12 q^{31} + 176 q^{34} + 296 q^{36} - 416 q^{39} - 888 q^{41} + 56 q^{44}+ \cdots + 518 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
1.00000i
1.00000i
2.00000i 8.00000i −4.00000 0 16.0000 7.00000i 8.00000i −37.0000 0
99.2 2.00000i 8.00000i −4.00000 0 16.0000 7.00000i 8.00000i −37.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.4.c.m 2
5.b even 2 1 inner 350.4.c.m 2
5.c odd 4 1 350.4.a.a 1
5.c odd 4 1 350.4.a.u yes 1
35.f even 4 1 2450.4.a.u 1
35.f even 4 1 2450.4.a.w 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
350.4.a.a 1 5.c odd 4 1
350.4.a.u yes 1 5.c odd 4 1
350.4.c.m 2 1.a even 1 1 trivial
350.4.c.m 2 5.b even 2 1 inner
2450.4.a.u 1 35.f even 4 1
2450.4.a.w 1 35.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(350, [\chi])\):

\( T_{3}^{2} + 64 \) Copy content Toggle raw display
\( T_{11} + 7 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{2} + 64 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 49 \) Copy content Toggle raw display
$11$ \( (T + 7)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 676 \) Copy content Toggle raw display
$17$ \( T^{2} + 1936 \) Copy content Toggle raw display
$19$ \( (T + 142)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 13225 \) Copy content Toggle raw display
$29$ \( (T + 1)^{2} \) Copy content Toggle raw display
$31$ \( (T - 6)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 168921 \) Copy content Toggle raw display
$41$ \( (T + 444)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 48841 \) Copy content Toggle raw display
$47$ \( T^{2} + 66564 \) Copy content Toggle raw display
$53$ \( T^{2} + 391876 \) Copy content Toggle raw display
$59$ \( (T - 162)^{2} \) Copy content Toggle raw display
$61$ \( (T + 820)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 269361 \) Copy content Toggle raw display
$71$ \( (T - 61)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 1345600 \) Copy content Toggle raw display
$79$ \( (T - 809)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 459684 \) Copy content Toggle raw display
$89$ \( (T + 370)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 96100 \) Copy content Toggle raw display
show more
show less