Properties

Label 350.6.a.z.1.3
Level $350$
Weight $6$
Character 350.1
Self dual yes
Analytic conductor $56.134$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,6,Mod(1,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.1343369345\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 915x^{3} - 2649x^{2} + 122688x - 432576 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 5^{3} \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(4.91234\) of defining polynomial
Character \(\chi\) \(=\) 350.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} -1.91234 q^{3} +16.0000 q^{4} -7.64937 q^{6} +49.0000 q^{7} +64.0000 q^{8} -239.343 q^{9} -780.137 q^{11} -30.5975 q^{12} +869.410 q^{13} +196.000 q^{14} +256.000 q^{16} +326.997 q^{17} -957.372 q^{18} +1768.20 q^{19} -93.7048 q^{21} -3120.55 q^{22} +1898.23 q^{23} -122.390 q^{24} +3477.64 q^{26} +922.405 q^{27} +784.000 q^{28} +4858.54 q^{29} +5436.97 q^{31} +1024.00 q^{32} +1491.89 q^{33} +1307.99 q^{34} -3829.49 q^{36} +4411.45 q^{37} +7072.79 q^{38} -1662.61 q^{39} -9886.32 q^{41} -374.819 q^{42} -15658.3 q^{43} -12482.2 q^{44} +7592.94 q^{46} +16840.3 q^{47} -489.560 q^{48} +2401.00 q^{49} -625.329 q^{51} +13910.6 q^{52} -22056.0 q^{53} +3689.62 q^{54} +3136.00 q^{56} -3381.40 q^{57} +19434.2 q^{58} +40053.7 q^{59} +21919.3 q^{61} +21747.9 q^{62} -11727.8 q^{63} +4096.00 q^{64} +5967.55 q^{66} +50458.1 q^{67} +5231.94 q^{68} -3630.07 q^{69} -28254.7 q^{71} -15317.9 q^{72} +85457.9 q^{73} +17645.8 q^{74} +28291.2 q^{76} -38226.7 q^{77} -6650.44 q^{78} +67249.4 q^{79} +56396.4 q^{81} -39545.3 q^{82} +18647.1 q^{83} -1499.28 q^{84} -62633.2 q^{86} -9291.19 q^{87} -49928.8 q^{88} -59853.7 q^{89} +42601.1 q^{91} +30371.7 q^{92} -10397.3 q^{93} +67361.3 q^{94} -1958.24 q^{96} -46061.0 q^{97} +9604.00 q^{98} +186720. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 20 q^{2} + 14 q^{3} + 80 q^{4} + 56 q^{6} + 245 q^{7} + 320 q^{8} + 655 q^{9} + 748 q^{11} + 224 q^{12} + 456 q^{13} + 980 q^{14} + 1280 q^{16} + 780 q^{17} + 2620 q^{18} - 256 q^{19} + 686 q^{21}+ \cdots + 575944 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) −1.91234 −0.122677 −0.0613384 0.998117i \(-0.519537\pi\)
−0.0613384 + 0.998117i \(0.519537\pi\)
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) −7.64937 −0.0867456
\(7\) 49.0000 0.377964
\(8\) 64.0000 0.353553
\(9\) −239.343 −0.984950
\(10\) 0 0
\(11\) −780.137 −1.94397 −0.971984 0.235048i \(-0.924475\pi\)
−0.971984 + 0.235048i \(0.924475\pi\)
\(12\) −30.5975 −0.0613384
\(13\) 869.410 1.42681 0.713405 0.700752i \(-0.247152\pi\)
0.713405 + 0.700752i \(0.247152\pi\)
\(14\) 196.000 0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 326.997 0.274423 0.137212 0.990542i \(-0.456186\pi\)
0.137212 + 0.990542i \(0.456186\pi\)
\(18\) −957.372 −0.696465
\(19\) 1768.20 1.12369 0.561845 0.827242i \(-0.310092\pi\)
0.561845 + 0.827242i \(0.310092\pi\)
\(20\) 0 0
\(21\) −93.7048 −0.0463675
\(22\) −3120.55 −1.37459
\(23\) 1898.23 0.748221 0.374111 0.927384i \(-0.377948\pi\)
0.374111 + 0.927384i \(0.377948\pi\)
\(24\) −122.390 −0.0433728
\(25\) 0 0
\(26\) 3477.64 1.00891
\(27\) 922.405 0.243507
\(28\) 784.000 0.188982
\(29\) 4858.54 1.07278 0.536390 0.843970i \(-0.319788\pi\)
0.536390 + 0.843970i \(0.319788\pi\)
\(30\) 0 0
\(31\) 5436.97 1.01614 0.508069 0.861316i \(-0.330359\pi\)
0.508069 + 0.861316i \(0.330359\pi\)
\(32\) 1024.00 0.176777
\(33\) 1491.89 0.238480
\(34\) 1307.99 0.194047
\(35\) 0 0
\(36\) −3829.49 −0.492475
\(37\) 4411.45 0.529757 0.264879 0.964282i \(-0.414668\pi\)
0.264879 + 0.964282i \(0.414668\pi\)
\(38\) 7072.79 0.794569
\(39\) −1662.61 −0.175036
\(40\) 0 0
\(41\) −9886.32 −0.918492 −0.459246 0.888309i \(-0.651880\pi\)
−0.459246 + 0.888309i \(0.651880\pi\)
\(42\) −374.819 −0.0327868
\(43\) −15658.3 −1.29144 −0.645719 0.763575i \(-0.723442\pi\)
−0.645719 + 0.763575i \(0.723442\pi\)
\(44\) −12482.2 −0.971984
\(45\) 0 0
\(46\) 7592.94 0.529072
\(47\) 16840.3 1.11200 0.556002 0.831181i \(-0.312335\pi\)
0.556002 + 0.831181i \(0.312335\pi\)
\(48\) −489.560 −0.0306692
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) −625.329 −0.0336654
\(52\) 13910.6 0.713405
\(53\) −22056.0 −1.07854 −0.539271 0.842132i \(-0.681300\pi\)
−0.539271 + 0.842132i \(0.681300\pi\)
\(54\) 3689.62 0.172186
\(55\) 0 0
\(56\) 3136.00 0.133631
\(57\) −3381.40 −0.137851
\(58\) 19434.2 0.758570
\(59\) 40053.7 1.49800 0.749002 0.662568i \(-0.230534\pi\)
0.749002 + 0.662568i \(0.230534\pi\)
\(60\) 0 0
\(61\) 21919.3 0.754229 0.377114 0.926167i \(-0.376916\pi\)
0.377114 + 0.926167i \(0.376916\pi\)
\(62\) 21747.9 0.718518
\(63\) −11727.8 −0.372276
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) 5967.55 0.168631
\(67\) 50458.1 1.37323 0.686616 0.727020i \(-0.259095\pi\)
0.686616 + 0.727020i \(0.259095\pi\)
\(68\) 5231.94 0.137212
\(69\) −3630.07 −0.0917894
\(70\) 0 0
\(71\) −28254.7 −0.665189 −0.332594 0.943070i \(-0.607924\pi\)
−0.332594 + 0.943070i \(0.607924\pi\)
\(72\) −15317.9 −0.348233
\(73\) 85457.9 1.87692 0.938458 0.345393i \(-0.112254\pi\)
0.938458 + 0.345393i \(0.112254\pi\)
\(74\) 17645.8 0.374595
\(75\) 0 0
\(76\) 28291.2 0.561845
\(77\) −38226.7 −0.734751
\(78\) −6650.44 −0.123769
\(79\) 67249.4 1.21233 0.606164 0.795339i \(-0.292707\pi\)
0.606164 + 0.795339i \(0.292707\pi\)
\(80\) 0 0
\(81\) 56396.4 0.955078
\(82\) −39545.3 −0.649472
\(83\) 18647.1 0.297110 0.148555 0.988904i \(-0.452538\pi\)
0.148555 + 0.988904i \(0.452538\pi\)
\(84\) −1499.28 −0.0231837
\(85\) 0 0
\(86\) −62633.2 −0.913184
\(87\) −9291.19 −0.131605
\(88\) −49928.8 −0.687296
\(89\) −59853.7 −0.800969 −0.400485 0.916303i \(-0.631158\pi\)
−0.400485 + 0.916303i \(0.631158\pi\)
\(90\) 0 0
\(91\) 42601.1 0.539284
\(92\) 30371.7 0.374111
\(93\) −10397.3 −0.124657
\(94\) 67361.3 0.786305
\(95\) 0 0
\(96\) −1958.24 −0.0216864
\(97\) −46061.0 −0.497054 −0.248527 0.968625i \(-0.579947\pi\)
−0.248527 + 0.968625i \(0.579947\pi\)
\(98\) 9604.00 0.101015
\(99\) 186720. 1.91471
\(100\) 0 0
\(101\) −71113.3 −0.693661 −0.346831 0.937928i \(-0.612742\pi\)
−0.346831 + 0.937928i \(0.612742\pi\)
\(102\) −2501.32 −0.0238050
\(103\) 5051.27 0.0469146 0.0234573 0.999725i \(-0.492533\pi\)
0.0234573 + 0.999725i \(0.492533\pi\)
\(104\) 55642.2 0.504454
\(105\) 0 0
\(106\) −88224.0 −0.762645
\(107\) −71370.8 −0.602644 −0.301322 0.953522i \(-0.597428\pi\)
−0.301322 + 0.953522i \(0.597428\pi\)
\(108\) 14758.5 0.121754
\(109\) 138106. 1.11339 0.556695 0.830717i \(-0.312069\pi\)
0.556695 + 0.830717i \(0.312069\pi\)
\(110\) 0 0
\(111\) −8436.20 −0.0649889
\(112\) 12544.0 0.0944911
\(113\) −158667. −1.16894 −0.584468 0.811417i \(-0.698697\pi\)
−0.584468 + 0.811417i \(0.698697\pi\)
\(114\) −13525.6 −0.0974752
\(115\) 0 0
\(116\) 77736.6 0.536390
\(117\) −208087. −1.40534
\(118\) 160215. 1.05925
\(119\) 16022.8 0.103722
\(120\) 0 0
\(121\) 447562. 2.77901
\(122\) 87677.4 0.533320
\(123\) 18906.0 0.112678
\(124\) 86991.5 0.508069
\(125\) 0 0
\(126\) −46911.2 −0.263239
\(127\) 67468.8 0.371188 0.185594 0.982627i \(-0.440579\pi\)
0.185594 + 0.982627i \(0.440579\pi\)
\(128\) 16384.0 0.0883883
\(129\) 29944.0 0.158429
\(130\) 0 0
\(131\) 158205. 0.805457 0.402729 0.915319i \(-0.368062\pi\)
0.402729 + 0.915319i \(0.368062\pi\)
\(132\) 23870.2 0.119240
\(133\) 86641.7 0.424715
\(134\) 201832. 0.971021
\(135\) 0 0
\(136\) 20927.8 0.0970233
\(137\) 200407. 0.912243 0.456122 0.889917i \(-0.349238\pi\)
0.456122 + 0.889917i \(0.349238\pi\)
\(138\) −14520.3 −0.0649049
\(139\) −191630. −0.841252 −0.420626 0.907234i \(-0.638190\pi\)
−0.420626 + 0.907234i \(0.638190\pi\)
\(140\) 0 0
\(141\) −32204.5 −0.136417
\(142\) −113019. −0.470360
\(143\) −678259. −2.77367
\(144\) −61271.8 −0.246238
\(145\) 0 0
\(146\) 341831. 1.32718
\(147\) −4591.53 −0.0175253
\(148\) 70583.2 0.264879
\(149\) 33501.4 0.123622 0.0618112 0.998088i \(-0.480312\pi\)
0.0618112 + 0.998088i \(0.480312\pi\)
\(150\) 0 0
\(151\) −485524. −1.73288 −0.866439 0.499282i \(-0.833597\pi\)
−0.866439 + 0.499282i \(0.833597\pi\)
\(152\) 113165. 0.397285
\(153\) −78264.3 −0.270293
\(154\) −152907. −0.519547
\(155\) 0 0
\(156\) −26601.7 −0.0875182
\(157\) −493697. −1.59850 −0.799248 0.601001i \(-0.794769\pi\)
−0.799248 + 0.601001i \(0.794769\pi\)
\(158\) 268997. 0.857246
\(159\) 42178.6 0.132312
\(160\) 0 0
\(161\) 93013.5 0.282801
\(162\) 225586. 0.675342
\(163\) −192313. −0.566943 −0.283472 0.958981i \(-0.591486\pi\)
−0.283472 + 0.958981i \(0.591486\pi\)
\(164\) −158181. −0.459246
\(165\) 0 0
\(166\) 74588.5 0.210088
\(167\) 36326.5 0.100794 0.0503968 0.998729i \(-0.483951\pi\)
0.0503968 + 0.998729i \(0.483951\pi\)
\(168\) −5997.10 −0.0163934
\(169\) 384581. 1.03579
\(170\) 0 0
\(171\) −423206. −1.10678
\(172\) −250533. −0.645719
\(173\) 27050.2 0.0687156 0.0343578 0.999410i \(-0.489061\pi\)
0.0343578 + 0.999410i \(0.489061\pi\)
\(174\) −37164.7 −0.0930589
\(175\) 0 0
\(176\) −199715. −0.485992
\(177\) −76596.4 −0.183770
\(178\) −239415. −0.566371
\(179\) 123119. 0.287206 0.143603 0.989635i \(-0.454131\pi\)
0.143603 + 0.989635i \(0.454131\pi\)
\(180\) 0 0
\(181\) −135382. −0.307159 −0.153580 0.988136i \(-0.549080\pi\)
−0.153580 + 0.988136i \(0.549080\pi\)
\(182\) 170404. 0.381331
\(183\) −41917.3 −0.0925263
\(184\) 121487. 0.264536
\(185\) 0 0
\(186\) −41589.4 −0.0881455
\(187\) −255102. −0.533470
\(188\) 269445. 0.556002
\(189\) 45197.8 0.0920371
\(190\) 0 0
\(191\) 189708. 0.376272 0.188136 0.982143i \(-0.439755\pi\)
0.188136 + 0.982143i \(0.439755\pi\)
\(192\) −7832.95 −0.0153346
\(193\) 362697. 0.700891 0.350445 0.936583i \(-0.386030\pi\)
0.350445 + 0.936583i \(0.386030\pi\)
\(194\) −184244. −0.351470
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) 828304. 1.52063 0.760316 0.649554i \(-0.225044\pi\)
0.760316 + 0.649554i \(0.225044\pi\)
\(198\) 746881. 1.35391
\(199\) 864115. 1.54682 0.773409 0.633908i \(-0.218550\pi\)
0.773409 + 0.633908i \(0.218550\pi\)
\(200\) 0 0
\(201\) −96493.1 −0.168464
\(202\) −284453. −0.490493
\(203\) 238068. 0.405473
\(204\) −10005.3 −0.0168327
\(205\) 0 0
\(206\) 20205.1 0.0331736
\(207\) −454329. −0.736961
\(208\) 222569. 0.356703
\(209\) −1.37944e6 −2.18442
\(210\) 0 0
\(211\) −446374. −0.690229 −0.345114 0.938561i \(-0.612160\pi\)
−0.345114 + 0.938561i \(0.612160\pi\)
\(212\) −352896. −0.539271
\(213\) 54032.7 0.0816032
\(214\) −285483. −0.426134
\(215\) 0 0
\(216\) 59033.9 0.0860928
\(217\) 266412. 0.384064
\(218\) 552426. 0.787286
\(219\) −163425. −0.230254
\(220\) 0 0
\(221\) 284294. 0.391550
\(222\) −33744.8 −0.0459541
\(223\) −615894. −0.829362 −0.414681 0.909967i \(-0.636107\pi\)
−0.414681 + 0.909967i \(0.636107\pi\)
\(224\) 50176.0 0.0668153
\(225\) 0 0
\(226\) −634669. −0.826563
\(227\) 143815. 0.185242 0.0926210 0.995701i \(-0.470475\pi\)
0.0926210 + 0.995701i \(0.470475\pi\)
\(228\) −54102.4 −0.0689254
\(229\) −547130. −0.689449 −0.344724 0.938704i \(-0.612028\pi\)
−0.344724 + 0.938704i \(0.612028\pi\)
\(230\) 0 0
\(231\) 73102.5 0.0901369
\(232\) 310946. 0.379285
\(233\) −624672. −0.753811 −0.376905 0.926252i \(-0.623012\pi\)
−0.376905 + 0.926252i \(0.623012\pi\)
\(234\) −832349. −0.993724
\(235\) 0 0
\(236\) 640859. 0.749002
\(237\) −128604. −0.148725
\(238\) 64091.3 0.0733427
\(239\) −711873. −0.806136 −0.403068 0.915170i \(-0.632056\pi\)
−0.403068 + 0.915170i \(0.632056\pi\)
\(240\) 0 0
\(241\) 546788. 0.606424 0.303212 0.952923i \(-0.401941\pi\)
0.303212 + 0.952923i \(0.401941\pi\)
\(242\) 1.79025e6 1.96506
\(243\) −331993. −0.360673
\(244\) 350709. 0.377114
\(245\) 0 0
\(246\) 75624.1 0.0796751
\(247\) 1.53729e6 1.60329
\(248\) 347966. 0.359259
\(249\) −35659.7 −0.0364485
\(250\) 0 0
\(251\) −232147. −0.232583 −0.116292 0.993215i \(-0.537101\pi\)
−0.116292 + 0.993215i \(0.537101\pi\)
\(252\) −187645. −0.186138
\(253\) −1.48088e6 −1.45452
\(254\) 269875. 0.262469
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −574030. −0.542128 −0.271064 0.962561i \(-0.587375\pi\)
−0.271064 + 0.962561i \(0.587375\pi\)
\(258\) 119776. 0.112026
\(259\) 216161. 0.200229
\(260\) 0 0
\(261\) −1.16286e6 −1.05663
\(262\) 632821. 0.569544
\(263\) −312043. −0.278180 −0.139090 0.990280i \(-0.544418\pi\)
−0.139090 + 0.990280i \(0.544418\pi\)
\(264\) 95480.9 0.0843153
\(265\) 0 0
\(266\) 346567. 0.300319
\(267\) 114461. 0.0982603
\(268\) 807329. 0.686616
\(269\) −2.18449e6 −1.84064 −0.920322 0.391161i \(-0.872074\pi\)
−0.920322 + 0.391161i \(0.872074\pi\)
\(270\) 0 0
\(271\) 951923. 0.787370 0.393685 0.919246i \(-0.371200\pi\)
0.393685 + 0.919246i \(0.371200\pi\)
\(272\) 83711.1 0.0686058
\(273\) −81467.8 −0.0661576
\(274\) 801626. 0.645053
\(275\) 0 0
\(276\) −58081.2 −0.0458947
\(277\) −1.07542e6 −0.842126 −0.421063 0.907031i \(-0.638343\pi\)
−0.421063 + 0.907031i \(0.638343\pi\)
\(278\) −766519. −0.594855
\(279\) −1.30130e6 −1.00085
\(280\) 0 0
\(281\) 689287. 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(282\) −128818. −0.0964614
\(283\) 2.04961e6 1.52127 0.760635 0.649180i \(-0.224888\pi\)
0.760635 + 0.649180i \(0.224888\pi\)
\(284\) −452075. −0.332594
\(285\) 0 0
\(286\) −2.71303e6 −1.96128
\(287\) −484430. −0.347157
\(288\) −245087. −0.174116
\(289\) −1.31293e6 −0.924692
\(290\) 0 0
\(291\) 88084.4 0.0609770
\(292\) 1.36733e6 0.938458
\(293\) −303846. −0.206769 −0.103384 0.994641i \(-0.532967\pi\)
−0.103384 + 0.994641i \(0.532967\pi\)
\(294\) −18366.1 −0.0123922
\(295\) 0 0
\(296\) 282333. 0.187297
\(297\) −719602. −0.473370
\(298\) 134006. 0.0874142
\(299\) 1.65034e6 1.06757
\(300\) 0 0
\(301\) −767256. −0.488117
\(302\) −1.94210e6 −1.22533
\(303\) 135993. 0.0850962
\(304\) 452659. 0.280923
\(305\) 0 0
\(306\) −313057. −0.191126
\(307\) 482206. 0.292002 0.146001 0.989284i \(-0.453360\pi\)
0.146001 + 0.989284i \(0.453360\pi\)
\(308\) −611627. −0.367375
\(309\) −9659.76 −0.00575533
\(310\) 0 0
\(311\) −1.44282e6 −0.845886 −0.422943 0.906156i \(-0.639003\pi\)
−0.422943 + 0.906156i \(0.639003\pi\)
\(312\) −106407. −0.0618847
\(313\) −826161. −0.476655 −0.238327 0.971185i \(-0.576599\pi\)
−0.238327 + 0.971185i \(0.576599\pi\)
\(314\) −1.97479e6 −1.13031
\(315\) 0 0
\(316\) 1.07599e6 0.606164
\(317\) −1.34244e6 −0.750318 −0.375159 0.926960i \(-0.622412\pi\)
−0.375159 + 0.926960i \(0.622412\pi\)
\(318\) 168715. 0.0935588
\(319\) −3.79032e6 −2.08545
\(320\) 0 0
\(321\) 136485. 0.0739305
\(322\) 372054. 0.199971
\(323\) 578194. 0.308367
\(324\) 902342. 0.477539
\(325\) 0 0
\(326\) −769252. −0.400890
\(327\) −264107. −0.136587
\(328\) −632725. −0.324736
\(329\) 825176. 0.420298
\(330\) 0 0
\(331\) 2.62883e6 1.31884 0.659420 0.751775i \(-0.270802\pi\)
0.659420 + 0.751775i \(0.270802\pi\)
\(332\) 298354. 0.148555
\(333\) −1.05585e6 −0.521784
\(334\) 145306. 0.0712718
\(335\) 0 0
\(336\) −23988.4 −0.0115919
\(337\) −3.77083e6 −1.80868 −0.904342 0.426809i \(-0.859638\pi\)
−0.904342 + 0.426809i \(0.859638\pi\)
\(338\) 1.53832e6 0.732412
\(339\) 303426. 0.143401
\(340\) 0 0
\(341\) −4.24158e6 −1.97534
\(342\) −1.69282e6 −0.782611
\(343\) 117649. 0.0539949
\(344\) −1.00213e6 −0.456592
\(345\) 0 0
\(346\) 108201. 0.0485892
\(347\) 1.16777e6 0.520636 0.260318 0.965523i \(-0.416173\pi\)
0.260318 + 0.965523i \(0.416173\pi\)
\(348\) −148659. −0.0658026
\(349\) 2.40057e6 1.05499 0.527497 0.849557i \(-0.323131\pi\)
0.527497 + 0.849557i \(0.323131\pi\)
\(350\) 0 0
\(351\) 801948. 0.347439
\(352\) −798860. −0.343648
\(353\) 3.78830e6 1.61811 0.809054 0.587734i \(-0.199980\pi\)
0.809054 + 0.587734i \(0.199980\pi\)
\(354\) −306386. −0.129945
\(355\) 0 0
\(356\) −957659. −0.400485
\(357\) −30641.1 −0.0127243
\(358\) 492477. 0.203085
\(359\) 3.69702e6 1.51396 0.756981 0.653437i \(-0.226673\pi\)
0.756981 + 0.653437i \(0.226673\pi\)
\(360\) 0 0
\(361\) 650423. 0.262680
\(362\) −541527. −0.217194
\(363\) −855892. −0.340920
\(364\) 681617. 0.269642
\(365\) 0 0
\(366\) −167669. −0.0654260
\(367\) −1.13137e6 −0.438468 −0.219234 0.975672i \(-0.570356\pi\)
−0.219234 + 0.975672i \(0.570356\pi\)
\(368\) 485948. 0.187055
\(369\) 2.36622e6 0.904669
\(370\) 0 0
\(371\) −1.08074e6 −0.407651
\(372\) −166358. −0.0623283
\(373\) −3.59413e6 −1.33759 −0.668793 0.743449i \(-0.733189\pi\)
−0.668793 + 0.743449i \(0.733189\pi\)
\(374\) −1.02041e6 −0.377220
\(375\) 0 0
\(376\) 1.07778e6 0.393153
\(377\) 4.22406e6 1.53065
\(378\) 180791. 0.0650801
\(379\) −1.36485e6 −0.488076 −0.244038 0.969766i \(-0.578472\pi\)
−0.244038 + 0.969766i \(0.578472\pi\)
\(380\) 0 0
\(381\) −129023. −0.0455361
\(382\) 758832. 0.266065
\(383\) −4.95361e6 −1.72554 −0.862770 0.505596i \(-0.831273\pi\)
−0.862770 + 0.505596i \(0.831273\pi\)
\(384\) −31331.8 −0.0108432
\(385\) 0 0
\(386\) 1.45079e6 0.495605
\(387\) 3.74770e6 1.27200
\(388\) −736976. −0.248527
\(389\) 2.34235e6 0.784834 0.392417 0.919787i \(-0.371639\pi\)
0.392417 + 0.919787i \(0.371639\pi\)
\(390\) 0 0
\(391\) 620716. 0.205329
\(392\) 153664. 0.0505076
\(393\) −302542. −0.0988109
\(394\) 3.31321e6 1.07525
\(395\) 0 0
\(396\) 2.98752e6 0.957356
\(397\) −1.54459e6 −0.491853 −0.245927 0.969288i \(-0.579092\pi\)
−0.245927 + 0.969288i \(0.579092\pi\)
\(398\) 3.45646e6 1.09376
\(399\) −165688. −0.0521027
\(400\) 0 0
\(401\) 429318. 0.133327 0.0666636 0.997776i \(-0.478765\pi\)
0.0666636 + 0.997776i \(0.478765\pi\)
\(402\) −385972. −0.119122
\(403\) 4.72696e6 1.44984
\(404\) −1.13781e6 −0.346831
\(405\) 0 0
\(406\) 952273. 0.286712
\(407\) −3.44153e6 −1.02983
\(408\) −40021.1 −0.0119025
\(409\) −282665. −0.0835533 −0.0417767 0.999127i \(-0.513302\pi\)
−0.0417767 + 0.999127i \(0.513302\pi\)
\(410\) 0 0
\(411\) −383246. −0.111911
\(412\) 80820.3 0.0234573
\(413\) 1.96263e6 0.566192
\(414\) −1.81732e6 −0.521110
\(415\) 0 0
\(416\) 890276. 0.252227
\(417\) 366462. 0.103202
\(418\) −5.51774e6 −1.54462
\(419\) −3.15372e6 −0.877582 −0.438791 0.898589i \(-0.644593\pi\)
−0.438791 + 0.898589i \(0.644593\pi\)
\(420\) 0 0
\(421\) 3.80804e6 1.04712 0.523560 0.851989i \(-0.324604\pi\)
0.523560 + 0.851989i \(0.324604\pi\)
\(422\) −1.78550e6 −0.488065
\(423\) −4.03062e6 −1.09527
\(424\) −1.41158e6 −0.381322
\(425\) 0 0
\(426\) 216131. 0.0577022
\(427\) 1.07405e6 0.285072
\(428\) −1.14193e6 −0.301322
\(429\) 1.29706e6 0.340265
\(430\) 0 0
\(431\) −1.88084e6 −0.487708 −0.243854 0.969812i \(-0.578412\pi\)
−0.243854 + 0.969812i \(0.578412\pi\)
\(432\) 236136. 0.0608768
\(433\) −5.01618e6 −1.28574 −0.642871 0.765975i \(-0.722257\pi\)
−0.642871 + 0.765975i \(0.722257\pi\)
\(434\) 1.06565e6 0.271574
\(435\) 0 0
\(436\) 2.20970e6 0.556695
\(437\) 3.35645e6 0.840769
\(438\) −653699. −0.162814
\(439\) 2.64450e6 0.654911 0.327456 0.944867i \(-0.393809\pi\)
0.327456 + 0.944867i \(0.393809\pi\)
\(440\) 0 0
\(441\) −574662. −0.140707
\(442\) 1.13718e6 0.276868
\(443\) 7.38758e6 1.78852 0.894258 0.447552i \(-0.147704\pi\)
0.894258 + 0.447552i \(0.147704\pi\)
\(444\) −134979. −0.0324945
\(445\) 0 0
\(446\) −2.46358e6 −0.586447
\(447\) −64066.1 −0.0151656
\(448\) 200704. 0.0472456
\(449\) 4.20191e6 0.983628 0.491814 0.870700i \(-0.336334\pi\)
0.491814 + 0.870700i \(0.336334\pi\)
\(450\) 0 0
\(451\) 7.71269e6 1.78552
\(452\) −2.53867e6 −0.584468
\(453\) 928488. 0.212584
\(454\) 575260. 0.130986
\(455\) 0 0
\(456\) −216409. −0.0487376
\(457\) 3.84060e6 0.860217 0.430109 0.902777i \(-0.358475\pi\)
0.430109 + 0.902777i \(0.358475\pi\)
\(458\) −2.18852e6 −0.487514
\(459\) 301623. 0.0668241
\(460\) 0 0
\(461\) −2.56922e6 −0.563052 −0.281526 0.959554i \(-0.590841\pi\)
−0.281526 + 0.959554i \(0.590841\pi\)
\(462\) 292410. 0.0637364
\(463\) 3.49589e6 0.757889 0.378944 0.925419i \(-0.376287\pi\)
0.378944 + 0.925419i \(0.376287\pi\)
\(464\) 1.24379e6 0.268195
\(465\) 0 0
\(466\) −2.49869e6 −0.533025
\(467\) −15357.9 −0.00325867 −0.00162933 0.999999i \(-0.500519\pi\)
−0.00162933 + 0.999999i \(0.500519\pi\)
\(468\) −3.32939e6 −0.702669
\(469\) 2.47245e6 0.519033
\(470\) 0 0
\(471\) 944118. 0.196098
\(472\) 2.56344e6 0.529624
\(473\) 1.22156e7 2.51051
\(474\) −514415. −0.105164
\(475\) 0 0
\(476\) 256365. 0.0518611
\(477\) 5.27895e6 1.06231
\(478\) −2.84749e6 −0.570024
\(479\) 2.48585e6 0.495036 0.247518 0.968883i \(-0.420385\pi\)
0.247518 + 0.968883i \(0.420385\pi\)
\(480\) 0 0
\(481\) 3.83536e6 0.755863
\(482\) 2.18715e6 0.428807
\(483\) −177874. −0.0346931
\(484\) 7.16100e6 1.38951
\(485\) 0 0
\(486\) −1.32797e6 −0.255034
\(487\) 1.01652e6 0.194219 0.0971096 0.995274i \(-0.469040\pi\)
0.0971096 + 0.995274i \(0.469040\pi\)
\(488\) 1.40284e6 0.266660
\(489\) 367768. 0.0695508
\(490\) 0 0
\(491\) −802250. −0.150178 −0.0750890 0.997177i \(-0.523924\pi\)
−0.0750890 + 0.997177i \(0.523924\pi\)
\(492\) 302497. 0.0563388
\(493\) 1.58872e6 0.294396
\(494\) 6.14915e6 1.13370
\(495\) 0 0
\(496\) 1.39186e6 0.254035
\(497\) −1.38448e6 −0.251418
\(498\) −142639. −0.0257730
\(499\) 3.00612e6 0.540450 0.270225 0.962797i \(-0.412902\pi\)
0.270225 + 0.962797i \(0.412902\pi\)
\(500\) 0 0
\(501\) −69468.8 −0.0123650
\(502\) −928587. −0.164461
\(503\) 6.02092e6 1.06107 0.530534 0.847664i \(-0.321991\pi\)
0.530534 + 0.847664i \(0.321991\pi\)
\(504\) −750579. −0.131620
\(505\) 0 0
\(506\) −5.92353e6 −1.02850
\(507\) −735450. −0.127067
\(508\) 1.07950e6 0.185594
\(509\) 8.24891e6 1.41124 0.705622 0.708588i \(-0.250668\pi\)
0.705622 + 0.708588i \(0.250668\pi\)
\(510\) 0 0
\(511\) 4.18744e6 0.709408
\(512\) 262144. 0.0441942
\(513\) 1.63099e6 0.273627
\(514\) −2.29612e6 −0.383342
\(515\) 0 0
\(516\) 479104. 0.0792147
\(517\) −1.31378e7 −2.16170
\(518\) 864644. 0.141584
\(519\) −51729.2 −0.00842981
\(520\) 0 0
\(521\) −3.69104e6 −0.595736 −0.297868 0.954607i \(-0.596276\pi\)
−0.297868 + 0.954607i \(0.596276\pi\)
\(522\) −4.65143e6 −0.747154
\(523\) −5.00116e6 −0.799496 −0.399748 0.916625i \(-0.630902\pi\)
−0.399748 + 0.916625i \(0.630902\pi\)
\(524\) 2.53128e6 0.402729
\(525\) 0 0
\(526\) −1.24817e6 −0.196703
\(527\) 1.77787e6 0.278852
\(528\) 381923. 0.0596199
\(529\) −2.83305e6 −0.440165
\(530\) 0 0
\(531\) −9.58657e6 −1.47546
\(532\) 1.38627e6 0.212358
\(533\) −8.59527e6 −1.31051
\(534\) 457843. 0.0694806
\(535\) 0 0
\(536\) 3.22932e6 0.485511
\(537\) −235446. −0.0352335
\(538\) −8.73797e6 −1.30153
\(539\) −1.87311e6 −0.277710
\(540\) 0 0
\(541\) −6.07709e6 −0.892694 −0.446347 0.894860i \(-0.647275\pi\)
−0.446347 + 0.894860i \(0.647275\pi\)
\(542\) 3.80769e6 0.556754
\(543\) 258896. 0.0376813
\(544\) 334844. 0.0485116
\(545\) 0 0
\(546\) −325871. −0.0467805
\(547\) 2.13370e6 0.304905 0.152453 0.988311i \(-0.451283\pi\)
0.152453 + 0.988311i \(0.451283\pi\)
\(548\) 3.20651e6 0.456122
\(549\) −5.24624e6 −0.742878
\(550\) 0 0
\(551\) 8.59085e6 1.20547
\(552\) −232325. −0.0324525
\(553\) 3.29522e6 0.458217
\(554\) −4.30167e6 −0.595473
\(555\) 0 0
\(556\) −3.06608e6 −0.420626
\(557\) 2.95091e6 0.403012 0.201506 0.979487i \(-0.435417\pi\)
0.201506 + 0.979487i \(0.435417\pi\)
\(558\) −5.20520e6 −0.707705
\(559\) −1.36135e7 −1.84264
\(560\) 0 0
\(561\) 487842. 0.0654444
\(562\) 2.75715e6 0.368230
\(563\) 1.19591e7 1.59011 0.795057 0.606534i \(-0.207441\pi\)
0.795057 + 0.606534i \(0.207441\pi\)
\(564\) −515272. −0.0682085
\(565\) 0 0
\(566\) 8.19846e6 1.07570
\(567\) 2.76342e6 0.360985
\(568\) −1.80830e6 −0.235180
\(569\) −7.83827e6 −1.01494 −0.507469 0.861670i \(-0.669419\pi\)
−0.507469 + 0.861670i \(0.669419\pi\)
\(570\) 0 0
\(571\) −6.60771e6 −0.848126 −0.424063 0.905633i \(-0.639397\pi\)
−0.424063 + 0.905633i \(0.639397\pi\)
\(572\) −1.08521e7 −1.38684
\(573\) −362786. −0.0461599
\(574\) −1.93772e6 −0.245477
\(575\) 0 0
\(576\) −980349. −0.123119
\(577\) 4.77589e6 0.597193 0.298596 0.954380i \(-0.403482\pi\)
0.298596 + 0.954380i \(0.403482\pi\)
\(578\) −5.25172e6 −0.653856
\(579\) −693600. −0.0859830
\(580\) 0 0
\(581\) 913709. 0.112297
\(582\) 352337. 0.0431173
\(583\) 1.72067e7 2.09665
\(584\) 5.46930e6 0.663590
\(585\) 0 0
\(586\) −1.21539e6 −0.146208
\(587\) 7.01821e6 0.840681 0.420340 0.907367i \(-0.361911\pi\)
0.420340 + 0.907367i \(0.361911\pi\)
\(588\) −73464.5 −0.00876263
\(589\) 9.61364e6 1.14183
\(590\) 0 0
\(591\) −1.58400e6 −0.186546
\(592\) 1.12933e6 0.132439
\(593\) −1.10510e7 −1.29052 −0.645261 0.763962i \(-0.723251\pi\)
−0.645261 + 0.763962i \(0.723251\pi\)
\(594\) −2.87841e6 −0.334723
\(595\) 0 0
\(596\) 536022. 0.0618112
\(597\) −1.65248e6 −0.189759
\(598\) 6.60137e6 0.754886
\(599\) −1.64477e6 −0.187300 −0.0936501 0.995605i \(-0.529853\pi\)
−0.0936501 + 0.995605i \(0.529853\pi\)
\(600\) 0 0
\(601\) 1.53175e7 1.72982 0.864911 0.501925i \(-0.167375\pi\)
0.864911 + 0.501925i \(0.167375\pi\)
\(602\) −3.06903e6 −0.345151
\(603\) −1.20768e7 −1.35257
\(604\) −7.76838e6 −0.866439
\(605\) 0 0
\(606\) 543972. 0.0601721
\(607\) 3.55348e6 0.391455 0.195728 0.980658i \(-0.437293\pi\)
0.195728 + 0.980658i \(0.437293\pi\)
\(608\) 1.81063e6 0.198642
\(609\) −455268. −0.0497421
\(610\) 0 0
\(611\) 1.46412e7 1.58662
\(612\) −1.25223e6 −0.135147
\(613\) −5.87140e6 −0.631088 −0.315544 0.948911i \(-0.602187\pi\)
−0.315544 + 0.948911i \(0.602187\pi\)
\(614\) 1.92882e6 0.206477
\(615\) 0 0
\(616\) −2.44651e6 −0.259774
\(617\) −1.11324e7 −1.17727 −0.588636 0.808398i \(-0.700335\pi\)
−0.588636 + 0.808398i \(0.700335\pi\)
\(618\) −38639.0 −0.00406963
\(619\) 1.76747e7 1.85407 0.927034 0.374977i \(-0.122349\pi\)
0.927034 + 0.374977i \(0.122349\pi\)
\(620\) 0 0
\(621\) 1.75094e6 0.182197
\(622\) −5.77129e6 −0.598132
\(623\) −2.93283e6 −0.302738
\(624\) −425628. −0.0437591
\(625\) 0 0
\(626\) −3.30464e6 −0.337046
\(627\) 2.63795e6 0.267977
\(628\) −7.89916e6 −0.799248
\(629\) 1.44253e6 0.145378
\(630\) 0 0
\(631\) −1.19809e7 −1.19789 −0.598945 0.800790i \(-0.704413\pi\)
−0.598945 + 0.800790i \(0.704413\pi\)
\(632\) 4.30396e6 0.428623
\(633\) 853620. 0.0846750
\(634\) −5.36975e6 −0.530555
\(635\) 0 0
\(636\) 674858. 0.0661561
\(637\) 2.08745e6 0.203830
\(638\) −1.51613e7 −1.47464
\(639\) 6.76257e6 0.655178
\(640\) 0 0
\(641\) −1.88873e6 −0.181562 −0.0907809 0.995871i \(-0.528936\pi\)
−0.0907809 + 0.995871i \(0.528936\pi\)
\(642\) 545942. 0.0522768
\(643\) −6.75118e6 −0.643950 −0.321975 0.946748i \(-0.604347\pi\)
−0.321975 + 0.946748i \(0.604347\pi\)
\(644\) 1.48822e6 0.141401
\(645\) 0 0
\(646\) 2.31278e6 0.218048
\(647\) 9.88165e6 0.928045 0.464022 0.885823i \(-0.346406\pi\)
0.464022 + 0.885823i \(0.346406\pi\)
\(648\) 3.60937e6 0.337671
\(649\) −3.12474e7 −2.91207
\(650\) 0 0
\(651\) −509470. −0.0471158
\(652\) −3.07701e6 −0.283472
\(653\) 1.45036e7 1.33104 0.665522 0.746378i \(-0.268209\pi\)
0.665522 + 0.746378i \(0.268209\pi\)
\(654\) −1.05643e6 −0.0965817
\(655\) 0 0
\(656\) −2.53090e6 −0.229623
\(657\) −2.04537e7 −1.84867
\(658\) 3.30071e6 0.297195
\(659\) 2.12571e6 0.190674 0.0953370 0.995445i \(-0.469607\pi\)
0.0953370 + 0.995445i \(0.469607\pi\)
\(660\) 0 0
\(661\) 2.52280e6 0.224584 0.112292 0.993675i \(-0.464181\pi\)
0.112292 + 0.993675i \(0.464181\pi\)
\(662\) 1.05153e7 0.932560
\(663\) −543667. −0.0480341
\(664\) 1.19342e6 0.105044
\(665\) 0 0
\(666\) −4.22340e6 −0.368957
\(667\) 9.22264e6 0.802677
\(668\) 581225. 0.0503968
\(669\) 1.17780e6 0.101743
\(670\) 0 0
\(671\) −1.71001e7 −1.46620
\(672\) −95953.7 −0.00819669
\(673\) −1.19058e7 −1.01326 −0.506630 0.862164i \(-0.669109\pi\)
−0.506630 + 0.862164i \(0.669109\pi\)
\(674\) −1.50833e7 −1.27893
\(675\) 0 0
\(676\) 6.15329e6 0.517894
\(677\) −1.67013e7 −1.40048 −0.700241 0.713907i \(-0.746924\pi\)
−0.700241 + 0.713907i \(0.746924\pi\)
\(678\) 1.21370e6 0.101400
\(679\) −2.25699e6 −0.187869
\(680\) 0 0
\(681\) −275023. −0.0227249
\(682\) −1.69663e7 −1.39678
\(683\) 5.59510e6 0.458940 0.229470 0.973316i \(-0.426301\pi\)
0.229470 + 0.973316i \(0.426301\pi\)
\(684\) −6.77129e6 −0.553390
\(685\) 0 0
\(686\) 470596. 0.0381802
\(687\) 1.04630e6 0.0845794
\(688\) −4.00852e6 −0.322859
\(689\) −1.91757e7 −1.53888
\(690\) 0 0
\(691\) 1.65131e6 0.131563 0.0657815 0.997834i \(-0.479046\pi\)
0.0657815 + 0.997834i \(0.479046\pi\)
\(692\) 432803. 0.0343578
\(693\) 9.14929e6 0.723693
\(694\) 4.67108e6 0.368145
\(695\) 0 0
\(696\) −594636. −0.0465295
\(697\) −3.23279e6 −0.252055
\(698\) 9.60226e6 0.745994
\(699\) 1.19459e6 0.0924751
\(700\) 0 0
\(701\) −1.74041e7 −1.33770 −0.668848 0.743400i \(-0.733212\pi\)
−0.668848 + 0.743400i \(0.733212\pi\)
\(702\) 3.20779e6 0.245676
\(703\) 7.80031e6 0.595283
\(704\) −3.19544e6 −0.242996
\(705\) 0 0
\(706\) 1.51532e7 1.14418
\(707\) −3.48455e6 −0.262179
\(708\) −1.22554e6 −0.0918851
\(709\) 1.15661e7 0.864113 0.432057 0.901846i \(-0.357788\pi\)
0.432057 + 0.901846i \(0.357788\pi\)
\(710\) 0 0
\(711\) −1.60957e7 −1.19408
\(712\) −3.83064e6 −0.283185
\(713\) 1.03206e7 0.760296
\(714\) −122565. −0.00899745
\(715\) 0 0
\(716\) 1.96991e6 0.143603
\(717\) 1.36135e6 0.0988941
\(718\) 1.47881e7 1.07053
\(719\) −1.14902e7 −0.828904 −0.414452 0.910071i \(-0.636027\pi\)
−0.414452 + 0.910071i \(0.636027\pi\)
\(720\) 0 0
\(721\) 247512. 0.0177320
\(722\) 2.60169e6 0.185743
\(723\) −1.04565e6 −0.0743942
\(724\) −2.16611e6 −0.153580
\(725\) 0 0
\(726\) −3.42357e6 −0.241067
\(727\) 2.00113e7 1.40423 0.702117 0.712062i \(-0.252238\pi\)
0.702117 + 0.712062i \(0.252238\pi\)
\(728\) 2.72647e6 0.190666
\(729\) −1.30694e7 −0.910831
\(730\) 0 0
\(731\) −5.12021e6 −0.354400
\(732\) −670676. −0.0462632
\(733\) −2.53634e7 −1.74360 −0.871800 0.489862i \(-0.837047\pi\)
−0.871800 + 0.489862i \(0.837047\pi\)
\(734\) −4.52546e6 −0.310044
\(735\) 0 0
\(736\) 1.94379e6 0.132268
\(737\) −3.93642e7 −2.66952
\(738\) 9.46489e6 0.639697
\(739\) −9.76419e6 −0.657696 −0.328848 0.944383i \(-0.606660\pi\)
−0.328848 + 0.944383i \(0.606660\pi\)
\(740\) 0 0
\(741\) −2.93982e6 −0.196687
\(742\) −4.32298e6 −0.288253
\(743\) 6.62984e6 0.440586 0.220293 0.975434i \(-0.429299\pi\)
0.220293 + 0.975434i \(0.429299\pi\)
\(744\) −665430. −0.0440728
\(745\) 0 0
\(746\) −1.43765e7 −0.945815
\(747\) −4.46306e6 −0.292638
\(748\) −4.08163e6 −0.266735
\(749\) −3.49717e6 −0.227778
\(750\) 0 0
\(751\) 3.02375e6 0.195635 0.0978174 0.995204i \(-0.468814\pi\)
0.0978174 + 0.995204i \(0.468814\pi\)
\(752\) 4.31113e6 0.278001
\(753\) 443944. 0.0285326
\(754\) 1.68962e7 1.08234
\(755\) 0 0
\(756\) 723165. 0.0460186
\(757\) 4.32091e6 0.274053 0.137027 0.990567i \(-0.456245\pi\)
0.137027 + 0.990567i \(0.456245\pi\)
\(758\) −5.45941e6 −0.345122
\(759\) 2.83195e6 0.178436
\(760\) 0 0
\(761\) −8.52278e6 −0.533482 −0.266741 0.963768i \(-0.585947\pi\)
−0.266741 + 0.963768i \(0.585947\pi\)
\(762\) −516094. −0.0321989
\(763\) 6.76721e6 0.420822
\(764\) 3.03533e6 0.188136
\(765\) 0 0
\(766\) −1.98145e7 −1.22014
\(767\) 3.48231e7 2.13737
\(768\) −125327. −0.00766730
\(769\) 1.93335e7 1.17895 0.589475 0.807787i \(-0.299335\pi\)
0.589475 + 0.807787i \(0.299335\pi\)
\(770\) 0 0
\(771\) 1.09774e6 0.0665065
\(772\) 5.80315e6 0.350445
\(773\) −1.85205e7 −1.11482 −0.557408 0.830239i \(-0.688204\pi\)
−0.557408 + 0.830239i \(0.688204\pi\)
\(774\) 1.49908e7 0.899441
\(775\) 0 0
\(776\) −2.94790e6 −0.175735
\(777\) −413374. −0.0245635
\(778\) 9.36941e6 0.554962
\(779\) −1.74810e7 −1.03210
\(780\) 0 0
\(781\) 2.20425e7 1.29311
\(782\) 2.48286e6 0.145190
\(783\) 4.48154e6 0.261230
\(784\) 614656. 0.0357143
\(785\) 0 0
\(786\) −1.21017e6 −0.0698699
\(787\) 927171. 0.0533609 0.0266804 0.999644i \(-0.491506\pi\)
0.0266804 + 0.999644i \(0.491506\pi\)
\(788\) 1.32529e7 0.760316
\(789\) 596733. 0.0341262
\(790\) 0 0
\(791\) −7.77469e6 −0.441816
\(792\) 1.19501e7 0.676953
\(793\) 1.90569e7 1.07614
\(794\) −6.17834e6 −0.347793
\(795\) 0 0
\(796\) 1.38258e7 0.773409
\(797\) 8.55917e6 0.477294 0.238647 0.971106i \(-0.423296\pi\)
0.238647 + 0.971106i \(0.423296\pi\)
\(798\) −662754. −0.0368422
\(799\) 5.50673e6 0.305159
\(800\) 0 0
\(801\) 1.43256e7 0.788915
\(802\) 1.71727e6 0.0942765
\(803\) −6.66688e7 −3.64866
\(804\) −1.54389e6 −0.0842318
\(805\) 0 0
\(806\) 1.89078e7 1.02519
\(807\) 4.17750e6 0.225804
\(808\) −4.55125e6 −0.245246
\(809\) 2.67123e6 0.143496 0.0717481 0.997423i \(-0.477142\pi\)
0.0717481 + 0.997423i \(0.477142\pi\)
\(810\) 0 0
\(811\) 1.47660e7 0.788334 0.394167 0.919039i \(-0.371033\pi\)
0.394167 + 0.919039i \(0.371033\pi\)
\(812\) 3.80909e6 0.202736
\(813\) −1.82040e6 −0.0965920
\(814\) −1.37661e7 −0.728200
\(815\) 0 0
\(816\) −160084. −0.00841634
\(817\) −2.76870e7 −1.45118
\(818\) −1.13066e6 −0.0590811
\(819\) −1.01963e7 −0.531168
\(820\) 0 0
\(821\) −9.07572e6 −0.469919 −0.234960 0.972005i \(-0.575496\pi\)
−0.234960 + 0.972005i \(0.575496\pi\)
\(822\) −1.53298e6 −0.0791331
\(823\) 3.06337e7 1.57652 0.788262 0.615340i \(-0.210981\pi\)
0.788262 + 0.615340i \(0.210981\pi\)
\(824\) 323281. 0.0165868
\(825\) 0 0
\(826\) 7.85053e6 0.400358
\(827\) 5.77395e6 0.293568 0.146784 0.989169i \(-0.453108\pi\)
0.146784 + 0.989169i \(0.453108\pi\)
\(828\) −7.26926e6 −0.368480
\(829\) 7.67908e6 0.388082 0.194041 0.980993i \(-0.437841\pi\)
0.194041 + 0.980993i \(0.437841\pi\)
\(830\) 0 0
\(831\) 2.05656e6 0.103309
\(832\) 3.56110e6 0.178351
\(833\) 785119. 0.0392033
\(834\) 1.46585e6 0.0729749
\(835\) 0 0
\(836\) −2.20710e7 −1.09221
\(837\) 5.01509e6 0.247437
\(838\) −1.26149e7 −0.620544
\(839\) 1.46555e6 0.0718782 0.0359391 0.999354i \(-0.488558\pi\)
0.0359391 + 0.999354i \(0.488558\pi\)
\(840\) 0 0
\(841\) 3.09424e6 0.150856
\(842\) 1.52322e7 0.740426
\(843\) −1.31815e6 −0.0638847
\(844\) −7.14199e6 −0.345114
\(845\) 0 0
\(846\) −1.61225e7 −0.774471
\(847\) 2.19306e7 1.05037
\(848\) −5.64634e6 −0.269636
\(849\) −3.91956e6 −0.186624
\(850\) 0 0
\(851\) 8.37396e6 0.396376
\(852\) 864523. 0.0408016
\(853\) −1.31222e7 −0.617496 −0.308748 0.951144i \(-0.599910\pi\)
−0.308748 + 0.951144i \(0.599910\pi\)
\(854\) 4.29619e6 0.201576
\(855\) 0 0
\(856\) −4.56773e6 −0.213067
\(857\) −3.79938e6 −0.176710 −0.0883549 0.996089i \(-0.528161\pi\)
−0.0883549 + 0.996089i \(0.528161\pi\)
\(858\) 5.18825e6 0.240604
\(859\) −3.76559e6 −0.174120 −0.0870602 0.996203i \(-0.527747\pi\)
−0.0870602 + 0.996203i \(0.527747\pi\)
\(860\) 0 0
\(861\) 926396. 0.0425881
\(862\) −7.52338e6 −0.344862
\(863\) −9.96098e6 −0.455276 −0.227638 0.973746i \(-0.573100\pi\)
−0.227638 + 0.973746i \(0.573100\pi\)
\(864\) 944542. 0.0430464
\(865\) 0 0
\(866\) −2.00647e7 −0.909156
\(867\) 2.51077e6 0.113438
\(868\) 4.26259e6 0.192032
\(869\) −5.24637e7 −2.35673
\(870\) 0 0
\(871\) 4.38688e7 1.95934
\(872\) 8.83881e6 0.393643
\(873\) 1.10244e7 0.489574
\(874\) 1.34258e7 0.594514
\(875\) 0 0
\(876\) −2.61479e6 −0.115127
\(877\) 1.25571e7 0.551304 0.275652 0.961258i \(-0.411106\pi\)
0.275652 + 0.961258i \(0.411106\pi\)
\(878\) 1.05780e7 0.463092
\(879\) 581058. 0.0253657
\(880\) 0 0
\(881\) 1.86084e7 0.807735 0.403868 0.914817i \(-0.367666\pi\)
0.403868 + 0.914817i \(0.367666\pi\)
\(882\) −2.29865e6 −0.0994950
\(883\) 1.31567e7 0.567866 0.283933 0.958844i \(-0.408361\pi\)
0.283933 + 0.958844i \(0.408361\pi\)
\(884\) 4.54870e6 0.195775
\(885\) 0 0
\(886\) 2.95503e7 1.26467
\(887\) 6.52618e6 0.278516 0.139258 0.990256i \(-0.455528\pi\)
0.139258 + 0.990256i \(0.455528\pi\)
\(888\) −539917. −0.0229770
\(889\) 3.30597e6 0.140296
\(890\) 0 0
\(891\) −4.39969e7 −1.85664
\(892\) −9.85431e6 −0.414681
\(893\) 2.97770e7 1.24955
\(894\) −256264. −0.0107237
\(895\) 0 0
\(896\) 802816. 0.0334077
\(897\) −3.15602e6 −0.130966
\(898\) 1.68076e7 0.695530
\(899\) 2.64157e7 1.09009
\(900\) 0 0
\(901\) −7.21224e6 −0.295977
\(902\) 3.08507e7 1.26255
\(903\) 1.46726e6 0.0598807
\(904\) −1.01547e7 −0.413281
\(905\) 0 0
\(906\) 3.71395e6 0.150320
\(907\) −2.06271e7 −0.832570 −0.416285 0.909234i \(-0.636668\pi\)
−0.416285 + 0.909234i \(0.636668\pi\)
\(908\) 2.30104e6 0.0926210
\(909\) 1.70205e7 0.683222
\(910\) 0 0
\(911\) −6.80945e6 −0.271842 −0.135921 0.990720i \(-0.543399\pi\)
−0.135921 + 0.990720i \(0.543399\pi\)
\(912\) −865638. −0.0344627
\(913\) −1.45473e7 −0.577572
\(914\) 1.53624e7 0.608265
\(915\) 0 0
\(916\) −8.75408e6 −0.344724
\(917\) 7.75206e6 0.304434
\(918\) 1.20649e6 0.0472518
\(919\) 2.32177e7 0.906841 0.453420 0.891297i \(-0.350204\pi\)
0.453420 + 0.891297i \(0.350204\pi\)
\(920\) 0 0
\(921\) −922142. −0.0358219
\(922\) −1.02769e7 −0.398138
\(923\) −2.45649e7 −0.949098
\(924\) 1.16964e6 0.0450684
\(925\) 0 0
\(926\) 1.39836e7 0.535908
\(927\) −1.20899e6 −0.0462085
\(928\) 4.97514e6 0.189642
\(929\) 4.68022e7 1.77921 0.889604 0.456733i \(-0.150981\pi\)
0.889604 + 0.456733i \(0.150981\pi\)
\(930\) 0 0
\(931\) 4.24544e6 0.160527
\(932\) −9.99475e6 −0.376905
\(933\) 2.75917e6 0.103771
\(934\) −61431.7 −0.00230423
\(935\) 0 0
\(936\) −1.33176e7 −0.496862
\(937\) −1.22112e7 −0.454368 −0.227184 0.973852i \(-0.572952\pi\)
−0.227184 + 0.973852i \(0.572952\pi\)
\(938\) 9.88979e6 0.367012
\(939\) 1.57990e6 0.0584745
\(940\) 0 0
\(941\) 3.96195e7 1.45860 0.729298 0.684196i \(-0.239847\pi\)
0.729298 + 0.684196i \(0.239847\pi\)
\(942\) 3.77647e6 0.138662
\(943\) −1.87666e7 −0.687235
\(944\) 1.02538e7 0.374501
\(945\) 0 0
\(946\) 4.88624e7 1.77520
\(947\) −1.31421e7 −0.476200 −0.238100 0.971241i \(-0.576525\pi\)
−0.238100 + 0.971241i \(0.576525\pi\)
\(948\) −2.05766e6 −0.0743623
\(949\) 7.42979e7 2.67800
\(950\) 0 0
\(951\) 2.56720e6 0.0920466
\(952\) 1.02546e6 0.0366713
\(953\) −5.17474e7 −1.84568 −0.922839 0.385185i \(-0.874138\pi\)
−0.922839 + 0.385185i \(0.874138\pi\)
\(954\) 2.11158e7 0.751167
\(955\) 0 0
\(956\) −1.13900e7 −0.403068
\(957\) 7.24840e6 0.255836
\(958\) 9.94341e6 0.350043
\(959\) 9.81992e6 0.344795
\(960\) 0 0
\(961\) 931510. 0.0325371
\(962\) 1.53414e7 0.534476
\(963\) 1.70821e7 0.593575
\(964\) 8.74861e6 0.303212
\(965\) 0 0
\(966\) −711494. −0.0245317
\(967\) −5.60278e7 −1.92680 −0.963401 0.268063i \(-0.913616\pi\)
−0.963401 + 0.268063i \(0.913616\pi\)
\(968\) 2.86440e7 0.982529
\(969\) −1.10571e6 −0.0378294
\(970\) 0 0
\(971\) −1.07082e7 −0.364475 −0.182237 0.983255i \(-0.558334\pi\)
−0.182237 + 0.983255i \(0.558334\pi\)
\(972\) −5.31190e6 −0.180337
\(973\) −9.38986e6 −0.317963
\(974\) 4.06607e6 0.137334
\(975\) 0 0
\(976\) 5.61135e6 0.188557
\(977\) −2.02350e7 −0.678214 −0.339107 0.940748i \(-0.610125\pi\)
−0.339107 + 0.940748i \(0.610125\pi\)
\(978\) 1.47107e6 0.0491798
\(979\) 4.66941e7 1.55706
\(980\) 0 0
\(981\) −3.30548e7 −1.09663
\(982\) −3.20900e6 −0.106192
\(983\) 1.65832e7 0.547375 0.273688 0.961819i \(-0.411757\pi\)
0.273688 + 0.961819i \(0.411757\pi\)
\(984\) 1.20999e6 0.0398376
\(985\) 0 0
\(986\) 6.35490e6 0.208169
\(987\) −1.57802e6 −0.0515608
\(988\) 2.45966e7 0.801647
\(989\) −2.97231e7 −0.966281
\(990\) 0 0
\(991\) 2.58044e6 0.0834660 0.0417330 0.999129i \(-0.486712\pi\)
0.0417330 + 0.999129i \(0.486712\pi\)
\(992\) 5.56746e6 0.179630
\(993\) −5.02721e6 −0.161791
\(994\) −5.53792e6 −0.177779
\(995\) 0 0
\(996\) −570555. −0.0182242
\(997\) −3.95431e7 −1.25989 −0.629945 0.776640i \(-0.716923\pi\)
−0.629945 + 0.776640i \(0.716923\pi\)
\(998\) 1.20245e7 0.382156
\(999\) 4.06914e6 0.129000
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.6.a.z.1.3 5
5.2 odd 4 70.6.c.d.29.8 yes 10
5.3 odd 4 70.6.c.d.29.3 10
5.4 even 2 350.6.a.y.1.3 5
15.2 even 4 630.6.g.h.379.4 10
15.8 even 4 630.6.g.h.379.9 10
20.3 even 4 560.6.g.d.449.6 10
20.7 even 4 560.6.g.d.449.5 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.c.d.29.3 10 5.3 odd 4
70.6.c.d.29.8 yes 10 5.2 odd 4
350.6.a.y.1.3 5 5.4 even 2
350.6.a.z.1.3 5 1.1 even 1 trivial
560.6.g.d.449.5 10 20.7 even 4
560.6.g.d.449.6 10 20.3 even 4
630.6.g.h.379.4 10 15.2 even 4
630.6.g.h.379.9 10 15.8 even 4