Properties

Label 350.6.c.l.99.1
Level $350$
Weight $6$
Character 350.99
Analytic conductor $56.134$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,6,Mod(99,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.99");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.1343369345\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{79})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 39x^{2} + 400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.1
Root \(-4.44410 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 350.99
Dual form 350.6.c.l.99.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{2} -13.7764i q^{3} -16.0000 q^{4} -55.1056 q^{6} +49.0000i q^{7} +64.0000i q^{8} +53.2111 q^{9} +50.3292 q^{11} +220.422i q^{12} +79.3542i q^{13} +196.000 q^{14} +256.000 q^{16} -145.342i q^{17} -212.844i q^{18} +993.925 q^{19} +675.043 q^{21} -201.317i q^{22} -508.229i q^{23} +881.689 q^{24} +317.417 q^{26} -4080.72i q^{27} -784.000i q^{28} +3481.28 q^{29} +1548.70 q^{31} -1024.00i q^{32} -693.354i q^{33} -581.367 q^{34} -851.378 q^{36} -12177.2i q^{37} -3975.70i q^{38} +1093.21 q^{39} +1724.46 q^{41} -2700.17i q^{42} -266.279i q^{43} -805.267 q^{44} -2032.92 q^{46} -19049.1i q^{47} -3526.76i q^{48} -2401.00 q^{49} -2002.28 q^{51} -1269.67i q^{52} -4646.35i q^{53} -16322.9 q^{54} -3136.00 q^{56} -13692.7i q^{57} -13925.1i q^{58} -20004.6 q^{59} +8544.05 q^{61} -6194.78i q^{62} +2607.34i q^{63} -4096.00 q^{64} -2773.42 q^{66} -14263.8i q^{67} +2325.47i q^{68} -7001.56 q^{69} +14674.3 q^{71} +3405.51i q^{72} +16595.8i q^{73} -48708.6 q^{74} -15902.8 q^{76} +2466.13i q^{77} -4372.86i q^{78} -4456.04 q^{79} -43287.3 q^{81} -6897.85i q^{82} +60013.4i q^{83} -10800.7 q^{84} -1065.12 q^{86} -47959.5i q^{87} +3221.07i q^{88} -54263.7 q^{89} -3888.35 q^{91} +8131.67i q^{92} -21335.4i q^{93} -76196.4 q^{94} -14107.0 q^{96} -114107. i q^{97} +9604.00i q^{98} +2678.07 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{4} + 64 q^{6} - 356 q^{9} - 12 q^{11} + 784 q^{14} + 1024 q^{16} + 136 q^{19} - 784 q^{21} - 1024 q^{24} + 5536 q^{26} - 5700 q^{29} + 7688 q^{31} - 4032 q^{34} + 5696 q^{36} - 24496 q^{39}+ \cdots + 31404 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 4.00000i − 0.707107i
\(3\) − 13.7764i − 0.883756i −0.897075 0.441878i \(-0.854312\pi\)
0.897075 0.441878i \(-0.145688\pi\)
\(4\) −16.0000 −0.500000
\(5\) 0 0
\(6\) −55.1056 −0.624910
\(7\) 49.0000i 0.377964i
\(8\) 64.0000i 0.353553i
\(9\) 53.2111 0.218976
\(10\) 0 0
\(11\) 50.3292 0.125412 0.0627058 0.998032i \(-0.480027\pi\)
0.0627058 + 0.998032i \(0.480027\pi\)
\(12\) 220.422i 0.441878i
\(13\) 79.3542i 0.130230i 0.997878 + 0.0651150i \(0.0207414\pi\)
−0.997878 + 0.0651150i \(0.979259\pi\)
\(14\) 196.000 0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) − 145.342i − 0.121974i −0.998139 0.0609871i \(-0.980575\pi\)
0.998139 0.0609871i \(-0.0194248\pi\)
\(18\) − 212.844i − 0.154839i
\(19\) 993.925 0.631640 0.315820 0.948819i \(-0.397720\pi\)
0.315820 + 0.948819i \(0.397720\pi\)
\(20\) 0 0
\(21\) 675.043 0.334028
\(22\) − 201.317i − 0.0886795i
\(23\) − 508.229i − 0.200327i −0.994971 0.100164i \(-0.968063\pi\)
0.994971 0.100164i \(-0.0319366\pi\)
\(24\) 881.689 0.312455
\(25\) 0 0
\(26\) 317.417 0.0920866
\(27\) − 4080.72i − 1.07728i
\(28\) − 784.000i − 0.188982i
\(29\) 3481.28 0.768678 0.384339 0.923192i \(-0.374429\pi\)
0.384339 + 0.923192i \(0.374429\pi\)
\(30\) 0 0
\(31\) 1548.70 0.289442 0.144721 0.989472i \(-0.453772\pi\)
0.144721 + 0.989472i \(0.453772\pi\)
\(32\) − 1024.00i − 0.176777i
\(33\) − 693.354i − 0.110833i
\(34\) −581.367 −0.0862488
\(35\) 0 0
\(36\) −851.378 −0.109488
\(37\) − 12177.2i − 1.46232i −0.682207 0.731159i \(-0.738980\pi\)
0.682207 0.731159i \(-0.261020\pi\)
\(38\) − 3975.70i − 0.446637i
\(39\) 1093.21 0.115092
\(40\) 0 0
\(41\) 1724.46 0.160212 0.0801058 0.996786i \(-0.474474\pi\)
0.0801058 + 0.996786i \(0.474474\pi\)
\(42\) − 2700.17i − 0.236194i
\(43\) − 266.279i − 0.0219617i −0.999940 0.0109809i \(-0.996505\pi\)
0.999940 0.0109809i \(-0.00349538\pi\)
\(44\) −805.267 −0.0627058
\(45\) 0 0
\(46\) −2032.92 −0.141653
\(47\) − 19049.1i − 1.25785i −0.777465 0.628926i \(-0.783495\pi\)
0.777465 0.628926i \(-0.216505\pi\)
\(48\) − 3526.76i − 0.220939i
\(49\) −2401.00 −0.142857
\(50\) 0 0
\(51\) −2002.28 −0.107795
\(52\) − 1269.67i − 0.0651150i
\(53\) − 4646.35i − 0.227207i −0.993526 0.113604i \(-0.963761\pi\)
0.993526 0.113604i \(-0.0362394\pi\)
\(54\) −16322.9 −0.761750
\(55\) 0 0
\(56\) −3136.00 −0.133631
\(57\) − 13692.7i − 0.558215i
\(58\) − 13925.1i − 0.543537i
\(59\) −20004.6 −0.748169 −0.374085 0.927395i \(-0.622043\pi\)
−0.374085 + 0.927395i \(0.622043\pi\)
\(60\) 0 0
\(61\) 8544.05 0.293995 0.146997 0.989137i \(-0.453039\pi\)
0.146997 + 0.989137i \(0.453039\pi\)
\(62\) − 6194.78i − 0.204667i
\(63\) 2607.34i 0.0827651i
\(64\) −4096.00 −0.125000
\(65\) 0 0
\(66\) −2773.42 −0.0783710
\(67\) − 14263.8i − 0.388192i −0.980983 0.194096i \(-0.937823\pi\)
0.980983 0.194096i \(-0.0621774\pi\)
\(68\) 2325.47i 0.0609871i
\(69\) −7001.56 −0.177040
\(70\) 0 0
\(71\) 14674.3 0.345471 0.172735 0.984968i \(-0.444739\pi\)
0.172735 + 0.984968i \(0.444739\pi\)
\(72\) 3405.51i 0.0774196i
\(73\) 16595.8i 0.364495i 0.983253 + 0.182248i \(0.0583373\pi\)
−0.983253 + 0.182248i \(0.941663\pi\)
\(74\) −48708.6 −1.03401
\(75\) 0 0
\(76\) −15902.8 −0.315820
\(77\) 2466.13i 0.0474012i
\(78\) − 4372.86i − 0.0813820i
\(79\) −4456.04 −0.0803306 −0.0401653 0.999193i \(-0.512788\pi\)
−0.0401653 + 0.999193i \(0.512788\pi\)
\(80\) 0 0
\(81\) −43287.3 −0.733074
\(82\) − 6897.85i − 0.113287i
\(83\) 60013.4i 0.956209i 0.878303 + 0.478105i \(0.158676\pi\)
−0.878303 + 0.478105i \(0.841324\pi\)
\(84\) −10800.7 −0.167014
\(85\) 0 0
\(86\) −1065.12 −0.0155293
\(87\) − 47959.5i − 0.679323i
\(88\) 3221.07i 0.0443397i
\(89\) −54263.7 −0.726163 −0.363082 0.931757i \(-0.618275\pi\)
−0.363082 + 0.931757i \(0.618275\pi\)
\(90\) 0 0
\(91\) −3888.35 −0.0492223
\(92\) 8131.67i 0.100164i
\(93\) − 21335.4i − 0.255796i
\(94\) −76196.4 −0.889436
\(95\) 0 0
\(96\) −14107.0 −0.156227
\(97\) − 114107.i − 1.23136i −0.787997 0.615679i \(-0.788882\pi\)
0.787997 0.615679i \(-0.211118\pi\)
\(98\) 9604.00i 0.101015i
\(99\) 2678.07 0.0274621
\(100\) 0 0
\(101\) 42085.4 0.410514 0.205257 0.978708i \(-0.434197\pi\)
0.205257 + 0.978708i \(0.434197\pi\)
\(102\) 8009.13i 0.0762228i
\(103\) 108760.i 1.01013i 0.863081 + 0.505065i \(0.168531\pi\)
−0.863081 + 0.505065i \(0.831469\pi\)
\(104\) −5078.67 −0.0460433
\(105\) 0 0
\(106\) −18585.4 −0.160660
\(107\) − 154379.i − 1.30356i −0.758410 0.651778i \(-0.774023\pi\)
0.758410 0.651778i \(-0.225977\pi\)
\(108\) 65291.5i 0.538638i
\(109\) −81080.6 −0.653658 −0.326829 0.945083i \(-0.605980\pi\)
−0.326829 + 0.945083i \(0.605980\pi\)
\(110\) 0 0
\(111\) −167757. −1.29233
\(112\) 12544.0i 0.0944911i
\(113\) 102542.i 0.755448i 0.925918 + 0.377724i \(0.123293\pi\)
−0.925918 + 0.377724i \(0.876707\pi\)
\(114\) −54770.8 −0.394718
\(115\) 0 0
\(116\) −55700.5 −0.384339
\(117\) 4222.52i 0.0285172i
\(118\) 80018.4i 0.529035i
\(119\) 7121.74 0.0461019
\(120\) 0 0
\(121\) −158518. −0.984272
\(122\) − 34176.2i − 0.207886i
\(123\) − 23756.9i − 0.141588i
\(124\) −24779.1 −0.144721
\(125\) 0 0
\(126\) 10429.4 0.0585237
\(127\) − 208233.i − 1.14562i −0.819689 0.572809i \(-0.805854\pi\)
0.819689 0.572809i \(-0.194146\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) −3668.37 −0.0194088
\(130\) 0 0
\(131\) −96652.5 −0.492079 −0.246040 0.969260i \(-0.579129\pi\)
−0.246040 + 0.969260i \(0.579129\pi\)
\(132\) 11093.7i 0.0554167i
\(133\) 48702.3i 0.238737i
\(134\) −57055.0 −0.274493
\(135\) 0 0
\(136\) 9301.87 0.0431244
\(137\) 18521.3i 0.0843084i 0.999111 + 0.0421542i \(0.0134221\pi\)
−0.999111 + 0.0421542i \(0.986578\pi\)
\(138\) 28006.3i 0.125186i
\(139\) 188850. 0.829047 0.414524 0.910039i \(-0.363948\pi\)
0.414524 + 0.910039i \(0.363948\pi\)
\(140\) 0 0
\(141\) −262428. −1.11163
\(142\) − 58697.1i − 0.244285i
\(143\) 3993.83i 0.0163324i
\(144\) 13622.0 0.0547439
\(145\) 0 0
\(146\) 66383.3 0.257737
\(147\) 33077.1i 0.126251i
\(148\) 194835.i 0.731159i
\(149\) 294645. 1.08726 0.543630 0.839325i \(-0.317050\pi\)
0.543630 + 0.839325i \(0.317050\pi\)
\(150\) 0 0
\(151\) −489919. −1.74857 −0.874283 0.485416i \(-0.838668\pi\)
−0.874283 + 0.485416i \(0.838668\pi\)
\(152\) 63611.2i 0.223318i
\(153\) − 7733.79i − 0.0267094i
\(154\) 9864.52 0.0335177
\(155\) 0 0
\(156\) −17491.4 −0.0575458
\(157\) − 323421.i − 1.04717i −0.851972 0.523587i \(-0.824594\pi\)
0.851972 0.523587i \(-0.175406\pi\)
\(158\) 17824.2i 0.0568023i
\(159\) −64009.9 −0.200796
\(160\) 0 0
\(161\) 24903.2 0.0757166
\(162\) 173149.i 0.518361i
\(163\) − 493738.i − 1.45555i −0.685816 0.727775i \(-0.740554\pi\)
0.685816 0.727775i \(-0.259446\pi\)
\(164\) −27591.4 −0.0801058
\(165\) 0 0
\(166\) 240054. 0.676142
\(167\) − 310107.i − 0.860440i −0.902724 0.430220i \(-0.858436\pi\)
0.902724 0.430220i \(-0.141564\pi\)
\(168\) 43202.8i 0.118097i
\(169\) 364996. 0.983040
\(170\) 0 0
\(171\) 52887.9 0.138314
\(172\) 4260.47i 0.0109809i
\(173\) − 513313.i − 1.30397i −0.758232 0.651984i \(-0.773937\pi\)
0.758232 0.651984i \(-0.226063\pi\)
\(174\) −191838. −0.480354
\(175\) 0 0
\(176\) 12884.3 0.0313529
\(177\) 275591.i 0.661199i
\(178\) 217055.i 0.513475i
\(179\) −263095. −0.613734 −0.306867 0.951752i \(-0.599281\pi\)
−0.306867 + 0.951752i \(0.599281\pi\)
\(180\) 0 0
\(181\) −26410.8 −0.0599219 −0.0299610 0.999551i \(-0.509538\pi\)
−0.0299610 + 0.999551i \(0.509538\pi\)
\(182\) 15553.4i 0.0348055i
\(183\) − 117706.i − 0.259819i
\(184\) 32526.7 0.0708264
\(185\) 0 0
\(186\) −85341.7 −0.180875
\(187\) − 7314.92i − 0.0152970i
\(188\) 304786.i 0.628926i
\(189\) 199955. 0.407172
\(190\) 0 0
\(191\) 330442. 0.655408 0.327704 0.944780i \(-0.393725\pi\)
0.327704 + 0.944780i \(0.393725\pi\)
\(192\) 56428.1i 0.110469i
\(193\) − 661283.i − 1.27789i −0.769252 0.638946i \(-0.779371\pi\)
0.769252 0.638946i \(-0.220629\pi\)
\(194\) −456429. −0.870701
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) 449944.i 0.826025i 0.910725 + 0.413012i \(0.135523\pi\)
−0.910725 + 0.413012i \(0.864477\pi\)
\(198\) − 10712.3i − 0.0194187i
\(199\) 39456.2 0.0706289 0.0353145 0.999376i \(-0.488757\pi\)
0.0353145 + 0.999376i \(0.488757\pi\)
\(200\) 0 0
\(201\) −196503. −0.343067
\(202\) − 168342.i − 0.290277i
\(203\) 170583.i 0.290533i
\(204\) 32036.5 0.0538977
\(205\) 0 0
\(206\) 435041. 0.714269
\(207\) − 27043.4i − 0.0438668i
\(208\) 20314.7i 0.0325575i
\(209\) 50023.4 0.0792150
\(210\) 0 0
\(211\) 559638. 0.865369 0.432685 0.901545i \(-0.357566\pi\)
0.432685 + 0.901545i \(0.357566\pi\)
\(212\) 74341.6i 0.113604i
\(213\) − 202159.i − 0.305312i
\(214\) −617517. −0.921753
\(215\) 0 0
\(216\) 261166. 0.380875
\(217\) 75886.1i 0.109399i
\(218\) 324322.i 0.462206i
\(219\) 228631. 0.322125
\(220\) 0 0
\(221\) 11533.5 0.0158847
\(222\) 671029.i 0.913816i
\(223\) 723973.i 0.974900i 0.873151 + 0.487450i \(0.162073\pi\)
−0.873151 + 0.487450i \(0.837927\pi\)
\(224\) 50176.0 0.0668153
\(225\) 0 0
\(226\) 410167. 0.534182
\(227\) − 596271.i − 0.768032i −0.923327 0.384016i \(-0.874541\pi\)
0.923327 0.384016i \(-0.125459\pi\)
\(228\) 219083.i 0.279108i
\(229\) −91835.9 −0.115724 −0.0578620 0.998325i \(-0.518428\pi\)
−0.0578620 + 0.998325i \(0.518428\pi\)
\(230\) 0 0
\(231\) 33974.4 0.0418911
\(232\) 222802.i 0.271769i
\(233\) − 285704.i − 0.344767i −0.985030 0.172384i \(-0.944853\pi\)
0.985030 0.172384i \(-0.0551469\pi\)
\(234\) 16890.1 0.0201647
\(235\) 0 0
\(236\) 320074. 0.374085
\(237\) 61388.1i 0.0709926i
\(238\) − 28487.0i − 0.0325990i
\(239\) 110997. 0.125694 0.0628472 0.998023i \(-0.479982\pi\)
0.0628472 + 0.998023i \(0.479982\pi\)
\(240\) 0 0
\(241\) 1.44863e6 1.60663 0.803315 0.595554i \(-0.203068\pi\)
0.803315 + 0.595554i \(0.203068\pi\)
\(242\) 634072.i 0.695985i
\(243\) − 395272.i − 0.429419i
\(244\) −136705. −0.146997
\(245\) 0 0
\(246\) −95027.5 −0.100118
\(247\) 78872.1i 0.0822585i
\(248\) 99116.5i 0.102333i
\(249\) 826768. 0.845055
\(250\) 0 0
\(251\) 347891. 0.348545 0.174272 0.984697i \(-0.444243\pi\)
0.174272 + 0.984697i \(0.444243\pi\)
\(252\) − 41717.5i − 0.0413825i
\(253\) − 25578.8i − 0.0251234i
\(254\) −832930. −0.810074
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 1.47105e6i 1.38930i 0.719348 + 0.694650i \(0.244441\pi\)
−0.719348 + 0.694650i \(0.755559\pi\)
\(258\) 14673.5i 0.0137241i
\(259\) 596681. 0.552704
\(260\) 0 0
\(261\) 185243. 0.168322
\(262\) 386610.i 0.347952i
\(263\) − 1.73199e6i − 1.54403i −0.635602 0.772017i \(-0.719248\pi\)
0.635602 0.772017i \(-0.280752\pi\)
\(264\) 44374.7 0.0391855
\(265\) 0 0
\(266\) 194809. 0.168813
\(267\) 747557.i 0.641751i
\(268\) 228220.i 0.194096i
\(269\) 1.50181e6 1.26542 0.632708 0.774391i \(-0.281943\pi\)
0.632708 + 0.774391i \(0.281943\pi\)
\(270\) 0 0
\(271\) 226531. 0.187372 0.0936861 0.995602i \(-0.470135\pi\)
0.0936861 + 0.995602i \(0.470135\pi\)
\(272\) − 37207.5i − 0.0304935i
\(273\) 53567.5i 0.0435005i
\(274\) 74085.4 0.0596151
\(275\) 0 0
\(276\) 112025. 0.0885202
\(277\) − 3802.20i − 0.00297739i −0.999999 0.00148870i \(-0.999526\pi\)
0.999999 0.00148870i \(-0.000473867\pi\)
\(278\) − 755399.i − 0.586225i
\(279\) 82407.8 0.0633808
\(280\) 0 0
\(281\) 2.17365e6 1.64219 0.821097 0.570788i \(-0.193362\pi\)
0.821097 + 0.570788i \(0.193362\pi\)
\(282\) 1.04971e6i 0.786044i
\(283\) − 135231.i − 0.100372i −0.998740 0.0501858i \(-0.984019\pi\)
0.998740 0.0501858i \(-0.0159813\pi\)
\(284\) −234789. −0.172735
\(285\) 0 0
\(286\) 15975.3 0.0115487
\(287\) 84498.7i 0.0605543i
\(288\) − 54488.2i − 0.0387098i
\(289\) 1.39873e6 0.985122
\(290\) 0 0
\(291\) −1.57199e6 −1.08822
\(292\) − 265533.i − 0.182248i
\(293\) 1.53017e6i 1.04129i 0.853774 + 0.520644i \(0.174308\pi\)
−0.853774 + 0.520644i \(0.825692\pi\)
\(294\) 132308. 0.0892728
\(295\) 0 0
\(296\) 779338. 0.517007
\(297\) − 205379.i − 0.135103i
\(298\) − 1.17858e6i − 0.768808i
\(299\) 40330.1 0.0260886
\(300\) 0 0
\(301\) 13047.7 0.00830074
\(302\) 1.95968e6i 1.23642i
\(303\) − 579785.i − 0.362794i
\(304\) 254445. 0.157910
\(305\) 0 0
\(306\) −30935.2 −0.0188864
\(307\) − 2.22690e6i − 1.34851i −0.738497 0.674257i \(-0.764464\pi\)
0.738497 0.674257i \(-0.235536\pi\)
\(308\) − 39458.1i − 0.0237006i
\(309\) 1.49832e6 0.892708
\(310\) 0 0
\(311\) −497393. −0.291608 −0.145804 0.989314i \(-0.546577\pi\)
−0.145804 + 0.989314i \(0.546577\pi\)
\(312\) 69965.7i 0.0406910i
\(313\) − 649722.i − 0.374858i −0.982278 0.187429i \(-0.939985\pi\)
0.982278 0.187429i \(-0.0600155\pi\)
\(314\) −1.29368e6 −0.740463
\(315\) 0 0
\(316\) 71296.6 0.0401653
\(317\) 2.61927e6i 1.46397i 0.681320 + 0.731986i \(0.261406\pi\)
−0.681320 + 0.731986i \(0.738594\pi\)
\(318\) 256040.i 0.141984i
\(319\) 175210. 0.0964012
\(320\) 0 0
\(321\) −2.12679e6 −1.15203
\(322\) − 99612.9i − 0.0535397i
\(323\) − 144459.i − 0.0770438i
\(324\) 692596. 0.366537
\(325\) 0 0
\(326\) −1.97495e6 −1.02923
\(327\) 1.11700e6i 0.577674i
\(328\) 110366.i 0.0566434i
\(329\) 933406. 0.475424
\(330\) 0 0
\(331\) 31686.5 0.0158966 0.00794831 0.999968i \(-0.497470\pi\)
0.00794831 + 0.999968i \(0.497470\pi\)
\(332\) − 960214.i − 0.478105i
\(333\) − 647960.i − 0.320212i
\(334\) −1.24043e6 −0.608423
\(335\) 0 0
\(336\) 172811. 0.0835071
\(337\) 73508.6i 0.0352585i 0.999845 + 0.0176292i \(0.00561185\pi\)
−0.999845 + 0.0176292i \(0.994388\pi\)
\(338\) − 1.45998e6i − 0.695114i
\(339\) 1.41266e6 0.667632
\(340\) 0 0
\(341\) 77944.6 0.0362994
\(342\) − 211551.i − 0.0978027i
\(343\) − 117649.i − 0.0539949i
\(344\) 17041.9 0.00776464
\(345\) 0 0
\(346\) −2.05325e6 −0.922045
\(347\) − 1.79688e6i − 0.801118i −0.916271 0.400559i \(-0.868816\pi\)
0.916271 0.400559i \(-0.131184\pi\)
\(348\) 767352.i 0.339662i
\(349\) 268466. 0.117985 0.0589923 0.998258i \(-0.481211\pi\)
0.0589923 + 0.998258i \(0.481211\pi\)
\(350\) 0 0
\(351\) 323822. 0.140294
\(352\) − 51537.1i − 0.0221699i
\(353\) 291901.i 0.124680i 0.998055 + 0.0623402i \(0.0198564\pi\)
−0.998055 + 0.0623402i \(0.980144\pi\)
\(354\) 1.10236e6 0.467538
\(355\) 0 0
\(356\) 868219. 0.363082
\(357\) − 98111.9i − 0.0407428i
\(358\) 1.05238e6i 0.433976i
\(359\) −573376. −0.234803 −0.117402 0.993085i \(-0.537456\pi\)
−0.117402 + 0.993085i \(0.537456\pi\)
\(360\) 0 0
\(361\) −1.48821e6 −0.601031
\(362\) 105643.i 0.0423712i
\(363\) 2.18381e6i 0.869856i
\(364\) 62213.7 0.0246112
\(365\) 0 0
\(366\) −470825. −0.183720
\(367\) − 1.73711e6i − 0.673228i −0.941643 0.336614i \(-0.890718\pi\)
0.941643 0.336614i \(-0.109282\pi\)
\(368\) − 130107.i − 0.0500818i
\(369\) 91760.6 0.0350825
\(370\) 0 0
\(371\) 227671. 0.0858763
\(372\) 341367.i 0.127898i
\(373\) − 559504.i − 0.208224i −0.994566 0.104112i \(-0.966800\pi\)
0.994566 0.104112i \(-0.0332001\pi\)
\(374\) −29259.7 −0.0108166
\(375\) 0 0
\(376\) 1.21914e6 0.444718
\(377\) 276254.i 0.100105i
\(378\) − 799821.i − 0.287914i
\(379\) −1.81746e6 −0.649929 −0.324964 0.945726i \(-0.605352\pi\)
−0.324964 + 0.945726i \(0.605352\pi\)
\(380\) 0 0
\(381\) −2.86869e6 −1.01245
\(382\) − 1.32177e6i − 0.463443i
\(383\) 2.67383e6i 0.931402i 0.884942 + 0.465701i \(0.154198\pi\)
−0.884942 + 0.465701i \(0.845802\pi\)
\(384\) 225712. 0.0781137
\(385\) 0 0
\(386\) −2.64513e6 −0.903606
\(387\) − 14169.0i − 0.00480908i
\(388\) 1.82572e6i 0.615679i
\(389\) −2.11315e6 −0.708038 −0.354019 0.935238i \(-0.615185\pi\)
−0.354019 + 0.935238i \(0.615185\pi\)
\(390\) 0 0
\(391\) −73866.9 −0.0244347
\(392\) − 153664.i − 0.0505076i
\(393\) 1.33152e6i 0.434878i
\(394\) 1.79978e6 0.584088
\(395\) 0 0
\(396\) −42849.1 −0.0137311
\(397\) 3.62861e6i 1.15548i 0.816220 + 0.577741i \(0.196066\pi\)
−0.816220 + 0.577741i \(0.803934\pi\)
\(398\) − 157825.i − 0.0499422i
\(399\) 670942. 0.210986
\(400\) 0 0
\(401\) −1.46779e6 −0.455829 −0.227915 0.973681i \(-0.573191\pi\)
−0.227915 + 0.973681i \(0.573191\pi\)
\(402\) 786012.i 0.242585i
\(403\) 122895.i 0.0376941i
\(404\) −673367. −0.205257
\(405\) 0 0
\(406\) 682332. 0.205438
\(407\) − 612866.i − 0.183392i
\(408\) − 128146.i − 0.0381114i
\(409\) −405109. −0.119747 −0.0598734 0.998206i \(-0.519070\pi\)
−0.0598734 + 0.998206i \(0.519070\pi\)
\(410\) 0 0
\(411\) 255157. 0.0745081
\(412\) − 1.74016e6i − 0.505065i
\(413\) − 980225.i − 0.282781i
\(414\) −108174. −0.0310185
\(415\) 0 0
\(416\) 81258.7 0.0230216
\(417\) − 2.60167e6i − 0.732675i
\(418\) − 200094.i − 0.0560135i
\(419\) −5.59025e6 −1.55559 −0.777797 0.628515i \(-0.783663\pi\)
−0.777797 + 0.628515i \(0.783663\pi\)
\(420\) 0 0
\(421\) 4.32984e6 1.19060 0.595302 0.803502i \(-0.297033\pi\)
0.595302 + 0.803502i \(0.297033\pi\)
\(422\) − 2.23855e6i − 0.611908i
\(423\) − 1.01362e6i − 0.275439i
\(424\) 297366. 0.0803299
\(425\) 0 0
\(426\) −808635. −0.215888
\(427\) 418659.i 0.111120i
\(428\) 2.47007e6i 0.651778i
\(429\) 55020.5 0.0144338
\(430\) 0 0
\(431\) 2.26685e6 0.587801 0.293901 0.955836i \(-0.405047\pi\)
0.293901 + 0.955836i \(0.405047\pi\)
\(432\) − 1.04466e6i − 0.269319i
\(433\) 3.77679e6i 0.968061i 0.875051 + 0.484030i \(0.160828\pi\)
−0.875051 + 0.484030i \(0.839172\pi\)
\(434\) 303544. 0.0773567
\(435\) 0 0
\(436\) 1.29729e6 0.326829
\(437\) − 505142.i − 0.126535i
\(438\) − 914523.i − 0.227777i
\(439\) −5.66625e6 −1.40325 −0.701624 0.712548i \(-0.747541\pi\)
−0.701624 + 0.712548i \(0.747541\pi\)
\(440\) 0 0
\(441\) −127760. −0.0312823
\(442\) − 46133.9i − 0.0112322i
\(443\) − 443096.i − 0.107272i −0.998561 0.0536362i \(-0.982919\pi\)
0.998561 0.0536362i \(-0.0170811\pi\)
\(444\) 2.68412e6 0.646166
\(445\) 0 0
\(446\) 2.89589e6 0.689359
\(447\) − 4.05914e6i − 0.960872i
\(448\) − 200704.i − 0.0472456i
\(449\) −6.00344e6 −1.40535 −0.702674 0.711512i \(-0.748011\pi\)
−0.702674 + 0.711512i \(0.748011\pi\)
\(450\) 0 0
\(451\) 86790.8 0.0200924
\(452\) − 1.64067e6i − 0.377724i
\(453\) 6.74932e6i 1.54531i
\(454\) −2.38508e6 −0.543080
\(455\) 0 0
\(456\) 876333. 0.197359
\(457\) − 1.87447e6i − 0.419845i −0.977718 0.209922i \(-0.932679\pi\)
0.977718 0.209922i \(-0.0673211\pi\)
\(458\) 367343.i 0.0818293i
\(459\) −593099. −0.131400
\(460\) 0 0
\(461\) −3.52843e6 −0.773268 −0.386634 0.922233i \(-0.626362\pi\)
−0.386634 + 0.922233i \(0.626362\pi\)
\(462\) − 135897.i − 0.0296214i
\(463\) − 3.23963e6i − 0.702332i −0.936313 0.351166i \(-0.885785\pi\)
0.936313 0.351166i \(-0.114215\pi\)
\(464\) 891209. 0.192169
\(465\) 0 0
\(466\) −1.14281e6 −0.243787
\(467\) 4.69897e6i 0.997036i 0.866879 + 0.498518i \(0.166122\pi\)
−0.866879 + 0.498518i \(0.833878\pi\)
\(468\) − 67560.4i − 0.0142586i
\(469\) 698924. 0.146723
\(470\) 0 0
\(471\) −4.45557e6 −0.925445
\(472\) − 1.28029e6i − 0.264518i
\(473\) − 13401.6i − 0.00275425i
\(474\) 245552. 0.0501994
\(475\) 0 0
\(476\) −113948. −0.0230509
\(477\) − 247237.i − 0.0497529i
\(478\) − 443988.i − 0.0888794i
\(479\) −9.35047e6 −1.86206 −0.931032 0.364938i \(-0.881090\pi\)
−0.931032 + 0.364938i \(0.881090\pi\)
\(480\) 0 0
\(481\) 966308. 0.190438
\(482\) − 5.79453e6i − 1.13606i
\(483\) − 343077.i − 0.0669150i
\(484\) 2.53629e6 0.492136
\(485\) 0 0
\(486\) −1.58109e6 −0.303645
\(487\) − 9.31032e6i − 1.77886i −0.457071 0.889430i \(-0.651101\pi\)
0.457071 0.889430i \(-0.348899\pi\)
\(488\) 546819.i 0.103943i
\(489\) −6.80192e6 −1.28635
\(490\) 0 0
\(491\) 8.23217e6 1.54103 0.770514 0.637423i \(-0.220000\pi\)
0.770514 + 0.637423i \(0.220000\pi\)
\(492\) 380110.i 0.0707940i
\(493\) − 505976.i − 0.0937588i
\(494\) 315488. 0.0581656
\(495\) 0 0
\(496\) 396466. 0.0723606
\(497\) 719040.i 0.130576i
\(498\) − 3.30707e6i − 0.597544i
\(499\) 1.05044e7 1.88851 0.944257 0.329209i \(-0.106782\pi\)
0.944257 + 0.329209i \(0.106782\pi\)
\(500\) 0 0
\(501\) −4.27216e6 −0.760419
\(502\) − 1.39156e6i − 0.246458i
\(503\) − 2.01109e6i − 0.354415i −0.984173 0.177208i \(-0.943294\pi\)
0.984173 0.177208i \(-0.0567064\pi\)
\(504\) −166870. −0.0292619
\(505\) 0 0
\(506\) −102315. −0.0177649
\(507\) − 5.02833e6i − 0.868767i
\(508\) 3.33172e6i 0.572809i
\(509\) −1.02138e7 −1.74741 −0.873703 0.486460i \(-0.838288\pi\)
−0.873703 + 0.486460i \(0.838288\pi\)
\(510\) 0 0
\(511\) −813196. −0.137766
\(512\) − 262144.i − 0.0441942i
\(513\) − 4.05593e6i − 0.680451i
\(514\) 5.88422e6 0.982383
\(515\) 0 0
\(516\) 58693.8 0.00970439
\(517\) − 958725.i − 0.157749i
\(518\) − 2.38672e6i − 0.390821i
\(519\) −7.07160e6 −1.15239
\(520\) 0 0
\(521\) −8.16451e6 −1.31776 −0.658879 0.752249i \(-0.728969\pi\)
−0.658879 + 0.752249i \(0.728969\pi\)
\(522\) − 740972.i − 0.119022i
\(523\) 4.58812e6i 0.733467i 0.930326 + 0.366733i \(0.119524\pi\)
−0.930326 + 0.366733i \(0.880476\pi\)
\(524\) 1.54644e6 0.246040
\(525\) 0 0
\(526\) −6.92797e6 −1.09180
\(527\) − 225090.i − 0.0353045i
\(528\) − 177499.i − 0.0277083i
\(529\) 6.17805e6 0.959869
\(530\) 0 0
\(531\) −1.06447e6 −0.163831
\(532\) − 779237.i − 0.119369i
\(533\) 136843.i 0.0208644i
\(534\) 2.99023e6 0.453786
\(535\) 0 0
\(536\) 912880. 0.137247
\(537\) 3.62450e6i 0.542391i
\(538\) − 6.00722e6i − 0.894784i
\(539\) −120840. −0.0179160
\(540\) 0 0
\(541\) −671740. −0.0986753 −0.0493376 0.998782i \(-0.515711\pi\)
−0.0493376 + 0.998782i \(0.515711\pi\)
\(542\) − 906126.i − 0.132492i
\(543\) 363846.i 0.0529563i
\(544\) −148830. −0.0215622
\(545\) 0 0
\(546\) 214270. 0.0307595
\(547\) 1.60632e6i 0.229543i 0.993392 + 0.114772i \(0.0366136\pi\)
−0.993392 + 0.114772i \(0.963386\pi\)
\(548\) − 296341.i − 0.0421542i
\(549\) 454639. 0.0643777
\(550\) 0 0
\(551\) 3.46013e6 0.485528
\(552\) − 448100.i − 0.0625932i
\(553\) − 218346.i − 0.0303621i
\(554\) −15208.8 −0.00210533
\(555\) 0 0
\(556\) −3.02160e6 −0.414524
\(557\) − 3.86497e6i − 0.527847i −0.964544 0.263923i \(-0.914983\pi\)
0.964544 0.263923i \(-0.0850166\pi\)
\(558\) − 329631.i − 0.0448170i
\(559\) 21130.4 0.00286007
\(560\) 0 0
\(561\) −100773. −0.0135188
\(562\) − 8.69462e6i − 1.16121i
\(563\) − 6.43081e6i − 0.855057i −0.904002 0.427528i \(-0.859384\pi\)
0.904002 0.427528i \(-0.140616\pi\)
\(564\) 4.19884e6 0.555817
\(565\) 0 0
\(566\) −540925. −0.0709734
\(567\) − 2.12108e6i − 0.277076i
\(568\) 939154.i 0.122142i
\(569\) 6.69245e6 0.866572 0.433286 0.901256i \(-0.357354\pi\)
0.433286 + 0.901256i \(0.357354\pi\)
\(570\) 0 0
\(571\) 1.18842e7 1.52539 0.762694 0.646760i \(-0.223876\pi\)
0.762694 + 0.646760i \(0.223876\pi\)
\(572\) − 63901.3i − 0.00816619i
\(573\) − 4.55230e6i − 0.579220i
\(574\) 337995. 0.0428184
\(575\) 0 0
\(576\) −217953. −0.0273720
\(577\) 5.90879e6i 0.738855i 0.929260 + 0.369427i \(0.120446\pi\)
−0.929260 + 0.369427i \(0.879554\pi\)
\(578\) − 5.59493e6i − 0.696587i
\(579\) −9.11009e6 −1.12934
\(580\) 0 0
\(581\) −2.94066e6 −0.361413
\(582\) 6.28795e6i 0.769487i
\(583\) − 233847.i − 0.0284944i
\(584\) −1.06213e6 −0.128869
\(585\) 0 0
\(586\) 6.12069e6 0.736302
\(587\) 7.19723e6i 0.862125i 0.902322 + 0.431062i \(0.141861\pi\)
−0.902322 + 0.431062i \(0.858139\pi\)
\(588\) − 529234.i − 0.0631254i
\(589\) 1.53929e6 0.182823
\(590\) 0 0
\(591\) 6.19861e6 0.730004
\(592\) − 3.11735e6i − 0.365579i
\(593\) 1.46242e7i 1.70779i 0.520447 + 0.853894i \(0.325766\pi\)
−0.520447 + 0.853894i \(0.674234\pi\)
\(594\) −821517. −0.0955323
\(595\) 0 0
\(596\) −4.71432e6 −0.543630
\(597\) − 543564.i − 0.0624187i
\(598\) − 161320.i − 0.0184475i
\(599\) 1.26967e7 1.44585 0.722924 0.690927i \(-0.242798\pi\)
0.722924 + 0.690927i \(0.242798\pi\)
\(600\) 0 0
\(601\) −2.83830e6 −0.320533 −0.160266 0.987074i \(-0.551235\pi\)
−0.160266 + 0.987074i \(0.551235\pi\)
\(602\) − 52190.7i − 0.00586951i
\(603\) − 758990.i − 0.0850047i
\(604\) 7.83871e6 0.874283
\(605\) 0 0
\(606\) −2.31914e6 −0.256534
\(607\) 8.78430e6i 0.967689i 0.875154 + 0.483844i \(0.160760\pi\)
−0.875154 + 0.483844i \(0.839240\pi\)
\(608\) − 1.01778e6i − 0.111659i
\(609\) 2.35002e6 0.256760
\(610\) 0 0
\(611\) 1.51163e6 0.163810
\(612\) 123741.i 0.0133547i
\(613\) 1.24669e7i 1.34001i 0.742355 + 0.670006i \(0.233709\pi\)
−0.742355 + 0.670006i \(0.766291\pi\)
\(614\) −8.90761e6 −0.953543
\(615\) 0 0
\(616\) −157832. −0.0167588
\(617\) 1.04133e7i 1.10122i 0.834762 + 0.550611i \(0.185605\pi\)
−0.834762 + 0.550611i \(0.814395\pi\)
\(618\) − 5.99329e6i − 0.631240i
\(619\) 7.59748e6 0.796971 0.398486 0.917175i \(-0.369536\pi\)
0.398486 + 0.917175i \(0.369536\pi\)
\(620\) 0 0
\(621\) −2.07394e6 −0.215808
\(622\) 1.98957e6i 0.206198i
\(623\) − 2.65892e6i − 0.274464i
\(624\) 279863. 0.0287729
\(625\) 0 0
\(626\) −2.59889e6 −0.265065
\(627\) − 689142.i − 0.0700067i
\(628\) 5.17473e6i 0.523587i
\(629\) −1.76985e6 −0.178365
\(630\) 0 0
\(631\) 9.92192e6 0.992024 0.496012 0.868316i \(-0.334797\pi\)
0.496012 + 0.868316i \(0.334797\pi\)
\(632\) − 285186.i − 0.0284012i
\(633\) − 7.70980e6i − 0.764775i
\(634\) 1.04771e7 1.03518
\(635\) 0 0
\(636\) 1.02416e6 0.100398
\(637\) − 190529.i − 0.0186043i
\(638\) − 700840.i − 0.0681659i
\(639\) 780835. 0.0756497
\(640\) 0 0
\(641\) 3.49761e6 0.336222 0.168111 0.985768i \(-0.446233\pi\)
0.168111 + 0.985768i \(0.446233\pi\)
\(642\) 8.50716e6i 0.814605i
\(643\) 1.02287e7i 0.975645i 0.872943 + 0.487823i \(0.162209\pi\)
−0.872943 + 0.487823i \(0.837791\pi\)
\(644\) −398452. −0.0378583
\(645\) 0 0
\(646\) −577835. −0.0544782
\(647\) 8.58075e6i 0.805869i 0.915229 + 0.402934i \(0.132010\pi\)
−0.915229 + 0.402934i \(0.867990\pi\)
\(648\) − 2.77039e6i − 0.259181i
\(649\) −1.00681e6 −0.0938291
\(650\) 0 0
\(651\) 1.04544e6 0.0966819
\(652\) 7.89980e6i 0.727775i
\(653\) 7.47927e6i 0.686399i 0.939263 + 0.343199i \(0.111511\pi\)
−0.939263 + 0.343199i \(0.888489\pi\)
\(654\) 4.46799e6 0.408477
\(655\) 0 0
\(656\) 441462. 0.0400529
\(657\) 883083.i 0.0798157i
\(658\) − 3.73362e6i − 0.336175i
\(659\) −5.63102e6 −0.505095 −0.252548 0.967584i \(-0.581268\pi\)
−0.252548 + 0.967584i \(0.581268\pi\)
\(660\) 0 0
\(661\) −3.03738e6 −0.270393 −0.135197 0.990819i \(-0.543167\pi\)
−0.135197 + 0.990819i \(0.543167\pi\)
\(662\) − 126746.i − 0.0112406i
\(663\) − 158890.i − 0.0140382i
\(664\) −3.84086e6 −0.338071
\(665\) 0 0
\(666\) −2.59184e6 −0.226424
\(667\) − 1.76929e6i − 0.153987i
\(668\) 4.96171e6i 0.430220i
\(669\) 9.97373e6 0.861574
\(670\) 0 0
\(671\) 430015. 0.0368704
\(672\) − 691244.i − 0.0590484i
\(673\) 1.29019e7i 1.09804i 0.835810 + 0.549018i \(0.184998\pi\)
−0.835810 + 0.549018i \(0.815002\pi\)
\(674\) 294034. 0.0249315
\(675\) 0 0
\(676\) −5.83993e6 −0.491520
\(677\) 2.03709e7i 1.70820i 0.520111 + 0.854099i \(0.325891\pi\)
−0.520111 + 0.854099i \(0.674109\pi\)
\(678\) − 5.65062e6i − 0.472087i
\(679\) 5.59126e6 0.465409
\(680\) 0 0
\(681\) −8.21446e6 −0.678752
\(682\) − 311778.i − 0.0256676i
\(683\) 3.47433e6i 0.284983i 0.989796 + 0.142492i \(0.0455114\pi\)
−0.989796 + 0.142492i \(0.954489\pi\)
\(684\) −846206. −0.0691569
\(685\) 0 0
\(686\) −470596. −0.0381802
\(687\) 1.26517e6i 0.102272i
\(688\) − 68167.5i − 0.00549043i
\(689\) 368707. 0.0295892
\(690\) 0 0
\(691\) 2.15415e7 1.71625 0.858124 0.513443i \(-0.171630\pi\)
0.858124 + 0.513443i \(0.171630\pi\)
\(692\) 8.21301e6i 0.651984i
\(693\) 131225.i 0.0103797i
\(694\) −7.18754e6 −0.566476
\(695\) 0 0
\(696\) 3.06941e6 0.240177
\(697\) − 250636.i − 0.0195417i
\(698\) − 1.07386e6i − 0.0834277i
\(699\) −3.93596e6 −0.304690
\(700\) 0 0
\(701\) −8.76380e6 −0.673593 −0.336796 0.941577i \(-0.609343\pi\)
−0.336796 + 0.941577i \(0.609343\pi\)
\(702\) − 1.29529e6i − 0.0992027i
\(703\) − 1.21032e7i − 0.923658i
\(704\) −206148. −0.0156765
\(705\) 0 0
\(706\) 1.16760e6 0.0881624
\(707\) 2.06219e6i 0.155160i
\(708\) − 4.40946e6i − 0.330599i
\(709\) 1.07244e7 0.801234 0.400617 0.916246i \(-0.368796\pi\)
0.400617 + 0.916246i \(0.368796\pi\)
\(710\) 0 0
\(711\) −237111. −0.0175905
\(712\) − 3.47287e6i − 0.256737i
\(713\) − 787092.i − 0.0579832i
\(714\) −392448. −0.0288095
\(715\) 0 0
\(716\) 4.20952e6 0.306867
\(717\) − 1.52914e6i − 0.111083i
\(718\) 2.29351e6i 0.166031i
\(719\) −1.77748e7 −1.28228 −0.641140 0.767424i \(-0.721538\pi\)
−0.641140 + 0.767424i \(0.721538\pi\)
\(720\) 0 0
\(721\) −5.32925e6 −0.381793
\(722\) 5.95285e6i 0.424993i
\(723\) − 1.99569e7i − 1.41987i
\(724\) 422573. 0.0299610
\(725\) 0 0
\(726\) 8.73522e6 0.615081
\(727\) 2.71742e7i 1.90687i 0.301605 + 0.953433i \(0.402477\pi\)
−0.301605 + 0.953433i \(0.597523\pi\)
\(728\) − 248855.i − 0.0174027i
\(729\) −1.59642e7 −1.11258
\(730\) 0 0
\(731\) −38701.5 −0.00267876
\(732\) 1.88330e6i 0.129910i
\(733\) 2.34777e7i 1.61397i 0.590571 + 0.806986i \(0.298903\pi\)
−0.590571 + 0.806986i \(0.701097\pi\)
\(734\) −6.94844e6 −0.476044
\(735\) 0 0
\(736\) −520427. −0.0354132
\(737\) − 717883.i − 0.0486838i
\(738\) − 367042.i − 0.0248071i
\(739\) 2.43496e7 1.64014 0.820068 0.572266i \(-0.193935\pi\)
0.820068 + 0.572266i \(0.193935\pi\)
\(740\) 0 0
\(741\) 1.08657e6 0.0726965
\(742\) − 910685.i − 0.0607237i
\(743\) 60731.2i 0.00403590i 0.999998 + 0.00201795i \(0.000642333\pi\)
−0.999998 + 0.00201795i \(0.999358\pi\)
\(744\) 1.36547e6 0.0904376
\(745\) 0 0
\(746\) −2.23802e6 −0.147237
\(747\) 3.19338e6i 0.209387i
\(748\) 117039.i 0.00764849i
\(749\) 7.56459e6 0.492698
\(750\) 0 0
\(751\) 9.56195e6 0.618652 0.309326 0.950956i \(-0.399897\pi\)
0.309326 + 0.950956i \(0.399897\pi\)
\(752\) − 4.87657e6i − 0.314463i
\(753\) − 4.79268e6i − 0.308029i
\(754\) 1.10502e6 0.0707849
\(755\) 0 0
\(756\) −3.19928e6 −0.203586
\(757\) − 8.42306e6i − 0.534232i −0.963664 0.267116i \(-0.913929\pi\)
0.963664 0.267116i \(-0.0860707\pi\)
\(758\) 7.26982e6i 0.459569i
\(759\) −352383. −0.0222029
\(760\) 0 0
\(761\) −1.50895e6 −0.0944527 −0.0472263 0.998884i \(-0.515038\pi\)
−0.0472263 + 0.998884i \(0.515038\pi\)
\(762\) 1.14748e7i 0.715907i
\(763\) − 3.97295e6i − 0.247060i
\(764\) −5.28707e6 −0.327704
\(765\) 0 0
\(766\) 1.06953e7 0.658601
\(767\) − 1.58745e6i − 0.0974341i
\(768\) − 902849.i − 0.0552347i
\(769\) 1.17597e7 0.717100 0.358550 0.933511i \(-0.383271\pi\)
0.358550 + 0.933511i \(0.383271\pi\)
\(770\) 0 0
\(771\) 2.02658e7 1.22780
\(772\) 1.05805e7i 0.638946i
\(773\) − 2.83129e7i − 1.70426i −0.523328 0.852131i \(-0.675310\pi\)
0.523328 0.852131i \(-0.324690\pi\)
\(774\) −56676.0 −0.00340053
\(775\) 0 0
\(776\) 7.30287e6 0.435351
\(777\) − 8.22011e6i − 0.488455i
\(778\) 8.45261e6i 0.500659i
\(779\) 1.71399e6 0.101196
\(780\) 0 0
\(781\) 738545. 0.0433261
\(782\) 295467.i 0.0172780i
\(783\) − 1.42061e7i − 0.828079i
\(784\) −614656. −0.0357143
\(785\) 0 0
\(786\) 5.32609e6 0.307505
\(787\) − 1.41914e7i − 0.816749i −0.912815 0.408374i \(-0.866096\pi\)
0.912815 0.408374i \(-0.133904\pi\)
\(788\) − 7.19911e6i − 0.413012i
\(789\) −2.38606e7 −1.36455
\(790\) 0 0
\(791\) −5.02455e6 −0.285533
\(792\) 171397.i 0.00970933i
\(793\) 678006.i 0.0382869i
\(794\) 1.45144e7 0.817050
\(795\) 0 0
\(796\) −631299. −0.0353145
\(797\) 2.49185e7i 1.38956i 0.719223 + 0.694779i \(0.244498\pi\)
−0.719223 + 0.694779i \(0.755502\pi\)
\(798\) − 2.68377e6i − 0.149189i
\(799\) −2.76863e6 −0.153426
\(800\) 0 0
\(801\) −2.88743e6 −0.159012
\(802\) 5.87115e6i 0.322320i
\(803\) 835255.i 0.0457120i
\(804\) 3.14405e6 0.171534
\(805\) 0 0
\(806\) 491582. 0.0266537
\(807\) − 2.06895e7i − 1.11832i
\(808\) 2.69347e6i 0.145139i
\(809\) 2.57217e7 1.38175 0.690875 0.722975i \(-0.257226\pi\)
0.690875 + 0.722975i \(0.257226\pi\)
\(810\) 0 0
\(811\) 2.55278e7 1.36289 0.681445 0.731869i \(-0.261352\pi\)
0.681445 + 0.731869i \(0.261352\pi\)
\(812\) − 2.72933e6i − 0.145266i
\(813\) − 3.12078e6i − 0.165591i
\(814\) −2.45146e6 −0.129678
\(815\) 0 0
\(816\) −512585. −0.0269488
\(817\) − 264662.i − 0.0138719i
\(818\) 1.62044e6i 0.0846738i
\(819\) −206904. −0.0107785
\(820\) 0 0
\(821\) −2.02651e7 −1.04928 −0.524639 0.851325i \(-0.675800\pi\)
−0.524639 + 0.851325i \(0.675800\pi\)
\(822\) − 1.02063e6i − 0.0526852i
\(823\) − 3.04345e7i − 1.56627i −0.621850 0.783136i \(-0.713619\pi\)
0.621850 0.783136i \(-0.286381\pi\)
\(824\) −6.96066e6 −0.357135
\(825\) 0 0
\(826\) −3.92090e6 −0.199957
\(827\) 3.93136e6i 0.199884i 0.994993 + 0.0999422i \(0.0318658\pi\)
−0.994993 + 0.0999422i \(0.968134\pi\)
\(828\) 432695.i 0.0219334i
\(829\) 1.86948e7 0.944788 0.472394 0.881387i \(-0.343390\pi\)
0.472394 + 0.881387i \(0.343390\pi\)
\(830\) 0 0
\(831\) −52380.6 −0.00263129
\(832\) − 325035.i − 0.0162788i
\(833\) 348965.i 0.0174249i
\(834\) −1.04067e7 −0.518080
\(835\) 0 0
\(836\) −800375. −0.0396075
\(837\) − 6.31979e6i − 0.311809i
\(838\) 2.23610e7i 1.09997i
\(839\) 4.23817e6 0.207861 0.103931 0.994585i \(-0.466858\pi\)
0.103931 + 0.994585i \(0.466858\pi\)
\(840\) 0 0
\(841\) −8.39182e6 −0.409134
\(842\) − 1.73194e7i − 0.841883i
\(843\) − 2.99451e7i − 1.45130i
\(844\) −8.95422e6 −0.432685
\(845\) 0 0
\(846\) −4.05450e6 −0.194765
\(847\) − 7.76738e6i − 0.372020i
\(848\) − 1.18947e6i − 0.0568018i
\(849\) −1.86300e6 −0.0887039
\(850\) 0 0
\(851\) −6.18879e6 −0.292942
\(852\) 3.23454e6i 0.152656i
\(853\) 2.80984e7i 1.32224i 0.750282 + 0.661118i \(0.229918\pi\)
−0.750282 + 0.661118i \(0.770082\pi\)
\(854\) 1.67463e6 0.0785734
\(855\) 0 0
\(856\) 9.88028e6 0.460877
\(857\) − 2.13309e7i − 0.992106i −0.868292 0.496053i \(-0.834782\pi\)
0.868292 0.496053i \(-0.165218\pi\)
\(858\) − 220082.i − 0.0102063i
\(859\) −3.49914e6 −0.161800 −0.0809001 0.996722i \(-0.525779\pi\)
−0.0809001 + 0.996722i \(0.525779\pi\)
\(860\) 0 0
\(861\) 1.16409e6 0.0535152
\(862\) − 9.06742e6i − 0.415638i
\(863\) − 3.86911e7i − 1.76841i −0.467096 0.884206i \(-0.654700\pi\)
0.467096 0.884206i \(-0.345300\pi\)
\(864\) −4.17866e6 −0.190437
\(865\) 0 0
\(866\) 1.51071e7 0.684522
\(867\) − 1.92695e7i − 0.870608i
\(868\) − 1.21418e6i − 0.0546994i
\(869\) −224269. −0.0100744
\(870\) 0 0
\(871\) 1.13189e6 0.0505543
\(872\) − 5.18916e6i − 0.231103i
\(873\) − 6.07178e6i − 0.269637i
\(874\) −2.02057e6 −0.0894735
\(875\) 0 0
\(876\) −3.65809e6 −0.161062
\(877\) − 1.56417e7i − 0.686730i −0.939202 0.343365i \(-0.888433\pi\)
0.939202 0.343365i \(-0.111567\pi\)
\(878\) 2.26650e7i 0.992246i
\(879\) 2.10802e7 0.920245
\(880\) 0 0
\(881\) −1.29672e7 −0.562868 −0.281434 0.959581i \(-0.590810\pi\)
−0.281434 + 0.959581i \(0.590810\pi\)
\(882\) 511040.i 0.0221199i
\(883\) 4.38413e7i 1.89226i 0.323785 + 0.946131i \(0.395045\pi\)
−0.323785 + 0.946131i \(0.604955\pi\)
\(884\) −184535. −0.00794235
\(885\) 0 0
\(886\) −1.77238e6 −0.0758531
\(887\) − 1.01177e7i − 0.431789i −0.976417 0.215895i \(-0.930733\pi\)
0.976417 0.215895i \(-0.0692668\pi\)
\(888\) − 1.07365e7i − 0.456908i
\(889\) 1.02034e7 0.433003
\(890\) 0 0
\(891\) −2.17861e6 −0.0919360
\(892\) − 1.15836e7i − 0.487450i
\(893\) − 1.89334e7i − 0.794510i
\(894\) −1.62366e7 −0.679439
\(895\) 0 0
\(896\) −802816. −0.0334077
\(897\) − 555603.i − 0.0230560i
\(898\) 2.40137e7i 0.993731i
\(899\) 5.39145e6 0.222488
\(900\) 0 0
\(901\) −675308. −0.0277134
\(902\) − 347163.i − 0.0142075i
\(903\) − 179750.i − 0.00733583i
\(904\) −6.56267e6 −0.267091
\(905\) 0 0
\(906\) 2.69973e7 1.09270
\(907\) − 3.60373e7i − 1.45457i −0.686337 0.727284i \(-0.740782\pi\)
0.686337 0.727284i \(-0.259218\pi\)
\(908\) 9.54034e6i 0.384016i
\(909\) 2.23941e6 0.0898927
\(910\) 0 0
\(911\) −1.75996e7 −0.702598 −0.351299 0.936263i \(-0.614260\pi\)
−0.351299 + 0.936263i \(0.614260\pi\)
\(912\) − 3.50533e6i − 0.139554i
\(913\) 3.02042e6i 0.119920i
\(914\) −7.49789e6 −0.296875
\(915\) 0 0
\(916\) 1.46937e6 0.0578620
\(917\) − 4.73597e6i − 0.185988i
\(918\) 2.37239e6i 0.0929138i
\(919\) −1.48834e7 −0.581319 −0.290659 0.956827i \(-0.593875\pi\)
−0.290659 + 0.956827i \(0.593875\pi\)
\(920\) 0 0
\(921\) −3.06787e7 −1.19176
\(922\) 1.41137e7i 0.546783i
\(923\) 1.16447e6i 0.0449907i
\(924\) −543590. −0.0209455
\(925\) 0 0
\(926\) −1.29585e7 −0.496624
\(927\) 5.78725e6i 0.221194i
\(928\) − 3.56483e6i − 0.135884i
\(929\) −2.68205e7 −1.01959 −0.509797 0.860295i \(-0.670279\pi\)
−0.509797 + 0.860295i \(0.670279\pi\)
\(930\) 0 0
\(931\) −2.38641e6 −0.0902343
\(932\) 4.57126e6i 0.172384i
\(933\) 6.85228e6i 0.257710i
\(934\) 1.87959e7 0.705011
\(935\) 0 0
\(936\) −270241. −0.0100824
\(937\) − 1.02969e6i − 0.0383138i −0.999816 0.0191569i \(-0.993902\pi\)
0.999816 0.0191569i \(-0.00609821\pi\)
\(938\) − 2.79570e6i − 0.103749i
\(939\) −8.95083e6 −0.331283
\(940\) 0 0
\(941\) −3.68245e7 −1.35570 −0.677849 0.735201i \(-0.737088\pi\)
−0.677849 + 0.735201i \(0.737088\pi\)
\(942\) 1.78223e7i 0.654389i
\(943\) − 876422.i − 0.0320948i
\(944\) −5.12118e6 −0.187042
\(945\) 0 0
\(946\) −53606.4 −0.00194755
\(947\) − 2.74041e7i − 0.992981i −0.868042 0.496491i \(-0.834622\pi\)
0.868042 0.496491i \(-0.165378\pi\)
\(948\) − 982210.i − 0.0354963i
\(949\) −1.31695e6 −0.0474683
\(950\) 0 0
\(951\) 3.60841e7 1.29379
\(952\) 455791.i 0.0162995i
\(953\) 3.52488e7i 1.25722i 0.777719 + 0.628612i \(0.216376\pi\)
−0.777719 + 0.628612i \(0.783624\pi\)
\(954\) −988950. −0.0351806
\(955\) 0 0
\(956\) −1.77595e6 −0.0628472
\(957\) − 2.41376e6i − 0.0851951i
\(958\) 3.74019e7i 1.31668i
\(959\) −907546. −0.0318656
\(960\) 0 0
\(961\) −2.62307e7 −0.916223
\(962\) − 3.86523e6i − 0.134660i
\(963\) − 8.21470e6i − 0.285447i
\(964\) −2.31781e7 −0.803315
\(965\) 0 0
\(966\) −1.37231e6 −0.0473160
\(967\) − 2.51987e7i − 0.866587i −0.901253 0.433293i \(-0.857351\pi\)
0.901253 0.433293i \(-0.142649\pi\)
\(968\) − 1.01452e7i − 0.347993i
\(969\) −1.99012e6 −0.0680879
\(970\) 0 0
\(971\) −2.59136e6 −0.0882022 −0.0441011 0.999027i \(-0.514042\pi\)
−0.0441011 + 0.999027i \(0.514042\pi\)
\(972\) 6.32436e6i 0.214709i
\(973\) 9.25364e6i 0.313350i
\(974\) −3.72413e7 −1.25784
\(975\) 0 0
\(976\) 2.18728e6 0.0734987
\(977\) 2.71811e7i 0.911027i 0.890229 + 0.455514i \(0.150544\pi\)
−0.890229 + 0.455514i \(0.849456\pi\)
\(978\) 2.72077e7i 0.909588i
\(979\) −2.73105e6 −0.0910693
\(980\) 0 0
\(981\) −4.31439e6 −0.143135
\(982\) − 3.29287e7i − 1.08967i
\(983\) − 8.13437e6i − 0.268498i −0.990948 0.134249i \(-0.957138\pi\)
0.990948 0.134249i \(-0.0428621\pi\)
\(984\) 1.52044e6 0.0500589
\(985\) 0 0
\(986\) −2.02390e6 −0.0662975
\(987\) − 1.28590e7i − 0.420158i
\(988\) − 1.26195e6i − 0.0411293i
\(989\) −135331. −0.00439953
\(990\) 0 0
\(991\) −702676. −0.0227285 −0.0113643 0.999935i \(-0.503617\pi\)
−0.0113643 + 0.999935i \(0.503617\pi\)
\(992\) − 1.58586e6i − 0.0511666i
\(993\) − 436526.i − 0.0140487i
\(994\) 2.87616e6 0.0923309
\(995\) 0 0
\(996\) −1.32283e7 −0.422528
\(997\) 1.35555e7i 0.431896i 0.976405 + 0.215948i \(0.0692841\pi\)
−0.976405 + 0.215948i \(0.930716\pi\)
\(998\) − 4.20176e7i − 1.33538i
\(999\) −4.96916e7 −1.57532
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.6.c.l.99.1 4
5.2 odd 4 350.6.a.t.1.1 yes 2
5.3 odd 4 350.6.a.o.1.2 2
5.4 even 2 inner 350.6.c.l.99.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
350.6.a.o.1.2 2 5.3 odd 4
350.6.a.t.1.1 yes 2 5.2 odd 4
350.6.c.l.99.1 4 1.1 even 1 trivial
350.6.c.l.99.4 4 5.4 even 2 inner