Properties

Label 350.6.c.n
Level $350$
Weight $6$
Character orbit 350.c
Analytic conductor $56.134$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,6,Mod(99,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.99");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.1343369345\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 1286x^{4} + 413449x^{2} + 2377764 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 \beta_{2} q^{2} + (3 \beta_{2} + \beta_1) q^{3} - 16 q^{4} + ( - 4 \beta_{3} + 12) q^{6} - 49 \beta_{2} q^{7} + 64 \beta_{2} q^{8} + (\beta_{4} + 2 \beta_{3} - 195) q^{9} + (\beta_{4} - 5 \beta_{3} - 36) q^{11}+ \cdots + ( - 10 \beta_{4} + 491 \beta_{3} + 88542) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 96 q^{4} + 72 q^{6} - 1168 q^{9} - 214 q^{11} - 1176 q^{14} + 1536 q^{16} - 882 q^{19} + 882 q^{21} - 1152 q^{24} + 6736 q^{26} - 2616 q^{29} + 9448 q^{31} - 2008 q^{34} + 18688 q^{36} - 8660 q^{39}+ \cdots + 531232 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 1286x^{4} + 413449x^{2} + 2377764 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 643\nu ) / 1542 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} + 643\nu^{2} ) / 1542 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 2\nu^{4} + 2057\nu^{2} + 330759 ) / 771 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{5} + 1072\nu^{3} + 269679\nu ) / 1542 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} - 4\beta_{3} - 429 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 1542\beta_{2} - 643\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -643\beta_{4} + 4114\beta_{3} + 275847 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 1542\beta_{5} - 1653024\beta_{2} + 419617\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
26.4808i
2.42018i
24.0606i
24.0606i
2.42018i
26.4808i
4.00000i 23.4808i −16.0000 0 −93.9231 49.0000i 64.0000i −308.346 0
99.2 4.00000i 5.42018i −16.0000 0 21.6807 49.0000i 64.0000i 213.622 0
99.3 4.00000i 27.0606i −16.0000 0 108.242 49.0000i 64.0000i −489.275 0
99.4 4.00000i 27.0606i −16.0000 0 108.242 49.0000i 64.0000i −489.275 0
99.5 4.00000i 5.42018i −16.0000 0 21.6807 49.0000i 64.0000i 213.622 0
99.6 4.00000i 23.4808i −16.0000 0 −93.9231 49.0000i 64.0000i −308.346 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 99.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 350.6.c.n 6
5.b even 2 1 inner 350.6.c.n 6
5.c odd 4 1 350.6.a.u 3
5.c odd 4 1 350.6.a.x yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
350.6.a.u 3 5.c odd 4 1
350.6.a.x yes 3 5.c odd 4 1
350.6.c.n 6 1.a even 1 1 trivial
350.6.c.n 6 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(350, [\chi])\):

\( T_{3}^{6} + 1313T_{3}^{4} + 441448T_{3}^{2} + 11861136 \) Copy content Toggle raw display
\( T_{11}^{3} + 107T_{11}^{2} - 139269T_{11} - 21103983 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 16)^{3} \) Copy content Toggle raw display
$3$ \( T^{6} + 1313 T^{4} + \cdots + 11861136 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( (T^{2} + 2401)^{3} \) Copy content Toggle raw display
$11$ \( (T^{3} + 107 T^{2} + \cdots - 21103983)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 909945082767616 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 13\!\cdots\!44 \) Copy content Toggle raw display
$19$ \( (T^{3} + 441 T^{2} + \cdots + 289884980)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( (T^{3} + 1308 T^{2} + \cdots - 32353852950)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} - 4724 T^{2} + \cdots - 9395311072)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 39\!\cdots\!84 \) Copy content Toggle raw display
$41$ \( (T^{3} + \cdots - 1366682605092)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 90\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 20\!\cdots\!04 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 66\!\cdots\!36 \) Copy content Toggle raw display
$59$ \( (T^{3} - 16076 T^{2} + \cdots + 533329584480)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + \cdots - 28835515765000)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 12\!\cdots\!09 \) Copy content Toggle raw display
$71$ \( (T^{3} + \cdots - 128336306971662)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 70\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( (T^{3} + \cdots + 10\!\cdots\!50)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 32\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( (T^{3} + \cdots - 65722788999000)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
show more
show less