Properties

Label 351.2.e.b.235.1
Level $351$
Weight $2$
Character 351.235
Analytic conductor $2.803$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [351,2,Mod(118,351)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(351, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("351.118");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: 10.0.487558322307.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 13x^{8} + 43x^{6} + 48x^{4} + 21x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 235.1
Root \(-1.65737i\) of defining polynomial
Character \(\chi\) \(=\) 351.235
Dual form 351.2.e.b.118.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.786226 + 1.36178i) q^{2} +(-0.236304 - 0.409291i) q^{4} +(-0.557959 - 0.966413i) q^{5} +(1.93532 - 3.35208i) q^{7} -2.40175 q^{8} +1.75473 q^{10} +(2.48935 - 4.31168i) q^{11} +(-0.500000 - 0.866025i) q^{13} +(3.04320 + 5.27098i) q^{14} +(2.36093 - 4.08925i) q^{16} +4.37224 q^{17} -6.30588 q^{19} +(-0.263696 + 0.456735i) q^{20} +(3.91439 + 6.77992i) q^{22} +(0.977469 + 1.69303i) q^{23} +(1.87736 - 3.25169i) q^{25} +1.57245 q^{26} -1.82930 q^{28} +(-1.08049 + 1.87146i) q^{29} +(1.25490 + 2.17356i) q^{31} +(1.31070 + 2.27020i) q^{32} +(-3.43757 + 5.95405i) q^{34} -4.31932 q^{35} +7.10248 q^{37} +(4.95785 - 8.58725i) q^{38} +(1.34008 + 2.32108i) q^{40} +(2.75305 + 4.76842i) q^{41} +(-3.94721 + 6.83676i) q^{43} -2.35298 q^{44} -3.07405 q^{46} +(3.99982 - 6.92790i) q^{47} +(-3.99095 - 6.91253i) q^{49} +(2.95207 + 5.11313i) q^{50} +(-0.236304 + 0.409291i) q^{52} -5.68016 q^{53} -5.55582 q^{55} +(-4.64816 + 8.05086i) q^{56} +(-1.69902 - 2.94279i) q^{58} +(-2.34811 - 4.06705i) q^{59} +(-1.06675 + 1.84766i) q^{61} -3.94656 q^{62} +5.32169 q^{64} +(-0.557959 + 0.966413i) q^{65} +(-1.16845 - 2.02382i) q^{67} +(-1.03318 - 1.78952i) q^{68} +(3.39596 - 5.88198i) q^{70} -4.31876 q^{71} +7.66241 q^{73} +(-5.58416 + 9.67205i) q^{74} +(1.49011 + 2.58094i) q^{76} +(-9.63540 - 16.6890i) q^{77} +(1.49553 - 2.59034i) q^{79} -5.26920 q^{80} -8.65808 q^{82} +(6.98114 - 12.0917i) q^{83} +(-2.43953 - 4.22539i) q^{85} +(-6.20679 - 10.7505i) q^{86} +(-5.97881 + 10.3556i) q^{88} -7.98729 q^{89} -3.87065 q^{91} +(0.461960 - 0.800138i) q^{92} +(6.28953 + 10.8938i) q^{94} +(3.51842 + 6.09409i) q^{95} +(-3.82682 + 6.62824i) q^{97} +12.5512 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 2 q^{2} - 4 q^{4} + q^{5} + 2 q^{7} - 24 q^{8} - 4 q^{10} + 11 q^{11} - 5 q^{13} - 5 q^{14} - 10 q^{16} - 14 q^{17} + 6 q^{19} - q^{20} + 7 q^{22} + 18 q^{23} + 8 q^{25} - 4 q^{26} - 38 q^{28}+ \cdots + 78 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.786226 + 1.36178i −0.555946 + 0.962927i 0.441883 + 0.897073i \(0.354311\pi\)
−0.997829 + 0.0658542i \(0.979023\pi\)
\(3\) 0 0
\(4\) −0.236304 0.409291i −0.118152 0.204645i
\(5\) −0.557959 0.966413i −0.249527 0.432193i 0.713868 0.700280i \(-0.246942\pi\)
−0.963395 + 0.268087i \(0.913608\pi\)
\(6\) 0 0
\(7\) 1.93532 3.35208i 0.731483 1.26697i −0.224766 0.974413i \(-0.572162\pi\)
0.956249 0.292553i \(-0.0945049\pi\)
\(8\) −2.40175 −0.849147
\(9\) 0 0
\(10\) 1.75473 0.554894
\(11\) 2.48935 4.31168i 0.750568 1.30002i −0.196980 0.980408i \(-0.563113\pi\)
0.947548 0.319614i \(-0.103553\pi\)
\(12\) 0 0
\(13\) −0.500000 0.866025i −0.138675 0.240192i
\(14\) 3.04320 + 5.27098i 0.813330 + 1.40873i
\(15\) 0 0
\(16\) 2.36093 4.08925i 0.590232 1.02231i
\(17\) 4.37224 1.06042 0.530212 0.847865i \(-0.322112\pi\)
0.530212 + 0.847865i \(0.322112\pi\)
\(18\) 0 0
\(19\) −6.30588 −1.44667 −0.723335 0.690498i \(-0.757392\pi\)
−0.723335 + 0.690498i \(0.757392\pi\)
\(20\) −0.263696 + 0.456735i −0.0589642 + 0.102129i
\(21\) 0 0
\(22\) 3.91439 + 6.77992i 0.834550 + 1.44548i
\(23\) 0.977469 + 1.69303i 0.203816 + 0.353020i 0.949755 0.312994i \(-0.101332\pi\)
−0.745939 + 0.666015i \(0.767999\pi\)
\(24\) 0 0
\(25\) 1.87736 3.25169i 0.375473 0.650338i
\(26\) 1.57245 0.308383
\(27\) 0 0
\(28\) −1.82930 −0.345705
\(29\) −1.08049 + 1.87146i −0.200642 + 0.347522i −0.948735 0.316071i \(-0.897636\pi\)
0.748094 + 0.663593i \(0.230969\pi\)
\(30\) 0 0
\(31\) 1.25490 + 2.17356i 0.225388 + 0.390383i 0.956436 0.291943i \(-0.0943018\pi\)
−0.731048 + 0.682326i \(0.760968\pi\)
\(32\) 1.31070 + 2.27020i 0.231701 + 0.401318i
\(33\) 0 0
\(34\) −3.43757 + 5.95405i −0.589539 + 1.02111i
\(35\) −4.31932 −0.730099
\(36\) 0 0
\(37\) 7.10248 1.16764 0.583820 0.811883i \(-0.301557\pi\)
0.583820 + 0.811883i \(0.301557\pi\)
\(38\) 4.95785 8.58725i 0.804270 1.39304i
\(39\) 0 0
\(40\) 1.34008 + 2.32108i 0.211885 + 0.366996i
\(41\) 2.75305 + 4.76842i 0.429954 + 0.744702i 0.996869 0.0790745i \(-0.0251965\pi\)
−0.566915 + 0.823776i \(0.691863\pi\)
\(42\) 0 0
\(43\) −3.94721 + 6.83676i −0.601943 + 1.04260i 0.390583 + 0.920568i \(0.372273\pi\)
−0.992527 + 0.122029i \(0.961060\pi\)
\(44\) −2.35298 −0.354725
\(45\) 0 0
\(46\) −3.07405 −0.453244
\(47\) 3.99982 6.92790i 0.583434 1.01054i −0.411635 0.911349i \(-0.635042\pi\)
0.995069 0.0991886i \(-0.0316247\pi\)
\(48\) 0 0
\(49\) −3.99095 6.91253i −0.570135 0.987504i
\(50\) 2.95207 + 5.11313i 0.417485 + 0.723106i
\(51\) 0 0
\(52\) −0.236304 + 0.409291i −0.0327695 + 0.0567584i
\(53\) −5.68016 −0.780230 −0.390115 0.920766i \(-0.627565\pi\)
−0.390115 + 0.920766i \(0.627565\pi\)
\(54\) 0 0
\(55\) −5.55582 −0.749147
\(56\) −4.64816 + 8.05086i −0.621137 + 1.07584i
\(57\) 0 0
\(58\) −1.69902 2.94279i −0.223092 0.386407i
\(59\) −2.34811 4.06705i −0.305699 0.529485i 0.671718 0.740807i \(-0.265557\pi\)
−0.977417 + 0.211321i \(0.932223\pi\)
\(60\) 0 0
\(61\) −1.06675 + 1.84766i −0.136583 + 0.236569i −0.926201 0.377030i \(-0.876945\pi\)
0.789618 + 0.613599i \(0.210279\pi\)
\(62\) −3.94656 −0.501213
\(63\) 0 0
\(64\) 5.32169 0.665212
\(65\) −0.557959 + 0.966413i −0.0692063 + 0.119869i
\(66\) 0 0
\(67\) −1.16845 2.02382i −0.142749 0.247249i 0.785782 0.618504i \(-0.212261\pi\)
−0.928531 + 0.371255i \(0.878928\pi\)
\(68\) −1.03318 1.78952i −0.125291 0.217011i
\(69\) 0 0
\(70\) 3.39596 5.88198i 0.405895 0.703032i
\(71\) −4.31876 −0.512543 −0.256272 0.966605i \(-0.582494\pi\)
−0.256272 + 0.966605i \(0.582494\pi\)
\(72\) 0 0
\(73\) 7.66241 0.896817 0.448408 0.893829i \(-0.351991\pi\)
0.448408 + 0.893829i \(0.351991\pi\)
\(74\) −5.58416 + 9.67205i −0.649145 + 1.12435i
\(75\) 0 0
\(76\) 1.49011 + 2.58094i 0.170927 + 0.296054i
\(77\) −9.63540 16.6890i −1.09806 1.90189i
\(78\) 0 0
\(79\) 1.49553 2.59034i 0.168260 0.291436i −0.769548 0.638589i \(-0.779518\pi\)
0.937808 + 0.347154i \(0.112852\pi\)
\(80\) −5.26920 −0.589115
\(81\) 0 0
\(82\) −8.65808 −0.956125
\(83\) 6.98114 12.0917i 0.766279 1.32724i −0.173288 0.984871i \(-0.555439\pi\)
0.939567 0.342364i \(-0.111228\pi\)
\(84\) 0 0
\(85\) −2.43953 4.22539i −0.264604 0.458308i
\(86\) −6.20679 10.7505i −0.669296 1.15925i
\(87\) 0 0
\(88\) −5.97881 + 10.3556i −0.637343 + 1.10391i
\(89\) −7.98729 −0.846651 −0.423325 0.905978i \(-0.639137\pi\)
−0.423325 + 0.905978i \(0.639137\pi\)
\(90\) 0 0
\(91\) −3.87065 −0.405754
\(92\) 0.461960 0.800138i 0.0481627 0.0834202i
\(93\) 0 0
\(94\) 6.28953 + 10.8938i 0.648716 + 1.12361i
\(95\) 3.51842 + 6.09409i 0.360983 + 0.625240i
\(96\) 0 0
\(97\) −3.82682 + 6.62824i −0.388555 + 0.672996i −0.992255 0.124215i \(-0.960359\pi\)
0.603701 + 0.797211i \(0.293692\pi\)
\(98\) 12.5512 1.26786
\(99\) 0 0
\(100\) −1.77452 −0.177452
\(101\) −5.50684 + 9.53813i −0.547951 + 0.949080i 0.450463 + 0.892795i \(0.351259\pi\)
−0.998415 + 0.0562848i \(0.982075\pi\)
\(102\) 0 0
\(103\) −2.31923 4.01702i −0.228520 0.395809i 0.728849 0.684674i \(-0.240055\pi\)
−0.957370 + 0.288865i \(0.906722\pi\)
\(104\) 1.20088 + 2.07998i 0.117756 + 0.203959i
\(105\) 0 0
\(106\) 4.46589 7.73515i 0.433766 0.751304i
\(107\) 2.23334 0.215906 0.107953 0.994156i \(-0.465570\pi\)
0.107953 + 0.994156i \(0.465570\pi\)
\(108\) 0 0
\(109\) −12.9073 −1.23630 −0.618149 0.786061i \(-0.712117\pi\)
−0.618149 + 0.786061i \(0.712117\pi\)
\(110\) 4.36814 7.56583i 0.416485 0.721374i
\(111\) 0 0
\(112\) −9.13832 15.8280i −0.863490 1.49561i
\(113\) 2.77305 + 4.80306i 0.260867 + 0.451834i 0.966472 0.256770i \(-0.0826584\pi\)
−0.705606 + 0.708605i \(0.749325\pi\)
\(114\) 0 0
\(115\) 1.09078 1.88928i 0.101715 0.176176i
\(116\) 1.02130 0.0948250
\(117\) 0 0
\(118\) 7.38460 0.679808
\(119\) 8.46170 14.6561i 0.775683 1.34352i
\(120\) 0 0
\(121\) −6.89375 11.9403i −0.626704 1.08548i
\(122\) −1.67741 2.90537i −0.151866 0.263039i
\(123\) 0 0
\(124\) 0.593078 1.02724i 0.0532600 0.0922490i
\(125\) −9.76955 −0.873816
\(126\) 0 0
\(127\) 11.0870 0.983809 0.491905 0.870649i \(-0.336301\pi\)
0.491905 + 0.870649i \(0.336301\pi\)
\(128\) −6.80545 + 11.7874i −0.601523 + 1.04187i
\(129\) 0 0
\(130\) −0.877364 1.51964i −0.0769499 0.133281i
\(131\) 2.84980 + 4.93599i 0.248988 + 0.431259i 0.963245 0.268624i \(-0.0865688\pi\)
−0.714257 + 0.699883i \(0.753235\pi\)
\(132\) 0 0
\(133\) −12.2039 + 21.1378i −1.05821 + 1.83288i
\(134\) 3.67467 0.317443
\(135\) 0 0
\(136\) −10.5010 −0.900457
\(137\) 3.00702 5.20831i 0.256907 0.444976i −0.708505 0.705706i \(-0.750630\pi\)
0.965412 + 0.260730i \(0.0839632\pi\)
\(138\) 0 0
\(139\) 5.99085 + 10.3765i 0.508138 + 0.880120i 0.999956 + 0.00942221i \(0.00299923\pi\)
−0.491818 + 0.870698i \(0.663667\pi\)
\(140\) 1.02067 + 1.76786i 0.0862626 + 0.149411i
\(141\) 0 0
\(142\) 3.39553 5.88123i 0.284946 0.493541i
\(143\) −4.97870 −0.416340
\(144\) 0 0
\(145\) 2.41147 0.200262
\(146\) −6.02439 + 10.4345i −0.498582 + 0.863569i
\(147\) 0 0
\(148\) −1.67835 2.90698i −0.137959 0.238952i
\(149\) 10.0766 + 17.4532i 0.825507 + 1.42982i 0.901531 + 0.432715i \(0.142444\pi\)
−0.0760235 + 0.997106i \(0.524222\pi\)
\(150\) 0 0
\(151\) −0.540200 + 0.935654i −0.0439608 + 0.0761424i −0.887169 0.461445i \(-0.847331\pi\)
0.843208 + 0.537588i \(0.180664\pi\)
\(152\) 15.1452 1.22844
\(153\) 0 0
\(154\) 30.3024 2.44184
\(155\) 1.40037 2.42551i 0.112480 0.194822i
\(156\) 0 0
\(157\) 10.3978 + 18.0095i 0.829833 + 1.43731i 0.898169 + 0.439650i \(0.144898\pi\)
−0.0683361 + 0.997662i \(0.521769\pi\)
\(158\) 2.35165 + 4.07318i 0.187087 + 0.324045i
\(159\) 0 0
\(160\) 1.46263 2.53335i 0.115631 0.200279i
\(161\) 7.56688 0.596353
\(162\) 0 0
\(163\) 23.3112 1.82587 0.912937 0.408101i \(-0.133809\pi\)
0.912937 + 0.408101i \(0.133809\pi\)
\(164\) 1.30111 2.25359i 0.101600 0.175976i
\(165\) 0 0
\(166\) 10.9775 + 19.0136i 0.852020 + 1.47574i
\(167\) 7.88747 + 13.6615i 0.610351 + 1.05716i 0.991181 + 0.132514i \(0.0423049\pi\)
−0.380830 + 0.924645i \(0.624362\pi\)
\(168\) 0 0
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) 7.67209 0.588423
\(171\) 0 0
\(172\) 3.73096 0.284483
\(173\) −5.16995 + 8.95461i −0.393064 + 0.680806i −0.992852 0.119352i \(-0.961918\pi\)
0.599788 + 0.800159i \(0.295252\pi\)
\(174\) 0 0
\(175\) −7.26661 12.5861i −0.549304 0.951423i
\(176\) −11.7544 20.3592i −0.886019 1.53463i
\(177\) 0 0
\(178\) 6.27982 10.8770i 0.470692 0.815263i
\(179\) 9.84680 0.735984 0.367992 0.929829i \(-0.380045\pi\)
0.367992 + 0.929829i \(0.380045\pi\)
\(180\) 0 0
\(181\) −19.0799 −1.41820 −0.709098 0.705110i \(-0.750898\pi\)
−0.709098 + 0.705110i \(0.750898\pi\)
\(182\) 3.04320 5.27098i 0.225577 0.390711i
\(183\) 0 0
\(184\) −2.34764 4.06623i −0.173070 0.299766i
\(185\) −3.96289 6.86393i −0.291358 0.504646i
\(186\) 0 0
\(187\) 10.8840 18.8517i 0.795920 1.37857i
\(188\) −3.78070 −0.275736
\(189\) 0 0
\(190\) −11.0651 −0.802748
\(191\) −2.71267 + 4.69848i −0.196282 + 0.339970i −0.947320 0.320289i \(-0.896220\pi\)
0.751038 + 0.660259i \(0.229553\pi\)
\(192\) 0 0
\(193\) 8.90207 + 15.4188i 0.640785 + 1.10987i 0.985258 + 0.171076i \(0.0547243\pi\)
−0.344473 + 0.938796i \(0.611942\pi\)
\(194\) −6.01749 10.4226i −0.432031 0.748299i
\(195\) 0 0
\(196\) −1.88615 + 3.26692i −0.134725 + 0.233351i
\(197\) 9.90279 0.705545 0.352772 0.935709i \(-0.385239\pi\)
0.352772 + 0.935709i \(0.385239\pi\)
\(198\) 0 0
\(199\) 9.39752 0.666172 0.333086 0.942896i \(-0.391910\pi\)
0.333086 + 0.942896i \(0.391910\pi\)
\(200\) −4.50896 + 7.80975i −0.318832 + 0.552233i
\(201\) 0 0
\(202\) −8.65925 14.9983i −0.609263 1.05527i
\(203\) 4.18219 + 7.24377i 0.293532 + 0.508413i
\(204\) 0 0
\(205\) 3.07217 5.32116i 0.214570 0.371646i
\(206\) 7.29375 0.508180
\(207\) 0 0
\(208\) −4.72186 −0.327402
\(209\) −15.6976 + 27.1890i −1.08582 + 1.88070i
\(210\) 0 0
\(211\) −11.3713 19.6957i −0.782835 1.35591i −0.930284 0.366841i \(-0.880439\pi\)
0.147448 0.989070i \(-0.452894\pi\)
\(212\) 1.34224 + 2.32484i 0.0921857 + 0.159670i
\(213\) 0 0
\(214\) −1.75591 + 3.04133i −0.120032 + 0.207901i
\(215\) 8.80951 0.600804
\(216\) 0 0
\(217\) 9.71458 0.659469
\(218\) 10.1481 17.5770i 0.687315 1.19046i
\(219\) 0 0
\(220\) 1.31286 + 2.27395i 0.0885133 + 0.153309i
\(221\) −2.18612 3.78647i −0.147054 0.254706i
\(222\) 0 0
\(223\) −9.62529 + 16.6715i −0.644557 + 1.11641i 0.339847 + 0.940481i \(0.389625\pi\)
−0.984404 + 0.175925i \(0.943708\pi\)
\(224\) 10.1465 0.677941
\(225\) 0 0
\(226\) −8.72098 −0.580111
\(227\) −2.57312 + 4.45677i −0.170784 + 0.295806i −0.938694 0.344751i \(-0.887963\pi\)
0.767910 + 0.640557i \(0.221297\pi\)
\(228\) 0 0
\(229\) −4.52272 7.83357i −0.298869 0.517657i 0.677008 0.735976i \(-0.263276\pi\)
−0.975878 + 0.218318i \(0.929943\pi\)
\(230\) 1.71519 + 2.97080i 0.113096 + 0.195889i
\(231\) 0 0
\(232\) 2.59507 4.49479i 0.170375 0.295097i
\(233\) −5.69101 −0.372830 −0.186415 0.982471i \(-0.559687\pi\)
−0.186415 + 0.982471i \(0.559687\pi\)
\(234\) 0 0
\(235\) −8.92695 −0.582330
\(236\) −1.10974 + 1.92212i −0.0722378 + 0.125120i
\(237\) 0 0
\(238\) 13.3056 + 23.0460i 0.862475 + 1.49385i
\(239\) −5.22578 9.05132i −0.338028 0.585481i 0.646034 0.763309i \(-0.276426\pi\)
−0.984062 + 0.177827i \(0.943093\pi\)
\(240\) 0 0
\(241\) −7.45124 + 12.9059i −0.479976 + 0.831343i −0.999736 0.0229690i \(-0.992688\pi\)
0.519760 + 0.854312i \(0.326021\pi\)
\(242\) 21.6802 1.39365
\(243\) 0 0
\(244\) 1.00831 0.0645504
\(245\) −4.45357 + 7.71381i −0.284528 + 0.492817i
\(246\) 0 0
\(247\) 3.15294 + 5.46106i 0.200617 + 0.347479i
\(248\) −3.01397 5.22035i −0.191387 0.331493i
\(249\) 0 0
\(250\) 7.68108 13.3040i 0.485794 0.841420i
\(251\) −7.44478 −0.469910 −0.234955 0.972006i \(-0.575494\pi\)
−0.234955 + 0.972006i \(0.575494\pi\)
\(252\) 0 0
\(253\) 9.73306 0.611912
\(254\) −8.71687 + 15.0981i −0.546945 + 0.947336i
\(255\) 0 0
\(256\) −5.37956 9.31767i −0.336222 0.582354i
\(257\) 3.98142 + 6.89602i 0.248354 + 0.430162i 0.963069 0.269254i \(-0.0867771\pi\)
−0.714715 + 0.699416i \(0.753444\pi\)
\(258\) 0 0
\(259\) 13.7456 23.8081i 0.854110 1.47936i
\(260\) 0.527392 0.0327075
\(261\) 0 0
\(262\) −8.96234 −0.553695
\(263\) −1.72097 + 2.98080i −0.106119 + 0.183804i −0.914195 0.405275i \(-0.867176\pi\)
0.808076 + 0.589079i \(0.200509\pi\)
\(264\) 0 0
\(265\) 3.16929 + 5.48938i 0.194688 + 0.337210i
\(266\) −19.1901 33.2382i −1.17662 2.03797i
\(267\) 0 0
\(268\) −0.552220 + 0.956473i −0.0337322 + 0.0584259i
\(269\) −9.24141 −0.563458 −0.281729 0.959494i \(-0.590908\pi\)
−0.281729 + 0.959494i \(0.590908\pi\)
\(270\) 0 0
\(271\) −25.6813 −1.56003 −0.780015 0.625761i \(-0.784788\pi\)
−0.780015 + 0.625761i \(0.784788\pi\)
\(272\) 10.3226 17.8792i 0.625897 1.08408i
\(273\) 0 0
\(274\) 4.72840 + 8.18983i 0.285653 + 0.494766i
\(275\) −9.34684 16.1892i −0.563636 0.976245i
\(276\) 0 0
\(277\) 5.10462 8.84145i 0.306707 0.531232i −0.670933 0.741518i \(-0.734106\pi\)
0.977640 + 0.210286i \(0.0674396\pi\)
\(278\) −18.8407 −1.12999
\(279\) 0 0
\(280\) 10.3739 0.619961
\(281\) 9.87570 17.1052i 0.589135 1.02041i −0.405211 0.914223i \(-0.632802\pi\)
0.994346 0.106188i \(-0.0338646\pi\)
\(282\) 0 0
\(283\) −10.1506 17.5814i −0.603391 1.04510i −0.992304 0.123829i \(-0.960482\pi\)
0.388912 0.921275i \(-0.372851\pi\)
\(284\) 1.02054 + 1.76763i 0.0605580 + 0.104890i
\(285\) 0 0
\(286\) 3.91439 6.77992i 0.231463 0.400905i
\(287\) 21.3121 1.25802
\(288\) 0 0
\(289\) 2.11650 0.124500
\(290\) −1.89596 + 3.28391i −0.111335 + 0.192838i
\(291\) 0 0
\(292\) −1.81066 3.13615i −0.105961 0.183529i
\(293\) −4.05935 7.03101i −0.237150 0.410756i 0.722745 0.691114i \(-0.242880\pi\)
−0.959895 + 0.280359i \(0.909547\pi\)
\(294\) 0 0
\(295\) −2.62030 + 4.53850i −0.152560 + 0.264242i
\(296\) −17.0584 −0.991499
\(297\) 0 0
\(298\) −31.6900 −1.83575
\(299\) 0.977469 1.69303i 0.0565285 0.0979103i
\(300\) 0 0
\(301\) 15.2782 + 26.4627i 0.880623 + 1.52528i
\(302\) −0.849439 1.47127i −0.0488797 0.0846621i
\(303\) 0 0
\(304\) −14.8877 + 25.7863i −0.853871 + 1.47895i
\(305\) 2.38081 0.136325
\(306\) 0 0
\(307\) −14.1914 −0.809944 −0.404972 0.914329i \(-0.632719\pi\)
−0.404972 + 0.914329i \(0.632719\pi\)
\(308\) −4.55377 + 7.88736i −0.259475 + 0.449424i
\(309\) 0 0
\(310\) 2.20202 + 3.81400i 0.125066 + 0.216621i
\(311\) 13.5633 + 23.4923i 0.769102 + 1.33212i 0.938050 + 0.346499i \(0.112630\pi\)
−0.168948 + 0.985625i \(0.554037\pi\)
\(312\) 0 0
\(313\) 13.5933 23.5444i 0.768341 1.33081i −0.170121 0.985423i \(-0.554416\pi\)
0.938462 0.345383i \(-0.112251\pi\)
\(314\) −32.7000 −1.84537
\(315\) 0 0
\(316\) −1.41360 −0.0795212
\(317\) 12.7249 22.0402i 0.714704 1.23790i −0.248370 0.968665i \(-0.579895\pi\)
0.963074 0.269238i \(-0.0867718\pi\)
\(318\) 0 0
\(319\) 5.37944 + 9.31746i 0.301191 + 0.521677i
\(320\) −2.96929 5.14295i −0.165988 0.287500i
\(321\) 0 0
\(322\) −5.94928 + 10.3045i −0.331540 + 0.574245i
\(323\) −27.5709 −1.53408
\(324\) 0 0
\(325\) −3.75473 −0.208275
\(326\) −18.3279 + 31.7448i −1.01509 + 1.75818i
\(327\) 0 0
\(328\) −6.61214 11.4526i −0.365094 0.632362i
\(329\) −15.4819 26.8154i −0.853545 1.47838i
\(330\) 0 0
\(331\) 1.80139 3.12009i 0.0990131 0.171496i −0.812263 0.583291i \(-0.801765\pi\)
0.911276 + 0.411795i \(0.135098\pi\)
\(332\) −6.59869 −0.362150
\(333\) 0 0
\(334\) −24.8054 −1.35729
\(335\) −1.30390 + 2.25841i −0.0712394 + 0.123390i
\(336\) 0 0
\(337\) 2.85188 + 4.93960i 0.155352 + 0.269077i 0.933187 0.359391i \(-0.117016\pi\)
−0.777835 + 0.628468i \(0.783682\pi\)
\(338\) −0.786226 1.36178i −0.0427651 0.0740713i
\(339\) 0 0
\(340\) −1.15294 + 1.99695i −0.0625271 + 0.108300i
\(341\) 12.4956 0.676675
\(342\) 0 0
\(343\) −3.80057 −0.205212
\(344\) 9.48021 16.4202i 0.511138 0.885318i
\(345\) 0 0
\(346\) −8.12950 14.0807i −0.437045 0.756983i
\(347\) 17.6247 + 30.5268i 0.946142 + 1.63877i 0.753449 + 0.657506i \(0.228389\pi\)
0.192693 + 0.981259i \(0.438278\pi\)
\(348\) 0 0
\(349\) −5.45273 + 9.44440i −0.291878 + 0.505547i −0.974254 0.225454i \(-0.927613\pi\)
0.682376 + 0.731001i \(0.260947\pi\)
\(350\) 22.8528 1.22153
\(351\) 0 0
\(352\) 13.0512 0.695629
\(353\) −8.19606 + 14.1960i −0.436232 + 0.755577i −0.997395 0.0721287i \(-0.977021\pi\)
0.561163 + 0.827705i \(0.310354\pi\)
\(354\) 0 0
\(355\) 2.40969 + 4.17371i 0.127893 + 0.221518i
\(356\) 1.88743 + 3.26912i 0.100034 + 0.173263i
\(357\) 0 0
\(358\) −7.74181 + 13.4092i −0.409168 + 0.708699i
\(359\) 1.31488 0.0693969 0.0346984 0.999398i \(-0.488953\pi\)
0.0346984 + 0.999398i \(0.488953\pi\)
\(360\) 0 0
\(361\) 20.7642 1.09285
\(362\) 15.0011 25.9827i 0.788441 1.36562i
\(363\) 0 0
\(364\) 0.914649 + 1.58422i 0.0479407 + 0.0830356i
\(365\) −4.27531 7.40505i −0.223780 0.387598i
\(366\) 0 0
\(367\) 11.5784 20.0543i 0.604386 1.04683i −0.387762 0.921759i \(-0.626752\pi\)
0.992148 0.125068i \(-0.0399149\pi\)
\(368\) 9.23094 0.481196
\(369\) 0 0
\(370\) 12.4629 0.647916
\(371\) −10.9929 + 19.0403i −0.570725 + 0.988524i
\(372\) 0 0
\(373\) 15.1931 + 26.3152i 0.786668 + 1.36255i 0.927998 + 0.372586i \(0.121529\pi\)
−0.141330 + 0.989963i \(0.545138\pi\)
\(374\) 17.1147 + 29.6435i 0.884978 + 1.53283i
\(375\) 0 0
\(376\) −9.60658 + 16.6391i −0.495422 + 0.858095i
\(377\) 2.16098 0.111296
\(378\) 0 0
\(379\) 31.9119 1.63920 0.819602 0.572933i \(-0.194195\pi\)
0.819602 + 0.572933i \(0.194195\pi\)
\(380\) 1.66284 2.88012i 0.0853017 0.147747i
\(381\) 0 0
\(382\) −4.26555 7.38814i −0.218244 0.378010i
\(383\) −15.4894 26.8285i −0.791473 1.37087i −0.925055 0.379834i \(-0.875981\pi\)
0.133582 0.991038i \(-0.457352\pi\)
\(384\) 0 0
\(385\) −10.7523 + 18.6235i −0.547989 + 0.949144i
\(386\) −27.9962 −1.42497
\(387\) 0 0
\(388\) 3.61717 0.183634
\(389\) −10.1003 + 17.4943i −0.512108 + 0.886997i 0.487794 + 0.872959i \(0.337802\pi\)
−0.999901 + 0.0140378i \(0.995531\pi\)
\(390\) 0 0
\(391\) 4.27373 + 7.40232i 0.216132 + 0.374352i
\(392\) 9.58527 + 16.6022i 0.484129 + 0.838536i
\(393\) 0 0
\(394\) −7.78584 + 13.4855i −0.392245 + 0.679388i
\(395\) −3.33778 −0.167942
\(396\) 0 0
\(397\) −24.3056 −1.21986 −0.609931 0.792454i \(-0.708803\pi\)
−0.609931 + 0.792454i \(0.708803\pi\)
\(398\) −7.38858 + 12.7974i −0.370356 + 0.641475i
\(399\) 0 0
\(400\) −8.86465 15.3540i −0.443232 0.767701i
\(401\) 12.5171 + 21.6802i 0.625073 + 1.08266i 0.988527 + 0.151046i \(0.0482643\pi\)
−0.363453 + 0.931612i \(0.618402\pi\)
\(402\) 0 0
\(403\) 1.25490 2.17356i 0.0625113 0.108273i
\(404\) 5.20516 0.258966
\(405\) 0 0
\(406\) −13.1526 −0.652752
\(407\) 17.6806 30.6237i 0.876393 1.51796i
\(408\) 0 0
\(409\) 9.30478 + 16.1164i 0.460092 + 0.796902i 0.998965 0.0454844i \(-0.0144831\pi\)
−0.538873 + 0.842387i \(0.681150\pi\)
\(410\) 4.83085 + 8.36728i 0.238579 + 0.413230i
\(411\) 0 0
\(412\) −1.09609 + 1.89848i −0.0540003 + 0.0935312i
\(413\) −18.1774 −0.894453
\(414\) 0 0
\(415\) −15.5808 −0.764829
\(416\) 1.31070 2.27020i 0.0642623 0.111305i
\(417\) 0 0
\(418\) −24.6837 42.7534i −1.20732 2.09114i
\(419\) −9.88439 17.1203i −0.482884 0.836379i 0.516923 0.856032i \(-0.327077\pi\)
−0.999807 + 0.0196526i \(0.993744\pi\)
\(420\) 0 0
\(421\) −0.242394 + 0.419838i −0.0118135 + 0.0204617i −0.871872 0.489734i \(-0.837094\pi\)
0.860058 + 0.510196i \(0.170427\pi\)
\(422\) 35.7618 1.74086
\(423\) 0 0
\(424\) 13.6423 0.662530
\(425\) 8.20829 14.2172i 0.398161 0.689634i
\(426\) 0 0
\(427\) 4.12901 + 7.15166i 0.199817 + 0.346093i
\(428\) −0.527748 0.914087i −0.0255097 0.0441841i
\(429\) 0 0
\(430\) −6.92627 + 11.9967i −0.334014 + 0.578530i
\(431\) 6.71380 0.323392 0.161696 0.986841i \(-0.448304\pi\)
0.161696 + 0.986841i \(0.448304\pi\)
\(432\) 0 0
\(433\) 1.48138 0.0711905 0.0355953 0.999366i \(-0.488667\pi\)
0.0355953 + 0.999366i \(0.488667\pi\)
\(434\) −7.63786 + 13.2292i −0.366629 + 0.635020i
\(435\) 0 0
\(436\) 3.05005 + 5.28285i 0.146071 + 0.253003i
\(437\) −6.16381 10.6760i −0.294855 0.510704i
\(438\) 0 0
\(439\) −3.73596 + 6.47087i −0.178308 + 0.308838i −0.941301 0.337568i \(-0.890396\pi\)
0.762993 + 0.646406i \(0.223729\pi\)
\(440\) 13.3437 0.636136
\(441\) 0 0
\(442\) 6.87514 0.327017
\(443\) 19.9367 34.5314i 0.947221 1.64063i 0.195978 0.980608i \(-0.437212\pi\)
0.751242 0.660026i \(-0.229455\pi\)
\(444\) 0 0
\(445\) 4.45658 + 7.71902i 0.211262 + 0.365917i
\(446\) −15.1353 26.2151i −0.716678 1.24132i
\(447\) 0 0
\(448\) 10.2992 17.8387i 0.486591 0.842801i
\(449\) −12.7677 −0.602546 −0.301273 0.953538i \(-0.597412\pi\)
−0.301273 + 0.953538i \(0.597412\pi\)
\(450\) 0 0
\(451\) 27.4132 1.29084
\(452\) 1.31057 2.26997i 0.0616439 0.106770i
\(453\) 0 0
\(454\) −4.04611 7.00806i −0.189893 0.328905i
\(455\) 2.15966 + 3.74064i 0.101246 + 0.175364i
\(456\) 0 0
\(457\) 4.64821 8.05094i 0.217434 0.376607i −0.736589 0.676341i \(-0.763565\pi\)
0.954023 + 0.299734i \(0.0968979\pi\)
\(458\) 14.2235 0.664621
\(459\) 0 0
\(460\) −1.03102 −0.0480715
\(461\) −6.30336 + 10.9177i −0.293577 + 0.508490i −0.974653 0.223723i \(-0.928179\pi\)
0.681076 + 0.732213i \(0.261512\pi\)
\(462\) 0 0
\(463\) −7.65035 13.2508i −0.355542 0.615817i 0.631669 0.775238i \(-0.282370\pi\)
−0.987211 + 0.159422i \(0.949037\pi\)
\(464\) 5.10192 + 8.83678i 0.236851 + 0.410237i
\(465\) 0 0
\(466\) 4.47442 7.74992i 0.207273 0.359008i
\(467\) −16.9099 −0.782498 −0.391249 0.920285i \(-0.627957\pi\)
−0.391249 + 0.920285i \(0.627957\pi\)
\(468\) 0 0
\(469\) −9.04532 −0.417674
\(470\) 7.01860 12.1566i 0.323744 0.560741i
\(471\) 0 0
\(472\) 5.63959 + 9.76805i 0.259583 + 0.449611i
\(473\) 19.6520 + 34.0382i 0.903598 + 1.56508i
\(474\) 0 0
\(475\) −11.8384 + 20.5048i −0.543185 + 0.940824i
\(476\) −7.99814 −0.366594
\(477\) 0 0
\(478\) 16.4346 0.751701
\(479\) −5.06351 + 8.77026i −0.231358 + 0.400723i −0.958208 0.286073i \(-0.907650\pi\)
0.726850 + 0.686796i \(0.240983\pi\)
\(480\) 0 0
\(481\) −3.55124 6.15093i −0.161923 0.280458i
\(482\) −11.7167 20.2940i −0.533682 0.924364i
\(483\) 0 0
\(484\) −3.25804 + 5.64309i −0.148093 + 0.256504i
\(485\) 8.54083 0.387819
\(486\) 0 0
\(487\) 0.181885 0.00824202 0.00412101 0.999992i \(-0.498688\pi\)
0.00412101 + 0.999992i \(0.498688\pi\)
\(488\) 2.56207 4.43763i 0.115979 0.200882i
\(489\) 0 0
\(490\) −7.00303 12.1296i −0.316365 0.547960i
\(491\) 3.62972 + 6.28685i 0.163807 + 0.283722i 0.936231 0.351385i \(-0.114289\pi\)
−0.772424 + 0.635107i \(0.780956\pi\)
\(492\) 0 0
\(493\) −4.72416 + 8.18249i −0.212766 + 0.368521i
\(494\) −9.91571 −0.446129
\(495\) 0 0
\(496\) 11.8510 0.532124
\(497\) −8.35820 + 14.4768i −0.374917 + 0.649375i
\(498\) 0 0
\(499\) −5.49985 9.52603i −0.246207 0.426443i 0.716263 0.697830i \(-0.245851\pi\)
−0.962470 + 0.271387i \(0.912518\pi\)
\(500\) 2.30859 + 3.99859i 0.103243 + 0.178822i
\(501\) 0 0
\(502\) 5.85328 10.1382i 0.261245 0.452489i
\(503\) 29.7279 1.32550 0.662750 0.748841i \(-0.269389\pi\)
0.662750 + 0.748841i \(0.269389\pi\)
\(504\) 0 0
\(505\) 12.2904 0.546914
\(506\) −7.65239 + 13.2543i −0.340190 + 0.589227i
\(507\) 0 0
\(508\) −2.61990 4.53779i −0.116239 0.201332i
\(509\) −2.41633 4.18521i −0.107102 0.185506i 0.807493 0.589877i \(-0.200824\pi\)
−0.914595 + 0.404371i \(0.867490\pi\)
\(510\) 0 0
\(511\) 14.8292 25.6850i 0.656007 1.13624i
\(512\) −10.3036 −0.455359
\(513\) 0 0
\(514\) −12.5212 −0.552286
\(515\) −2.58807 + 4.48266i −0.114044 + 0.197530i
\(516\) 0 0
\(517\) −19.9139 34.4919i −0.875814 1.51695i
\(518\) 21.6143 + 37.4371i 0.949678 + 1.64489i
\(519\) 0 0
\(520\) 1.34008 2.32108i 0.0587663 0.101786i
\(521\) 17.2295 0.754836 0.377418 0.926043i \(-0.376812\pi\)
0.377418 + 0.926043i \(0.376812\pi\)
\(522\) 0 0
\(523\) 9.49365 0.415128 0.207564 0.978221i \(-0.433446\pi\)
0.207564 + 0.978221i \(0.433446\pi\)
\(524\) 1.34684 2.33279i 0.0588368 0.101908i
\(525\) 0 0
\(526\) −2.70614 4.68717i −0.117993 0.204371i
\(527\) 5.48675 + 9.50333i 0.239007 + 0.413971i
\(528\) 0 0
\(529\) 9.58911 16.6088i 0.416918 0.722123i
\(530\) −9.96713 −0.432944
\(531\) 0 0
\(532\) 11.5353 0.500121
\(533\) 2.75305 4.76842i 0.119248 0.206543i
\(534\) 0 0
\(535\) −1.24611 2.15833i −0.0538742 0.0933129i
\(536\) 2.80633 + 4.86071i 0.121215 + 0.209951i
\(537\) 0 0
\(538\) 7.26584 12.5848i 0.313253 0.542569i
\(539\) −39.7395 −1.71170
\(540\) 0 0
\(541\) −3.51263 −0.151020 −0.0755098 0.997145i \(-0.524058\pi\)
−0.0755098 + 0.997145i \(0.524058\pi\)
\(542\) 20.1913 34.9724i 0.867292 1.50219i
\(543\) 0 0
\(544\) 5.73069 + 9.92584i 0.245701 + 0.425567i
\(545\) 7.20176 + 12.4738i 0.308489 + 0.534319i
\(546\) 0 0
\(547\) 10.2324 17.7231i 0.437507 0.757785i −0.559989 0.828500i \(-0.689195\pi\)
0.997497 + 0.0707152i \(0.0225281\pi\)
\(548\) −2.84229 −0.121416
\(549\) 0 0
\(550\) 29.3949 1.25340
\(551\) 6.81344 11.8012i 0.290262 0.502749i
\(552\) 0 0
\(553\) −5.78867 10.0263i −0.246159 0.426360i
\(554\) 8.02677 + 13.9028i 0.341025 + 0.590672i
\(555\) 0 0
\(556\) 2.83133 4.90400i 0.120075 0.207976i
\(557\) −37.6453 −1.59508 −0.797540 0.603266i \(-0.793866\pi\)
−0.797540 + 0.603266i \(0.793866\pi\)
\(558\) 0 0
\(559\) 7.89441 0.333898
\(560\) −10.1976 + 17.6628i −0.430928 + 0.746389i
\(561\) 0 0
\(562\) 15.5291 + 26.8971i 0.655054 + 1.13459i
\(563\) 19.5488 + 33.8596i 0.823885 + 1.42701i 0.902768 + 0.430127i \(0.141531\pi\)
−0.0788832 + 0.996884i \(0.525135\pi\)
\(564\) 0 0
\(565\) 3.09450 5.35982i 0.130186 0.225489i
\(566\) 31.9227 1.34181
\(567\) 0 0
\(568\) 10.3726 0.435225
\(569\) 17.4317 30.1926i 0.730774 1.26574i −0.225779 0.974179i \(-0.572493\pi\)
0.956553 0.291559i \(-0.0941740\pi\)
\(570\) 0 0
\(571\) 5.09367 + 8.82250i 0.213164 + 0.369210i 0.952703 0.303903i \(-0.0982899\pi\)
−0.739539 + 0.673113i \(0.764957\pi\)
\(572\) 1.17649 + 2.03774i 0.0491914 + 0.0852021i
\(573\) 0 0
\(574\) −16.7562 + 29.0225i −0.699389 + 1.21138i
\(575\) 7.34026 0.306110
\(576\) 0 0
\(577\) 20.5759 0.856587 0.428293 0.903640i \(-0.359115\pi\)
0.428293 + 0.903640i \(0.359115\pi\)
\(578\) −1.66405 + 2.88222i −0.0692153 + 0.119884i
\(579\) 0 0
\(580\) −0.569841 0.986994i −0.0236614 0.0409827i
\(581\) −27.0215 46.8026i −1.12104 1.94170i
\(582\) 0 0
\(583\) −14.1399 + 24.4910i −0.585615 + 1.01432i
\(584\) −18.4032 −0.761530
\(585\) 0 0
\(586\) 12.7663 0.527370
\(587\) 1.25881 2.18032i 0.0519567 0.0899916i −0.838877 0.544320i \(-0.816788\pi\)
0.890834 + 0.454329i \(0.150121\pi\)
\(588\) 0 0
\(589\) −7.91329 13.7062i −0.326061 0.564755i
\(590\) −4.12030 7.13657i −0.169630 0.293808i
\(591\) 0 0
\(592\) 16.7685 29.0438i 0.689179 1.19369i
\(593\) 1.33875 0.0549761 0.0274880 0.999622i \(-0.491249\pi\)
0.0274880 + 0.999622i \(0.491249\pi\)
\(594\) 0 0
\(595\) −18.8851 −0.774214
\(596\) 4.76228 8.24852i 0.195071 0.337872i
\(597\) 0 0
\(598\) 1.53702 + 2.66220i 0.0628536 + 0.108866i
\(599\) 0.143216 + 0.248057i 0.00585165 + 0.0101354i 0.868936 0.494924i \(-0.164804\pi\)
−0.863085 + 0.505059i \(0.831471\pi\)
\(600\) 0 0
\(601\) 2.56733 4.44675i 0.104724 0.181387i −0.808902 0.587944i \(-0.799938\pi\)
0.913625 + 0.406557i \(0.133271\pi\)
\(602\) −48.0486 −1.95831
\(603\) 0 0
\(604\) 0.510606 0.0207763
\(605\) −7.69285 + 13.3244i −0.312759 + 0.541714i
\(606\) 0 0
\(607\) −15.8953 27.5316i −0.645172 1.11747i −0.984262 0.176717i \(-0.943452\pi\)
0.339089 0.940754i \(-0.389881\pi\)
\(608\) −8.26511 14.3156i −0.335194 0.580574i
\(609\) 0 0
\(610\) −1.87186 + 3.24215i −0.0757892 + 0.131271i
\(611\) −7.99965 −0.323631
\(612\) 0 0
\(613\) −21.8649 −0.883116 −0.441558 0.897233i \(-0.645574\pi\)
−0.441558 + 0.897233i \(0.645574\pi\)
\(614\) 11.1576 19.3256i 0.450285 0.779916i
\(615\) 0 0
\(616\) 23.1418 + 40.0828i 0.932411 + 1.61498i
\(617\) 4.10686 + 7.11329i 0.165336 + 0.286370i 0.936775 0.349933i \(-0.113796\pi\)
−0.771439 + 0.636304i \(0.780462\pi\)
\(618\) 0 0
\(619\) 0.346345 0.599887i 0.0139208 0.0241115i −0.858981 0.512007i \(-0.828902\pi\)
0.872902 + 0.487896i \(0.162235\pi\)
\(620\) −1.32365 −0.0531592
\(621\) 0 0
\(622\) −42.6552 −1.71032
\(623\) −15.4580 + 26.7740i −0.619311 + 1.07268i
\(624\) 0 0
\(625\) −3.93581 6.81702i −0.157432 0.272681i
\(626\) 21.3749 + 37.0224i 0.854313 + 1.47971i
\(627\) 0 0
\(628\) 4.91407 8.51143i 0.196093 0.339643i
\(629\) 31.0538 1.23819
\(630\) 0 0
\(631\) 3.59567 0.143141 0.0715707 0.997436i \(-0.477199\pi\)
0.0715707 + 0.997436i \(0.477199\pi\)
\(632\) −3.59189 + 6.22134i −0.142878 + 0.247472i
\(633\) 0 0
\(634\) 20.0094 + 34.6572i 0.794674 + 1.37641i
\(635\) −6.18607 10.7146i −0.245487 0.425195i
\(636\) 0 0
\(637\) −3.99095 + 6.91253i −0.158127 + 0.273884i
\(638\) −16.9178 −0.669783
\(639\) 0 0
\(640\) 15.1886 0.600384
\(641\) 11.6855 20.2398i 0.461548 0.799424i −0.537491 0.843270i \(-0.680628\pi\)
0.999038 + 0.0438456i \(0.0139610\pi\)
\(642\) 0 0
\(643\) 9.86171 + 17.0810i 0.388908 + 0.673608i 0.992303 0.123834i \(-0.0395191\pi\)
−0.603395 + 0.797442i \(0.706186\pi\)
\(644\) −1.78808 3.09705i −0.0704604 0.122041i
\(645\) 0 0
\(646\) 21.6769 37.5456i 0.852868 1.47721i
\(647\) −36.9338 −1.45202 −0.726008 0.687686i \(-0.758627\pi\)
−0.726008 + 0.687686i \(0.758627\pi\)
\(648\) 0 0
\(649\) −23.3811 −0.917790
\(650\) 2.95207 5.11313i 0.115790 0.200553i
\(651\) 0 0
\(652\) −5.50853 9.54105i −0.215731 0.373657i
\(653\) −12.0573 20.8839i −0.471841 0.817252i 0.527640 0.849468i \(-0.323077\pi\)
−0.999481 + 0.0322160i \(0.989744\pi\)
\(654\) 0 0
\(655\) 3.18014 5.50816i 0.124258 0.215222i
\(656\) 25.9990 1.01509
\(657\) 0 0
\(658\) 48.6891 1.89810
\(659\) 0.306111 0.530200i 0.0119244 0.0206537i −0.860002 0.510291i \(-0.829538\pi\)
0.871926 + 0.489638i \(0.162871\pi\)
\(660\) 0 0
\(661\) −16.5228 28.6183i −0.642663 1.11312i −0.984836 0.173488i \(-0.944496\pi\)
0.342173 0.939637i \(-0.388837\pi\)
\(662\) 2.83259 + 4.90620i 0.110092 + 0.190685i
\(663\) 0 0
\(664\) −16.7670 + 29.0412i −0.650684 + 1.12702i
\(665\) 27.2371 1.05621
\(666\) 0 0
\(667\) −4.22458 −0.163576
\(668\) 3.72768 6.45654i 0.144228 0.249811i
\(669\) 0 0
\(670\) −2.05031 3.55125i −0.0792106 0.137197i
\(671\) 5.31103 + 9.19898i 0.205030 + 0.355123i
\(672\) 0 0
\(673\) −20.7180 + 35.8846i −0.798619 + 1.38325i 0.121897 + 0.992543i \(0.461102\pi\)
−0.920516 + 0.390705i \(0.872231\pi\)
\(674\) −8.96889 −0.345469
\(675\) 0 0
\(676\) 0.472608 0.0181772
\(677\) −12.7842 + 22.1429i −0.491336 + 0.851019i −0.999950 0.00997530i \(-0.996825\pi\)
0.508614 + 0.860995i \(0.330158\pi\)
\(678\) 0 0
\(679\) 14.8123 + 25.6556i 0.568442 + 0.984571i
\(680\) 5.85915 + 10.1483i 0.224688 + 0.389171i
\(681\) 0 0
\(682\) −9.82437 + 17.0163i −0.376195 + 0.651588i
\(683\) 24.4296 0.934772 0.467386 0.884053i \(-0.345196\pi\)
0.467386 + 0.884053i \(0.345196\pi\)
\(684\) 0 0
\(685\) −6.71118 −0.256421
\(686\) 2.98811 5.17556i 0.114087 0.197604i
\(687\) 0 0
\(688\) 18.6381 + 32.2822i 0.710572 + 1.23075i
\(689\) 2.84008 + 4.91916i 0.108198 + 0.187405i
\(690\) 0 0
\(691\) 2.50550 4.33966i 0.0953138 0.165088i −0.814426 0.580268i \(-0.802948\pi\)
0.909740 + 0.415179i \(0.136281\pi\)
\(692\) 4.88672 0.185765
\(693\) 0 0
\(694\) −55.4279 −2.10401
\(695\) 6.68530 11.5793i 0.253588 0.439227i
\(696\) 0 0
\(697\) 12.0370 + 20.8487i 0.455934 + 0.789700i
\(698\) −8.57416 14.8509i −0.324537 0.562114i
\(699\) 0 0
\(700\) −3.43426 + 5.94831i −0.129803 + 0.224825i
\(701\) 50.6694 1.91376 0.956879 0.290486i \(-0.0938170\pi\)
0.956879 + 0.290486i \(0.0938170\pi\)
\(702\) 0 0
\(703\) −44.7874 −1.68919
\(704\) 13.2476 22.9455i 0.499287 0.864790i
\(705\) 0 0
\(706\) −12.8879 22.3225i −0.485043 0.840120i
\(707\) 21.3150 + 36.9187i 0.801635 + 1.38847i
\(708\) 0 0
\(709\) −11.9738 + 20.7393i −0.449686 + 0.778879i −0.998365 0.0571538i \(-0.981797\pi\)
0.548679 + 0.836033i \(0.315131\pi\)
\(710\) −7.57826 −0.284407
\(711\) 0 0
\(712\) 19.1835 0.718931
\(713\) −2.45326 + 4.24918i −0.0918754 + 0.159133i
\(714\) 0 0
\(715\) 2.77791 + 4.81148i 0.103888 + 0.179939i
\(716\) −2.32684 4.03020i −0.0869580 0.150616i
\(717\) 0 0
\(718\) −1.03380 + 1.79059i −0.0385809 + 0.0668241i
\(719\) 37.9792 1.41639 0.708193 0.706019i \(-0.249511\pi\)
0.708193 + 0.706019i \(0.249511\pi\)
\(720\) 0 0
\(721\) −17.9538 −0.668635
\(722\) −16.3253 + 28.2763i −0.607567 + 1.05234i
\(723\) 0 0
\(724\) 4.50865 + 7.80922i 0.167563 + 0.290227i
\(725\) 4.05694 + 7.02683i 0.150671 + 0.260970i
\(726\) 0 0
\(727\) −14.2552 + 24.6908i −0.528698 + 0.915731i 0.470742 + 0.882271i \(0.343986\pi\)
−0.999440 + 0.0334607i \(0.989347\pi\)
\(728\) 9.29633 0.344545
\(729\) 0 0
\(730\) 13.4454 0.497638
\(731\) −17.2581 + 29.8920i −0.638315 + 1.10559i
\(732\) 0 0
\(733\) 0.489397 + 0.847661i 0.0180763 + 0.0313091i 0.874922 0.484264i \(-0.160912\pi\)
−0.856846 + 0.515573i \(0.827579\pi\)
\(734\) 18.2064 + 31.5345i 0.672012 + 1.16396i
\(735\) 0 0
\(736\) −2.56233 + 4.43809i −0.0944489 + 0.163590i
\(737\) −11.6347 −0.428571
\(738\) 0 0
\(739\) −36.9812 −1.36038 −0.680188 0.733038i \(-0.738102\pi\)
−0.680188 + 0.733038i \(0.738102\pi\)
\(740\) −1.87290 + 3.24395i −0.0688490 + 0.119250i
\(741\) 0 0
\(742\) −17.2859 29.9400i −0.634584 1.09913i
\(743\) −14.1476 24.5043i −0.519024 0.898975i −0.999756 0.0221077i \(-0.992962\pi\)
0.480732 0.876868i \(-0.340371\pi\)
\(744\) 0 0
\(745\) 11.2447 19.4763i 0.411972 0.713557i
\(746\) −47.7808 −1.74938
\(747\) 0 0
\(748\) −10.2878 −0.376159
\(749\) 4.32224 7.48634i 0.157931 0.273545i
\(750\) 0 0
\(751\) 5.30501 + 9.18854i 0.193582 + 0.335295i 0.946435 0.322895i \(-0.104656\pi\)
−0.752852 + 0.658189i \(0.771323\pi\)
\(752\) −18.8866 32.7125i −0.688723 1.19290i
\(753\) 0 0
\(754\) −1.69902 + 2.94279i −0.0618746 + 0.107170i
\(755\) 1.20564 0.0438776
\(756\) 0 0
\(757\) −17.0596 −0.620040 −0.310020 0.950730i \(-0.600336\pi\)
−0.310020 + 0.950730i \(0.600336\pi\)
\(758\) −25.0900 + 43.4571i −0.911309 + 1.57843i
\(759\) 0 0
\(760\) −8.45038 14.6365i −0.306528 0.530921i
\(761\) −8.78193 15.2108i −0.318345 0.551389i 0.661798 0.749682i \(-0.269794\pi\)
−0.980143 + 0.198293i \(0.936460\pi\)
\(762\) 0 0
\(763\) −24.9798 + 43.2664i −0.904331 + 1.56635i
\(764\) 2.56406 0.0927645
\(765\) 0 0
\(766\) 48.7128 1.76007
\(767\) −2.34811 + 4.06705i −0.0847855 + 0.146853i
\(768\) 0 0
\(769\) 4.60704 + 7.97963i 0.166134 + 0.287753i 0.937057 0.349175i \(-0.113538\pi\)
−0.770923 + 0.636928i \(0.780205\pi\)
\(770\) −16.9075 29.2847i −0.609304 1.05535i
\(771\) 0 0
\(772\) 4.20719 7.28707i 0.151420 0.262267i
\(773\) −27.0112 −0.971525 −0.485762 0.874091i \(-0.661458\pi\)
−0.485762 + 0.874091i \(0.661458\pi\)
\(774\) 0 0
\(775\) 9.42365 0.338508
\(776\) 9.19107 15.9194i 0.329940 0.571473i
\(777\) 0 0
\(778\) −15.8823 27.5090i −0.569409 0.986245i
\(779\) −17.3604 30.0691i −0.622001 1.07734i
\(780\) 0 0
\(781\) −10.7509 + 18.6211i −0.384698 + 0.666317i
\(782\) −13.4405 −0.480631
\(783\) 0 0
\(784\) −37.6894 −1.34605
\(785\) 11.6031 20.0971i 0.414131 0.717296i
\(786\) 0 0
\(787\) −4.00528 6.93734i −0.142773 0.247290i 0.785767 0.618523i \(-0.212268\pi\)
−0.928540 + 0.371233i \(0.878935\pi\)
\(788\) −2.34007 4.05312i −0.0833615 0.144386i
\(789\) 0 0
\(790\) 2.62425 4.54533i 0.0933666 0.161716i
\(791\) 21.4670 0.763278
\(792\) 0 0
\(793\) 2.13350 0.0757628
\(794\) 19.1097 33.0990i 0.678178 1.17464i
\(795\) 0 0
\(796\) −2.22067 3.84632i −0.0787096 0.136329i
\(797\) −9.79921 16.9727i −0.347106 0.601205i 0.638628 0.769515i \(-0.279502\pi\)
−0.985734 + 0.168311i \(0.946169\pi\)
\(798\) 0 0
\(799\) 17.4882 30.2904i 0.618688 1.07160i
\(800\) 9.84263 0.347989
\(801\) 0 0
\(802\) −39.3651 −1.39003
\(803\) 19.0744 33.0379i 0.673122 1.16588i
\(804\) 0 0
\(805\) −4.22200 7.31273i −0.148806 0.257740i
\(806\) 1.97328 + 3.41782i 0.0695058 + 0.120388i
\(807\) 0 0
\(808\) 13.2261 22.9082i 0.465292 0.805909i
\(809\) −42.9313 −1.50938 −0.754691 0.656080i \(-0.772213\pi\)
−0.754691 + 0.656080i \(0.772213\pi\)
\(810\) 0 0
\(811\) 21.7459 0.763600 0.381800 0.924245i \(-0.375304\pi\)
0.381800 + 0.924245i \(0.375304\pi\)
\(812\) 1.97654 3.42346i 0.0693629 0.120140i
\(813\) 0 0
\(814\) 27.8019 + 48.1543i 0.974455 + 1.68781i
\(815\) −13.0067 22.5282i −0.455604 0.789130i
\(816\) 0 0
\(817\) 24.8906 43.1118i 0.870813 1.50829i
\(818\) −29.2627 −1.02315
\(819\) 0 0
\(820\) −2.90387 −0.101408
\(821\) −4.07220 + 7.05326i −0.142121 + 0.246161i −0.928295 0.371844i \(-0.878726\pi\)
0.786174 + 0.618005i \(0.212059\pi\)
\(822\) 0 0
\(823\) −0.204811 0.354744i −0.00713928 0.0123656i 0.862434 0.506170i \(-0.168939\pi\)
−0.869573 + 0.493804i \(0.835606\pi\)
\(824\) 5.57021 + 9.64789i 0.194047 + 0.336100i
\(825\) 0 0
\(826\) 14.2916 24.7538i 0.497268 0.861293i
\(827\) −35.2456 −1.22561 −0.612804 0.790235i \(-0.709959\pi\)
−0.612804 + 0.790235i \(0.709959\pi\)
\(828\) 0 0
\(829\) −10.9615 −0.380710 −0.190355 0.981715i \(-0.560964\pi\)
−0.190355 + 0.981715i \(0.560964\pi\)
\(830\) 12.2500 21.2176i 0.425204 0.736474i
\(831\) 0 0
\(832\) −2.66085 4.60872i −0.0922483 0.159779i
\(833\) −17.4494 30.2232i −0.604586 1.04717i
\(834\) 0 0
\(835\) 8.80177 15.2451i 0.304598 0.527579i
\(836\) 14.8376 0.513169
\(837\) 0 0
\(838\) 31.0855 1.07383
\(839\) −12.0475 + 20.8668i −0.415925 + 0.720403i −0.995525 0.0944981i \(-0.969875\pi\)
0.579600 + 0.814901i \(0.303209\pi\)
\(840\) 0 0
\(841\) 12.1651 + 21.0705i 0.419486 + 0.726571i
\(842\) −0.381153 0.660176i −0.0131354 0.0227512i
\(843\) 0 0
\(844\) −5.37419 + 9.30837i −0.184987 + 0.320407i
\(845\) 1.11592 0.0383887
\(846\) 0 0
\(847\) −53.3665 −1.83369
\(848\) −13.4104 + 23.2276i −0.460517 + 0.797638i
\(849\) 0 0
\(850\) 12.9071 + 22.3558i 0.442712 + 0.766799i
\(851\) 6.94246 + 12.0247i 0.237984 + 0.412201i
\(852\) 0 0
\(853\) 3.95635 6.85260i 0.135463 0.234629i −0.790311 0.612705i \(-0.790081\pi\)
0.925774 + 0.378077i \(0.123415\pi\)
\(854\) −12.9853 −0.444349
\(855\) 0 0
\(856\) −5.36394 −0.183336
\(857\) −6.01297 + 10.4148i −0.205399 + 0.355762i −0.950260 0.311458i \(-0.899183\pi\)
0.744861 + 0.667220i \(0.232516\pi\)
\(858\) 0 0
\(859\) −13.0444 22.5936i −0.445070 0.770884i 0.552987 0.833190i \(-0.313488\pi\)
−0.998057 + 0.0623058i \(0.980155\pi\)
\(860\) −2.08172 3.60565i −0.0709862 0.122952i
\(861\) 0 0
\(862\) −5.27857 + 9.14275i −0.179789 + 0.311403i
\(863\) −29.5606 −1.00625 −0.503127 0.864213i \(-0.667817\pi\)
−0.503127 + 0.864213i \(0.667817\pi\)
\(864\) 0 0
\(865\) 11.5385 0.392320
\(866\) −1.16470 + 2.01732i −0.0395781 + 0.0685513i
\(867\) 0 0
\(868\) −2.29560 3.97609i −0.0779176 0.134957i
\(869\) −7.44581 12.8965i −0.252582 0.437484i
\(870\) 0 0
\(871\) −1.16845 + 2.02382i −0.0395915 + 0.0685744i
\(872\) 31.0002 1.04980
\(873\) 0 0
\(874\) 19.3846 0.655694
\(875\) −18.9072 + 32.7483i −0.639181 + 1.10709i
\(876\) 0 0
\(877\) 6.96208 + 12.0587i 0.235093 + 0.407193i 0.959300 0.282390i \(-0.0911273\pi\)
−0.724207 + 0.689583i \(0.757794\pi\)
\(878\) −5.87462 10.1751i −0.198259 0.343394i
\(879\) 0 0
\(880\) −13.1169 + 22.7191i −0.442171 + 0.765862i
\(881\) 37.5189 1.26404 0.632022 0.774950i \(-0.282225\pi\)
0.632022 + 0.774950i \(0.282225\pi\)
\(882\) 0 0
\(883\) 37.4210 1.25932 0.629658 0.776872i \(-0.283195\pi\)
0.629658 + 0.776872i \(0.283195\pi\)
\(884\) −1.03318 + 1.78952i −0.0347496 + 0.0601880i
\(885\) 0 0
\(886\) 31.3495 + 54.2989i 1.05321 + 1.82421i
\(887\) −4.27014 7.39609i −0.143377 0.248336i 0.785389 0.619002i \(-0.212463\pi\)
−0.928766 + 0.370666i \(0.879130\pi\)
\(888\) 0 0
\(889\) 21.4569 37.1644i 0.719640 1.24645i
\(890\) −14.0155 −0.469801
\(891\) 0 0
\(892\) 9.09798 0.304623
\(893\) −25.2224 + 43.6865i −0.844036 + 1.46191i
\(894\) 0 0
\(895\) −5.49411 9.51607i −0.183648 0.318087i
\(896\) 26.3415 + 45.6248i 0.880008 + 1.52422i
\(897\) 0 0
\(898\) 10.0383 17.3869i 0.334983 0.580208i
\(899\) −5.42365 −0.180889
\(900\) 0 0
\(901\) −24.8350 −0.827374
\(902\) −21.5530 + 37.3309i −0.717636 + 1.24298i
\(903\) 0 0
\(904\) −6.66018 11.5358i −0.221514 0.383674i
\(905\) 10.6458 + 18.4390i 0.353878 + 0.612935i
\(906\) 0 0
\(907\) 8.93992 15.4844i 0.296845 0.514151i −0.678567 0.734538i \(-0.737399\pi\)
0.975412 + 0.220388i \(0.0707322\pi\)
\(908\) 2.43215 0.0807138
\(909\) 0 0
\(910\) −6.79193 −0.225150
\(911\) 23.2627 40.2921i 0.770727 1.33494i −0.166438 0.986052i \(-0.553227\pi\)
0.937165 0.348886i \(-0.113440\pi\)
\(912\) 0 0
\(913\) −34.7570 60.2009i −1.15029 1.99236i
\(914\) 7.30910 + 12.6597i 0.241763 + 0.418746i
\(915\) 0 0
\(916\) −2.13747 + 3.70221i −0.0706241 + 0.122324i
\(917\) 22.0611 0.728521
\(918\) 0 0
\(919\) 7.44747 0.245669 0.122835 0.992427i \(-0.460802\pi\)
0.122835 + 0.992427i \(0.460802\pi\)
\(920\) −2.61977 + 4.53758i −0.0863713 + 0.149599i
\(921\) 0 0
\(922\) −9.91174 17.1676i −0.326426 0.565386i
\(923\) 2.15938 + 3.74016i 0.0710769 + 0.123109i
\(924\) 0 0
\(925\) 13.3339 23.0951i 0.438417 0.759361i
\(926\) 24.0596 0.790648
\(927\) 0 0
\(928\) −5.66478 −0.185956
\(929\) −13.0210 + 22.5530i −0.427204 + 0.739938i −0.996623 0.0821086i \(-0.973835\pi\)
0.569420 + 0.822047i \(0.307168\pi\)
\(930\) 0 0
\(931\) 25.1665 + 43.5896i 0.824797 + 1.42859i
\(932\) 1.34481 + 2.32928i 0.0440507 + 0.0762980i
\(933\) 0 0
\(934\) 13.2950 23.0277i 0.435027 0.753488i
\(935\) −24.2914 −0.794414
\(936\) 0 0
\(937\) 38.7266 1.26514 0.632571 0.774502i \(-0.282000\pi\)
0.632571 + 0.774502i \(0.282000\pi\)
\(938\) 7.11167 12.3178i 0.232204 0.402190i
\(939\) 0 0
\(940\) 2.10947 + 3.65372i 0.0688034 + 0.119171i
\(941\) −15.1751 26.2840i −0.494693 0.856834i 0.505288 0.862951i \(-0.331386\pi\)
−0.999981 + 0.00611707i \(0.998053\pi\)
\(942\) 0 0
\(943\) −5.38204 + 9.32197i −0.175263 + 0.303565i
\(944\) −22.1749 −0.721733
\(945\) 0 0
\(946\) −61.8036 −2.00941
\(947\) 23.9432 41.4709i 0.778050 1.34762i −0.155014 0.987912i \(-0.549542\pi\)
0.933064 0.359710i \(-0.117124\pi\)
\(948\) 0 0
\(949\) −3.83120 6.63584i −0.124366 0.215408i
\(950\) −18.6154 32.2428i −0.603963 1.04609i
\(951\) 0 0
\(952\) −20.3229 + 35.2003i −0.658669 + 1.14085i
\(953\) 59.0107 1.91154 0.955772 0.294109i \(-0.0950229\pi\)
0.955772 + 0.294109i \(0.0950229\pi\)
\(954\) 0 0
\(955\) 6.05423 0.195910
\(956\) −2.46975 + 4.27773i −0.0798773 + 0.138352i
\(957\) 0 0
\(958\) −7.96213 13.7908i −0.257245 0.445561i
\(959\) −11.6391 20.1595i −0.375847 0.650985i
\(960\) 0 0
\(961\) 12.3504 21.3916i 0.398401 0.690051i
\(962\) 11.1683 0.360081
\(963\) 0 0
\(964\) 7.04303 0.226841
\(965\) 9.93397 17.2061i 0.319786 0.553886i
\(966\) 0 0
\(967\) −13.7859 23.8779i −0.443325 0.767862i 0.554609 0.832111i \(-0.312868\pi\)
−0.997934 + 0.0642496i \(0.979535\pi\)
\(968\) 16.5571 + 28.6777i 0.532164 + 0.921735i
\(969\) 0 0
\(970\) −6.71503 + 11.6308i −0.215606 + 0.373441i
\(971\) −2.16029 −0.0693270 −0.0346635 0.999399i \(-0.511036\pi\)
−0.0346635 + 0.999399i \(0.511036\pi\)
\(972\) 0 0
\(973\) 46.3770 1.48678
\(974\) −0.143003 + 0.247689i −0.00458212 + 0.00793646i
\(975\) 0 0
\(976\) 5.03704 + 8.72441i 0.161232 + 0.279262i
\(977\) 10.1025 + 17.4980i 0.323208 + 0.559812i 0.981148 0.193258i \(-0.0619055\pi\)
−0.657940 + 0.753070i \(0.728572\pi\)
\(978\) 0 0
\(979\) −19.8832 + 34.4387i −0.635469 + 1.10066i
\(980\) 4.20959 0.134470
\(981\) 0 0
\(982\) −11.4151 −0.364271
\(983\) −4.46476 + 7.73319i −0.142404 + 0.246650i −0.928401 0.371579i \(-0.878816\pi\)
0.785998 + 0.618229i \(0.212150\pi\)
\(984\) 0 0
\(985\) −5.52535 9.57019i −0.176052 0.304931i
\(986\) −7.42852 12.8666i −0.236572 0.409755i
\(987\) 0 0
\(988\) 1.49011 2.58094i 0.0474066 0.0821106i
\(989\) −15.4331 −0.490744
\(990\) 0 0
\(991\) 33.6950 1.07036 0.535179 0.844739i \(-0.320244\pi\)
0.535179 + 0.844739i \(0.320244\pi\)
\(992\) −3.28960 + 5.69776i −0.104445 + 0.180904i
\(993\) 0 0
\(994\) −13.1429 22.7641i −0.416867 0.722035i
\(995\) −5.24343 9.08188i −0.166228 0.287915i
\(996\) 0 0
\(997\) −7.27953 + 12.6085i −0.230545 + 0.399315i −0.957969 0.286873i \(-0.907384\pi\)
0.727424 + 0.686189i \(0.240718\pi\)
\(998\) 17.2965 0.547512
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.e.b.235.1 10
3.2 odd 2 117.2.e.b.79.5 yes 10
9.2 odd 6 1053.2.a.k.1.1 5
9.4 even 3 inner 351.2.e.b.118.1 10
9.5 odd 6 117.2.e.b.40.5 10
9.7 even 3 1053.2.a.j.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.e.b.40.5 10 9.5 odd 6
117.2.e.b.79.5 yes 10 3.2 odd 2
351.2.e.b.118.1 10 9.4 even 3 inner
351.2.e.b.235.1 10 1.1 even 1 trivial
1053.2.a.j.1.5 5 9.7 even 3
1053.2.a.k.1.1 5 9.2 odd 6