Properties

Label 351.2.l.a.199.1
Level $351$
Weight $2$
Character 351.199
Analytic conductor $2.803$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [351,2,Mod(127,351)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(351, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("351.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.l (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 351.199
Dual form 351.2.l.a.127.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205i q^{2} -1.00000 q^{4} +(-1.50000 - 0.866025i) q^{5} +(1.50000 + 0.866025i) q^{7} +1.73205i q^{8} +(1.50000 - 2.59808i) q^{10} +3.46410i q^{11} +(-1.00000 + 3.46410i) q^{13} +(-1.50000 + 2.59808i) q^{14} -5.00000 q^{16} +(1.50000 + 2.59808i) q^{17} +(-1.50000 + 0.866025i) q^{19} +(1.50000 + 0.866025i) q^{20} -6.00000 q^{22} +(-1.50000 - 2.59808i) q^{23} +(-1.00000 - 1.73205i) q^{25} +(-6.00000 - 1.73205i) q^{26} +(-1.50000 - 0.866025i) q^{28} +6.00000 q^{29} +(7.50000 + 4.33013i) q^{31} -5.19615i q^{32} +(-4.50000 + 2.59808i) q^{34} +(-1.50000 - 2.59808i) q^{35} +(-4.50000 - 2.59808i) q^{37} +(-1.50000 - 2.59808i) q^{38} +(1.50000 - 2.59808i) q^{40} +(10.5000 - 6.06218i) q^{41} +(0.500000 - 0.866025i) q^{43} -3.46410i q^{44} +(4.50000 - 2.59808i) q^{46} +(-4.50000 + 2.59808i) q^{47} +(-2.00000 - 3.46410i) q^{49} +(3.00000 - 1.73205i) q^{50} +(1.00000 - 3.46410i) q^{52} -6.00000 q^{53} +(3.00000 - 5.19615i) q^{55} +(-1.50000 + 2.59808i) q^{56} +10.3923i q^{58} +3.46410i q^{59} +(2.50000 - 4.33013i) q^{61} +(-7.50000 + 12.9904i) q^{62} -1.00000 q^{64} +(4.50000 - 4.33013i) q^{65} +(10.5000 - 6.06218i) q^{67} +(-1.50000 - 2.59808i) q^{68} +(4.50000 - 2.59808i) q^{70} +(7.50000 - 4.33013i) q^{71} +6.92820i q^{73} +(4.50000 - 7.79423i) q^{74} +(1.50000 - 0.866025i) q^{76} +(-3.00000 + 5.19615i) q^{77} +(5.50000 + 9.52628i) q^{79} +(7.50000 + 4.33013i) q^{80} +(10.5000 + 18.1865i) q^{82} +(-4.50000 + 2.59808i) q^{83} -5.19615i q^{85} +(1.50000 + 0.866025i) q^{86} -6.00000 q^{88} +(-13.5000 - 7.79423i) q^{89} +(-4.50000 + 4.33013i) q^{91} +(1.50000 + 2.59808i) q^{92} +(-4.50000 - 7.79423i) q^{94} +3.00000 q^{95} +(13.5000 + 7.79423i) q^{97} +(6.00000 - 3.46410i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 3 q^{5} + 3 q^{7} + 3 q^{10} - 2 q^{13} - 3 q^{14} - 10 q^{16} + 3 q^{17} - 3 q^{19} + 3 q^{20} - 12 q^{22} - 3 q^{23} - 2 q^{25} - 12 q^{26} - 3 q^{28} + 12 q^{29} + 15 q^{31} - 9 q^{34}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205i 1.22474i 0.790569 + 0.612372i \(0.209785\pi\)
−0.790569 + 0.612372i \(0.790215\pi\)
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −1.50000 0.866025i −0.670820 0.387298i 0.125567 0.992085i \(-0.459925\pi\)
−0.796387 + 0.604787i \(0.793258\pi\)
\(6\) 0 0
\(7\) 1.50000 + 0.866025i 0.566947 + 0.327327i 0.755929 0.654654i \(-0.227186\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 1.73205i 0.612372i
\(9\) 0 0
\(10\) 1.50000 2.59808i 0.474342 0.821584i
\(11\) 3.46410i 1.04447i 0.852803 + 0.522233i \(0.174901\pi\)
−0.852803 + 0.522233i \(0.825099\pi\)
\(12\) 0 0
\(13\) −1.00000 + 3.46410i −0.277350 + 0.960769i
\(14\) −1.50000 + 2.59808i −0.400892 + 0.694365i
\(15\) 0 0
\(16\) −5.00000 −1.25000
\(17\) 1.50000 + 2.59808i 0.363803 + 0.630126i 0.988583 0.150675i \(-0.0481447\pi\)
−0.624780 + 0.780801i \(0.714811\pi\)
\(18\) 0 0
\(19\) −1.50000 + 0.866025i −0.344124 + 0.198680i −0.662094 0.749421i \(-0.730332\pi\)
0.317970 + 0.948101i \(0.396999\pi\)
\(20\) 1.50000 + 0.866025i 0.335410 + 0.193649i
\(21\) 0 0
\(22\) −6.00000 −1.27920
\(23\) −1.50000 2.59808i −0.312772 0.541736i 0.666190 0.745782i \(-0.267924\pi\)
−0.978961 + 0.204046i \(0.934591\pi\)
\(24\) 0 0
\(25\) −1.00000 1.73205i −0.200000 0.346410i
\(26\) −6.00000 1.73205i −1.17670 0.339683i
\(27\) 0 0
\(28\) −1.50000 0.866025i −0.283473 0.163663i
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 7.50000 + 4.33013i 1.34704 + 0.777714i 0.987829 0.155543i \(-0.0497126\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 5.19615i 0.918559i
\(33\) 0 0
\(34\) −4.50000 + 2.59808i −0.771744 + 0.445566i
\(35\) −1.50000 2.59808i −0.253546 0.439155i
\(36\) 0 0
\(37\) −4.50000 2.59808i −0.739795 0.427121i 0.0821995 0.996616i \(-0.473806\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) −1.50000 2.59808i −0.243332 0.421464i
\(39\) 0 0
\(40\) 1.50000 2.59808i 0.237171 0.410792i
\(41\) 10.5000 6.06218i 1.63982 0.946753i 0.658932 0.752202i \(-0.271008\pi\)
0.980892 0.194551i \(-0.0623249\pi\)
\(42\) 0 0
\(43\) 0.500000 0.866025i 0.0762493 0.132068i −0.825380 0.564578i \(-0.809039\pi\)
0.901629 + 0.432511i \(0.142372\pi\)
\(44\) 3.46410i 0.522233i
\(45\) 0 0
\(46\) 4.50000 2.59808i 0.663489 0.383065i
\(47\) −4.50000 + 2.59808i −0.656392 + 0.378968i −0.790901 0.611944i \(-0.790388\pi\)
0.134509 + 0.990912i \(0.457054\pi\)
\(48\) 0 0
\(49\) −2.00000 3.46410i −0.285714 0.494872i
\(50\) 3.00000 1.73205i 0.424264 0.244949i
\(51\) 0 0
\(52\) 1.00000 3.46410i 0.138675 0.480384i
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 3.00000 5.19615i 0.404520 0.700649i
\(56\) −1.50000 + 2.59808i −0.200446 + 0.347183i
\(57\) 0 0
\(58\) 10.3923i 1.36458i
\(59\) 3.46410i 0.450988i 0.974245 + 0.225494i \(0.0723995\pi\)
−0.974245 + 0.225494i \(0.927600\pi\)
\(60\) 0 0
\(61\) 2.50000 4.33013i 0.320092 0.554416i −0.660415 0.750901i \(-0.729619\pi\)
0.980507 + 0.196485i \(0.0629528\pi\)
\(62\) −7.50000 + 12.9904i −0.952501 + 1.64978i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 4.50000 4.33013i 0.558156 0.537086i
\(66\) 0 0
\(67\) 10.5000 6.06218i 1.28278 0.740613i 0.305424 0.952217i \(-0.401202\pi\)
0.977356 + 0.211604i \(0.0678686\pi\)
\(68\) −1.50000 2.59808i −0.181902 0.315063i
\(69\) 0 0
\(70\) 4.50000 2.59808i 0.537853 0.310530i
\(71\) 7.50000 4.33013i 0.890086 0.513892i 0.0161155 0.999870i \(-0.494870\pi\)
0.873971 + 0.485979i \(0.161537\pi\)
\(72\) 0 0
\(73\) 6.92820i 0.810885i 0.914121 + 0.405442i \(0.132883\pi\)
−0.914121 + 0.405442i \(0.867117\pi\)
\(74\) 4.50000 7.79423i 0.523114 0.906061i
\(75\) 0 0
\(76\) 1.50000 0.866025i 0.172062 0.0993399i
\(77\) −3.00000 + 5.19615i −0.341882 + 0.592157i
\(78\) 0 0
\(79\) 5.50000 + 9.52628i 0.618798 + 1.07179i 0.989705 + 0.143120i \(0.0457135\pi\)
−0.370907 + 0.928670i \(0.620953\pi\)
\(80\) 7.50000 + 4.33013i 0.838525 + 0.484123i
\(81\) 0 0
\(82\) 10.5000 + 18.1865i 1.15953 + 2.00837i
\(83\) −4.50000 + 2.59808i −0.493939 + 0.285176i −0.726207 0.687476i \(-0.758719\pi\)
0.232268 + 0.972652i \(0.425385\pi\)
\(84\) 0 0
\(85\) 5.19615i 0.563602i
\(86\) 1.50000 + 0.866025i 0.161749 + 0.0933859i
\(87\) 0 0
\(88\) −6.00000 −0.639602
\(89\) −13.5000 7.79423i −1.43100 0.826187i −0.433800 0.901009i \(-0.642828\pi\)
−0.997197 + 0.0748225i \(0.976161\pi\)
\(90\) 0 0
\(91\) −4.50000 + 4.33013i −0.471728 + 0.453921i
\(92\) 1.50000 + 2.59808i 0.156386 + 0.270868i
\(93\) 0 0
\(94\) −4.50000 7.79423i −0.464140 0.803913i
\(95\) 3.00000 0.307794
\(96\) 0 0
\(97\) 13.5000 + 7.79423i 1.37072 + 0.791384i 0.991018 0.133726i \(-0.0426942\pi\)
0.379699 + 0.925110i \(0.376028\pi\)
\(98\) 6.00000 3.46410i 0.606092 0.349927i
\(99\) 0 0
\(100\) 1.00000 + 1.73205i 0.100000 + 0.173205i
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 6.50000 11.2583i 0.640464 1.10932i −0.344865 0.938652i \(-0.612075\pi\)
0.985329 0.170664i \(-0.0545913\pi\)
\(104\) −6.00000 1.73205i −0.588348 0.169842i
\(105\) 0 0
\(106\) 10.3923i 1.00939i
\(107\) 7.50000 12.9904i 0.725052 1.25583i −0.233900 0.972261i \(-0.575149\pi\)
0.958952 0.283567i \(-0.0915178\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 9.00000 + 5.19615i 0.858116 + 0.495434i
\(111\) 0 0
\(112\) −7.50000 4.33013i −0.708683 0.409159i
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 5.19615i 0.484544i
\(116\) −6.00000 −0.557086
\(117\) 0 0
\(118\) −6.00000 −0.552345
\(119\) 5.19615i 0.476331i
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 7.50000 + 4.33013i 0.679018 + 0.392031i
\(123\) 0 0
\(124\) −7.50000 4.33013i −0.673520 0.388857i
\(125\) 12.1244i 1.08444i
\(126\) 0 0
\(127\) 2.50000 4.33013i 0.221839 0.384237i −0.733527 0.679660i \(-0.762127\pi\)
0.955366 + 0.295423i \(0.0954607\pi\)
\(128\) 12.1244i 1.07165i
\(129\) 0 0
\(130\) 7.50000 + 7.79423i 0.657794 + 0.683599i
\(131\) 7.50000 12.9904i 0.655278 1.13497i −0.326546 0.945181i \(-0.605885\pi\)
0.981824 0.189794i \(-0.0607819\pi\)
\(132\) 0 0
\(133\) −3.00000 −0.260133
\(134\) 10.5000 + 18.1865i 0.907062 + 1.57108i
\(135\) 0 0
\(136\) −4.50000 + 2.59808i −0.385872 + 0.222783i
\(137\) 4.50000 + 2.59808i 0.384461 + 0.221969i 0.679757 0.733437i \(-0.262085\pi\)
−0.295296 + 0.955406i \(0.595418\pi\)
\(138\) 0 0
\(139\) −16.0000 −1.35710 −0.678551 0.734553i \(-0.737392\pi\)
−0.678551 + 0.734553i \(0.737392\pi\)
\(140\) 1.50000 + 2.59808i 0.126773 + 0.219578i
\(141\) 0 0
\(142\) 7.50000 + 12.9904i 0.629386 + 1.09013i
\(143\) −12.0000 3.46410i −1.00349 0.289683i
\(144\) 0 0
\(145\) −9.00000 5.19615i −0.747409 0.431517i
\(146\) −12.0000 −0.993127
\(147\) 0 0
\(148\) 4.50000 + 2.59808i 0.369898 + 0.213561i
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 10.5000 6.06218i 0.854478 0.493333i −0.00768132 0.999970i \(-0.502445\pi\)
0.862159 + 0.506637i \(0.169112\pi\)
\(152\) −1.50000 2.59808i −0.121666 0.210732i
\(153\) 0 0
\(154\) −9.00000 5.19615i −0.725241 0.418718i
\(155\) −7.50000 12.9904i −0.602414 1.04341i
\(156\) 0 0
\(157\) −11.5000 + 19.9186i −0.917800 + 1.58968i −0.115050 + 0.993360i \(0.536703\pi\)
−0.802749 + 0.596316i \(0.796630\pi\)
\(158\) −16.5000 + 9.52628i −1.31267 + 0.757870i
\(159\) 0 0
\(160\) −4.50000 + 7.79423i −0.355756 + 0.616188i
\(161\) 5.19615i 0.409514i
\(162\) 0 0
\(163\) 10.5000 6.06218i 0.822423 0.474826i −0.0288280 0.999584i \(-0.509178\pi\)
0.851251 + 0.524758i \(0.175844\pi\)
\(164\) −10.5000 + 6.06218i −0.819912 + 0.473377i
\(165\) 0 0
\(166\) −4.50000 7.79423i −0.349268 0.604949i
\(167\) −4.50000 + 2.59808i −0.348220 + 0.201045i −0.663901 0.747820i \(-0.731100\pi\)
0.315681 + 0.948865i \(0.397767\pi\)
\(168\) 0 0
\(169\) −11.0000 6.92820i −0.846154 0.532939i
\(170\) 9.00000 0.690268
\(171\) 0 0
\(172\) −0.500000 + 0.866025i −0.0381246 + 0.0660338i
\(173\) −10.5000 + 18.1865i −0.798300 + 1.38270i 0.122422 + 0.992478i \(0.460934\pi\)
−0.920722 + 0.390218i \(0.872399\pi\)
\(174\) 0 0
\(175\) 3.46410i 0.261861i
\(176\) 17.3205i 1.30558i
\(177\) 0 0
\(178\) 13.5000 23.3827i 1.01187 1.75261i
\(179\) 1.50000 2.59808i 0.112115 0.194189i −0.804508 0.593942i \(-0.797571\pi\)
0.916623 + 0.399753i \(0.130904\pi\)
\(180\) 0 0
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) −7.50000 7.79423i −0.555937 0.577747i
\(183\) 0 0
\(184\) 4.50000 2.59808i 0.331744 0.191533i
\(185\) 4.50000 + 7.79423i 0.330847 + 0.573043i
\(186\) 0 0
\(187\) −9.00000 + 5.19615i −0.658145 + 0.379980i
\(188\) 4.50000 2.59808i 0.328196 0.189484i
\(189\) 0 0
\(190\) 5.19615i 0.376969i
\(191\) 1.50000 2.59808i 0.108536 0.187990i −0.806641 0.591041i \(-0.798717\pi\)
0.915177 + 0.403051i \(0.132050\pi\)
\(192\) 0 0
\(193\) −4.50000 + 2.59808i −0.323917 + 0.187014i −0.653137 0.757240i \(-0.726548\pi\)
0.329220 + 0.944253i \(0.393214\pi\)
\(194\) −13.5000 + 23.3827i −0.969244 + 1.67878i
\(195\) 0 0
\(196\) 2.00000 + 3.46410i 0.142857 + 0.247436i
\(197\) −7.50000 4.33013i −0.534353 0.308509i 0.208434 0.978036i \(-0.433163\pi\)
−0.742787 + 0.669528i \(0.766497\pi\)
\(198\) 0 0
\(199\) −6.50000 11.2583i −0.460773 0.798082i 0.538227 0.842800i \(-0.319094\pi\)
−0.999000 + 0.0447181i \(0.985761\pi\)
\(200\) 3.00000 1.73205i 0.212132 0.122474i
\(201\) 0 0
\(202\) 10.3923i 0.731200i
\(203\) 9.00000 + 5.19615i 0.631676 + 0.364698i
\(204\) 0 0
\(205\) −21.0000 −1.46670
\(206\) 19.5000 + 11.2583i 1.35863 + 0.784405i
\(207\) 0 0
\(208\) 5.00000 17.3205i 0.346688 1.20096i
\(209\) −3.00000 5.19615i −0.207514 0.359425i
\(210\) 0 0
\(211\) −6.50000 11.2583i −0.447478 0.775055i 0.550743 0.834675i \(-0.314345\pi\)
−0.998221 + 0.0596196i \(0.981011\pi\)
\(212\) 6.00000 0.412082
\(213\) 0 0
\(214\) 22.5000 + 12.9904i 1.53807 + 0.888004i
\(215\) −1.50000 + 0.866025i −0.102299 + 0.0590624i
\(216\) 0 0
\(217\) 7.50000 + 12.9904i 0.509133 + 0.881845i
\(218\) 0 0
\(219\) 0 0
\(220\) −3.00000 + 5.19615i −0.202260 + 0.350325i
\(221\) −10.5000 + 2.59808i −0.706306 + 0.174766i
\(222\) 0 0
\(223\) 3.46410i 0.231973i 0.993251 + 0.115987i \(0.0370030\pi\)
−0.993251 + 0.115987i \(0.962997\pi\)
\(224\) 4.50000 7.79423i 0.300669 0.520774i
\(225\) 0 0
\(226\) 10.3923i 0.691286i
\(227\) 10.5000 + 6.06218i 0.696909 + 0.402361i 0.806195 0.591649i \(-0.201523\pi\)
−0.109286 + 0.994010i \(0.534856\pi\)
\(228\) 0 0
\(229\) 7.50000 + 4.33013i 0.495614 + 0.286143i 0.726900 0.686743i \(-0.240960\pi\)
−0.231287 + 0.972886i \(0.574293\pi\)
\(230\) −9.00000 −0.593442
\(231\) 0 0
\(232\) 10.3923i 0.682288i
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 0 0
\(235\) 9.00000 0.587095
\(236\) 3.46410i 0.225494i
\(237\) 0 0
\(238\) −9.00000 −0.583383
\(239\) 4.50000 + 2.59808i 0.291081 + 0.168056i 0.638429 0.769681i \(-0.279585\pi\)
−0.347348 + 0.937736i \(0.612918\pi\)
\(240\) 0 0
\(241\) −4.50000 2.59808i −0.289870 0.167357i 0.348013 0.937490i \(-0.386857\pi\)
−0.637883 + 0.770133i \(0.720190\pi\)
\(242\) 1.73205i 0.111340i
\(243\) 0 0
\(244\) −2.50000 + 4.33013i −0.160046 + 0.277208i
\(245\) 6.92820i 0.442627i
\(246\) 0 0
\(247\) −1.50000 6.06218i −0.0954427 0.385727i
\(248\) −7.50000 + 12.9904i −0.476250 + 0.824890i
\(249\) 0 0
\(250\) −21.0000 −1.32816
\(251\) 4.50000 + 7.79423i 0.284037 + 0.491967i 0.972375 0.233423i \(-0.0749927\pi\)
−0.688338 + 0.725390i \(0.741659\pi\)
\(252\) 0 0
\(253\) 9.00000 5.19615i 0.565825 0.326679i
\(254\) 7.50000 + 4.33013i 0.470592 + 0.271696i
\(255\) 0 0
\(256\) 19.0000 1.18750
\(257\) 1.50000 + 2.59808i 0.0935674 + 0.162064i 0.909010 0.416775i \(-0.136840\pi\)
−0.815442 + 0.578838i \(0.803506\pi\)
\(258\) 0 0
\(259\) −4.50000 7.79423i −0.279616 0.484310i
\(260\) −4.50000 + 4.33013i −0.279078 + 0.268543i
\(261\) 0 0
\(262\) 22.5000 + 12.9904i 1.39005 + 0.802548i
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) 0 0
\(265\) 9.00000 + 5.19615i 0.552866 + 0.319197i
\(266\) 5.19615i 0.318597i
\(267\) 0 0
\(268\) −10.5000 + 6.06218i −0.641390 + 0.370306i
\(269\) 1.50000 + 2.59808i 0.0914566 + 0.158408i 0.908124 0.418701i \(-0.137514\pi\)
−0.816668 + 0.577108i \(0.804181\pi\)
\(270\) 0 0
\(271\) 13.5000 + 7.79423i 0.820067 + 0.473466i 0.850439 0.526073i \(-0.176336\pi\)
−0.0303728 + 0.999539i \(0.509669\pi\)
\(272\) −7.50000 12.9904i −0.454754 0.787658i
\(273\) 0 0
\(274\) −4.50000 + 7.79423i −0.271855 + 0.470867i
\(275\) 6.00000 3.46410i 0.361814 0.208893i
\(276\) 0 0
\(277\) −11.5000 + 19.9186i −0.690968 + 1.19679i 0.280553 + 0.959839i \(0.409482\pi\)
−0.971521 + 0.236953i \(0.923851\pi\)
\(278\) 27.7128i 1.66210i
\(279\) 0 0
\(280\) 4.50000 2.59808i 0.268926 0.155265i
\(281\) 4.50000 2.59808i 0.268447 0.154988i −0.359734 0.933055i \(-0.617133\pi\)
0.628182 + 0.778067i \(0.283799\pi\)
\(282\) 0 0
\(283\) 11.5000 + 19.9186i 0.683604 + 1.18404i 0.973873 + 0.227092i \(0.0729218\pi\)
−0.290269 + 0.956945i \(0.593745\pi\)
\(284\) −7.50000 + 4.33013i −0.445043 + 0.256946i
\(285\) 0 0
\(286\) 6.00000 20.7846i 0.354787 1.22902i
\(287\) 21.0000 1.23959
\(288\) 0 0
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) 9.00000 15.5885i 0.528498 0.915386i
\(291\) 0 0
\(292\) 6.92820i 0.405442i
\(293\) 13.8564i 0.809500i 0.914427 + 0.404750i \(0.132641\pi\)
−0.914427 + 0.404750i \(0.867359\pi\)
\(294\) 0 0
\(295\) 3.00000 5.19615i 0.174667 0.302532i
\(296\) 4.50000 7.79423i 0.261557 0.453030i
\(297\) 0 0
\(298\) 0 0
\(299\) 10.5000 2.59808i 0.607231 0.150251i
\(300\) 0 0
\(301\) 1.50000 0.866025i 0.0864586 0.0499169i
\(302\) 10.5000 + 18.1865i 0.604207 + 1.04652i
\(303\) 0 0
\(304\) 7.50000 4.33013i 0.430155 0.248350i
\(305\) −7.50000 + 4.33013i −0.429449 + 0.247942i
\(306\) 0 0
\(307\) 24.2487i 1.38395i 0.721923 + 0.691974i \(0.243259\pi\)
−0.721923 + 0.691974i \(0.756741\pi\)
\(308\) 3.00000 5.19615i 0.170941 0.296078i
\(309\) 0 0
\(310\) 22.5000 12.9904i 1.27791 0.737804i
\(311\) 13.5000 23.3827i 0.765515 1.32591i −0.174459 0.984664i \(-0.555818\pi\)
0.939974 0.341246i \(-0.110849\pi\)
\(312\) 0 0
\(313\) −9.50000 16.4545i −0.536972 0.930062i −0.999065 0.0432311i \(-0.986235\pi\)
0.462093 0.886831i \(-0.347098\pi\)
\(314\) −34.5000 19.9186i −1.94695 1.12407i
\(315\) 0 0
\(316\) −5.50000 9.52628i −0.309399 0.535895i
\(317\) −7.50000 + 4.33013i −0.421242 + 0.243204i −0.695609 0.718421i \(-0.744865\pi\)
0.274367 + 0.961625i \(0.411532\pi\)
\(318\) 0 0
\(319\) 20.7846i 1.16371i
\(320\) 1.50000 + 0.866025i 0.0838525 + 0.0484123i
\(321\) 0 0
\(322\) 9.00000 0.501550
\(323\) −4.50000 2.59808i −0.250387 0.144561i
\(324\) 0 0
\(325\) 7.00000 1.73205i 0.388290 0.0960769i
\(326\) 10.5000 + 18.1865i 0.581541 + 1.00726i
\(327\) 0 0
\(328\) 10.5000 + 18.1865i 0.579766 + 1.00418i
\(329\) −9.00000 −0.496186
\(330\) 0 0
\(331\) 13.5000 + 7.79423i 0.742027 + 0.428410i 0.822806 0.568323i \(-0.192407\pi\)
−0.0807788 + 0.996732i \(0.525741\pi\)
\(332\) 4.50000 2.59808i 0.246970 0.142588i
\(333\) 0 0
\(334\) −4.50000 7.79423i −0.246229 0.426481i
\(335\) −21.0000 −1.14735
\(336\) 0 0
\(337\) 14.5000 25.1147i 0.789865 1.36809i −0.136184 0.990684i \(-0.543484\pi\)
0.926049 0.377403i \(-0.123183\pi\)
\(338\) 12.0000 19.0526i 0.652714 1.03632i
\(339\) 0 0
\(340\) 5.19615i 0.281801i
\(341\) −15.0000 + 25.9808i −0.812296 + 1.40694i
\(342\) 0 0
\(343\) 19.0526i 1.02874i
\(344\) 1.50000 + 0.866025i 0.0808746 + 0.0466930i
\(345\) 0 0
\(346\) −31.5000 18.1865i −1.69345 0.977714i
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) 27.7128i 1.48343i −0.670714 0.741716i \(-0.734012\pi\)
0.670714 0.741716i \(-0.265988\pi\)
\(350\) 6.00000 0.320713
\(351\) 0 0
\(352\) 18.0000 0.959403
\(353\) 6.92820i 0.368751i −0.982856 0.184376i \(-0.940974\pi\)
0.982856 0.184376i \(-0.0590263\pi\)
\(354\) 0 0
\(355\) −15.0000 −0.796117
\(356\) 13.5000 + 7.79423i 0.715499 + 0.413093i
\(357\) 0 0
\(358\) 4.50000 + 2.59808i 0.237832 + 0.137313i
\(359\) 10.3923i 0.548485i 0.961661 + 0.274242i \(0.0884271\pi\)
−0.961661 + 0.274242i \(0.911573\pi\)
\(360\) 0 0
\(361\) −8.00000 + 13.8564i −0.421053 + 0.729285i
\(362\) 38.1051i 2.00276i
\(363\) 0 0
\(364\) 4.50000 4.33013i 0.235864 0.226960i
\(365\) 6.00000 10.3923i 0.314054 0.543958i
\(366\) 0 0
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 7.50000 + 12.9904i 0.390965 + 0.677170i
\(369\) 0 0
\(370\) −13.5000 + 7.79423i −0.701832 + 0.405203i
\(371\) −9.00000 5.19615i −0.467257 0.269771i
\(372\) 0 0
\(373\) −14.0000 −0.724893 −0.362446 0.932005i \(-0.618058\pi\)
−0.362446 + 0.932005i \(0.618058\pi\)
\(374\) −9.00000 15.5885i −0.465379 0.806060i
\(375\) 0 0
\(376\) −4.50000 7.79423i −0.232070 0.401957i
\(377\) −6.00000 + 20.7846i −0.309016 + 1.07046i
\(378\) 0 0
\(379\) −10.5000 6.06218i −0.539349 0.311393i 0.205466 0.978664i \(-0.434129\pi\)
−0.744815 + 0.667271i \(0.767462\pi\)
\(380\) −3.00000 −0.153897
\(381\) 0 0
\(382\) 4.50000 + 2.59808i 0.230240 + 0.132929i
\(383\) 3.46410i 0.177007i −0.996076 0.0885037i \(-0.971792\pi\)
0.996076 0.0885037i \(-0.0282085\pi\)
\(384\) 0 0
\(385\) 9.00000 5.19615i 0.458682 0.264820i
\(386\) −4.50000 7.79423i −0.229044 0.396716i
\(387\) 0 0
\(388\) −13.5000 7.79423i −0.685359 0.395692i
\(389\) 1.50000 + 2.59808i 0.0760530 + 0.131728i 0.901544 0.432688i \(-0.142435\pi\)
−0.825491 + 0.564416i \(0.809102\pi\)
\(390\) 0 0
\(391\) 4.50000 7.79423i 0.227575 0.394171i
\(392\) 6.00000 3.46410i 0.303046 0.174964i
\(393\) 0 0
\(394\) 7.50000 12.9904i 0.377845 0.654446i
\(395\) 19.0526i 0.958638i
\(396\) 0 0
\(397\) −22.5000 + 12.9904i −1.12924 + 0.651969i −0.943744 0.330676i \(-0.892723\pi\)
−0.185498 + 0.982645i \(0.559390\pi\)
\(398\) 19.5000 11.2583i 0.977447 0.564329i
\(399\) 0 0
\(400\) 5.00000 + 8.66025i 0.250000 + 0.433013i
\(401\) −25.5000 + 14.7224i −1.27341 + 0.735203i −0.975628 0.219431i \(-0.929580\pi\)
−0.297781 + 0.954634i \(0.596247\pi\)
\(402\) 0 0
\(403\) −22.5000 + 21.6506i −1.12080 + 1.07849i
\(404\) −6.00000 −0.298511
\(405\) 0 0
\(406\) −9.00000 + 15.5885i −0.446663 + 0.773642i
\(407\) 9.00000 15.5885i 0.446113 0.772691i
\(408\) 0 0
\(409\) 6.92820i 0.342578i −0.985221 0.171289i \(-0.945207\pi\)
0.985221 0.171289i \(-0.0547931\pi\)
\(410\) 36.3731i 1.79634i
\(411\) 0 0
\(412\) −6.50000 + 11.2583i −0.320232 + 0.554658i
\(413\) −3.00000 + 5.19615i −0.147620 + 0.255686i
\(414\) 0 0
\(415\) 9.00000 0.441793
\(416\) 18.0000 + 5.19615i 0.882523 + 0.254762i
\(417\) 0 0
\(418\) 9.00000 5.19615i 0.440204 0.254152i
\(419\) 4.50000 + 7.79423i 0.219839 + 0.380773i 0.954759 0.297382i \(-0.0961133\pi\)
−0.734919 + 0.678155i \(0.762780\pi\)
\(420\) 0 0
\(421\) 7.50000 4.33013i 0.365528 0.211037i −0.305975 0.952039i \(-0.598982\pi\)
0.671503 + 0.741002i \(0.265649\pi\)
\(422\) 19.5000 11.2583i 0.949245 0.548047i
\(423\) 0 0
\(424\) 10.3923i 0.504695i
\(425\) 3.00000 5.19615i 0.145521 0.252050i
\(426\) 0 0
\(427\) 7.50000 4.33013i 0.362950 0.209550i
\(428\) −7.50000 + 12.9904i −0.362526 + 0.627914i
\(429\) 0 0
\(430\) −1.50000 2.59808i −0.0723364 0.125290i
\(431\) −19.5000 11.2583i −0.939282 0.542295i −0.0495468 0.998772i \(-0.515778\pi\)
−0.889735 + 0.456477i \(0.849111\pi\)
\(432\) 0 0
\(433\) 2.50000 + 4.33013i 0.120142 + 0.208093i 0.919824 0.392332i \(-0.128332\pi\)
−0.799681 + 0.600425i \(0.794998\pi\)
\(434\) −22.5000 + 12.9904i −1.08003 + 0.623558i
\(435\) 0 0
\(436\) 0 0
\(437\) 4.50000 + 2.59808i 0.215264 + 0.124283i
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 9.00000 + 5.19615i 0.429058 + 0.247717i
\(441\) 0 0
\(442\) −4.50000 18.1865i −0.214043 0.865045i
\(443\) 10.5000 + 18.1865i 0.498870 + 0.864068i 0.999999 0.00130426i \(-0.000415158\pi\)
−0.501129 + 0.865373i \(0.667082\pi\)
\(444\) 0 0
\(445\) 13.5000 + 23.3827i 0.639961 + 1.10845i
\(446\) −6.00000 −0.284108
\(447\) 0 0
\(448\) −1.50000 0.866025i −0.0708683 0.0409159i
\(449\) −13.5000 + 7.79423i −0.637104 + 0.367832i −0.783498 0.621394i \(-0.786567\pi\)
0.146394 + 0.989226i \(0.453233\pi\)
\(450\) 0 0
\(451\) 21.0000 + 36.3731i 0.988851 + 1.71274i
\(452\) 6.00000 0.282216
\(453\) 0 0
\(454\) −10.5000 + 18.1865i −0.492789 + 0.853536i
\(455\) 10.5000 2.59808i 0.492248 0.121800i
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) −7.50000 + 12.9904i −0.350452 + 0.607001i
\(459\) 0 0
\(460\) 5.19615i 0.242272i
\(461\) −1.50000 0.866025i −0.0698620 0.0403348i 0.464662 0.885488i \(-0.346176\pi\)
−0.534524 + 0.845153i \(0.679509\pi\)
\(462\) 0 0
\(463\) −22.5000 12.9904i −1.04566 0.603714i −0.124231 0.992253i \(-0.539647\pi\)
−0.921432 + 0.388539i \(0.872980\pi\)
\(464\) −30.0000 −1.39272
\(465\) 0 0
\(466\) 31.1769i 1.44424i
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 0 0
\(469\) 21.0000 0.969690
\(470\) 15.5885i 0.719042i
\(471\) 0 0
\(472\) −6.00000 −0.276172
\(473\) 3.00000 + 1.73205i 0.137940 + 0.0796398i
\(474\) 0 0
\(475\) 3.00000 + 1.73205i 0.137649 + 0.0794719i
\(476\) 5.19615i 0.238165i
\(477\) 0 0
\(478\) −4.50000 + 7.79423i −0.205825 + 0.356500i
\(479\) 24.2487i 1.10795i 0.832533 + 0.553976i \(0.186890\pi\)
−0.832533 + 0.553976i \(0.813110\pi\)
\(480\) 0 0
\(481\) 13.5000 12.9904i 0.615547 0.592310i
\(482\) 4.50000 7.79423i 0.204969 0.355017i
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) −13.5000 23.3827i −0.613003 1.06175i
\(486\) 0 0
\(487\) −7.50000 + 4.33013i −0.339857 + 0.196217i −0.660209 0.751082i \(-0.729532\pi\)
0.320352 + 0.947299i \(0.396199\pi\)
\(488\) 7.50000 + 4.33013i 0.339509 + 0.196016i
\(489\) 0 0
\(490\) −12.0000 −0.542105
\(491\) −1.50000 2.59808i −0.0676941 0.117250i 0.830192 0.557478i \(-0.188231\pi\)
−0.897886 + 0.440228i \(0.854898\pi\)
\(492\) 0 0
\(493\) 9.00000 + 15.5885i 0.405340 + 0.702069i
\(494\) 10.5000 2.59808i 0.472417 0.116893i
\(495\) 0 0
\(496\) −37.5000 21.6506i −1.68380 0.972142i
\(497\) 15.0000 0.672842
\(498\) 0 0
\(499\) −22.5000 12.9904i −1.00724 0.581529i −0.0968564 0.995298i \(-0.530879\pi\)
−0.910382 + 0.413769i \(0.864212\pi\)
\(500\) 12.1244i 0.542218i
\(501\) 0 0
\(502\) −13.5000 + 7.79423i −0.602534 + 0.347873i
\(503\) 10.5000 + 18.1865i 0.468172 + 0.810897i 0.999338 0.0363700i \(-0.0115795\pi\)
−0.531167 + 0.847267i \(0.678246\pi\)
\(504\) 0 0
\(505\) −9.00000 5.19615i −0.400495 0.231226i
\(506\) 9.00000 + 15.5885i 0.400099 + 0.692991i
\(507\) 0 0
\(508\) −2.50000 + 4.33013i −0.110920 + 0.192118i
\(509\) −1.50000 + 0.866025i −0.0664863 + 0.0383859i −0.532875 0.846194i \(-0.678888\pi\)
0.466388 + 0.884580i \(0.345555\pi\)
\(510\) 0 0
\(511\) −6.00000 + 10.3923i −0.265424 + 0.459728i
\(512\) 8.66025i 0.382733i
\(513\) 0 0
\(514\) −4.50000 + 2.59808i −0.198486 + 0.114596i
\(515\) −19.5000 + 11.2583i −0.859273 + 0.496101i
\(516\) 0 0
\(517\) −9.00000 15.5885i −0.395820 0.685580i
\(518\) 13.5000 7.79423i 0.593156 0.342459i
\(519\) 0 0
\(520\) 7.50000 + 7.79423i 0.328897 + 0.341800i
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 0 0
\(523\) 12.5000 21.6506i 0.546587 0.946716i −0.451918 0.892059i \(-0.649260\pi\)
0.998505 0.0546569i \(-0.0174065\pi\)
\(524\) −7.50000 + 12.9904i −0.327639 + 0.567487i
\(525\) 0 0
\(526\) 41.5692i 1.81250i
\(527\) 25.9808i 1.13174i
\(528\) 0 0
\(529\) 7.00000 12.1244i 0.304348 0.527146i
\(530\) −9.00000 + 15.5885i −0.390935 + 0.677119i
\(531\) 0 0
\(532\) 3.00000 0.130066
\(533\) 10.5000 + 42.4352i 0.454805 + 1.83807i
\(534\) 0 0
\(535\) −22.5000 + 12.9904i −0.972760 + 0.561623i
\(536\) 10.5000 + 18.1865i 0.453531 + 0.785539i
\(537\) 0 0
\(538\) −4.50000 + 2.59808i −0.194009 + 0.112011i
\(539\) 12.0000 6.92820i 0.516877 0.298419i
\(540\) 0 0
\(541\) 13.8564i 0.595733i −0.954607 0.297867i \(-0.903725\pi\)
0.954607 0.297867i \(-0.0962751\pi\)
\(542\) −13.5000 + 23.3827i −0.579875 + 1.00437i
\(543\) 0 0
\(544\) 13.5000 7.79423i 0.578808 0.334175i
\(545\) 0 0
\(546\) 0 0
\(547\) −8.50000 14.7224i −0.363434 0.629486i 0.625090 0.780553i \(-0.285062\pi\)
−0.988524 + 0.151067i \(0.951729\pi\)
\(548\) −4.50000 2.59808i −0.192230 0.110984i
\(549\) 0 0
\(550\) 6.00000 + 10.3923i 0.255841 + 0.443129i
\(551\) −9.00000 + 5.19615i −0.383413 + 0.221364i
\(552\) 0 0
\(553\) 19.0526i 0.810197i
\(554\) −34.5000 19.9186i −1.46576 0.846260i
\(555\) 0 0
\(556\) 16.0000 0.678551
\(557\) 16.5000 + 9.52628i 0.699127 + 0.403641i 0.807022 0.590521i \(-0.201078\pi\)
−0.107895 + 0.994162i \(0.534411\pi\)
\(558\) 0 0
\(559\) 2.50000 + 2.59808i 0.105739 + 0.109887i
\(560\) 7.50000 + 12.9904i 0.316933 + 0.548944i
\(561\) 0 0
\(562\) 4.50000 + 7.79423i 0.189821 + 0.328780i
\(563\) −24.0000 −1.01148 −0.505740 0.862686i \(-0.668780\pi\)
−0.505740 + 0.862686i \(0.668780\pi\)
\(564\) 0 0
\(565\) 9.00000 + 5.19615i 0.378633 + 0.218604i
\(566\) −34.5000 + 19.9186i −1.45014 + 0.837241i
\(567\) 0 0
\(568\) 7.50000 + 12.9904i 0.314693 + 0.545064i
\(569\) 18.0000 0.754599 0.377300 0.926091i \(-0.376853\pi\)
0.377300 + 0.926091i \(0.376853\pi\)
\(570\) 0 0
\(571\) 2.50000 4.33013i 0.104622 0.181210i −0.808962 0.587861i \(-0.799970\pi\)
0.913584 + 0.406651i \(0.133303\pi\)
\(572\) 12.0000 + 3.46410i 0.501745 + 0.144841i
\(573\) 0 0
\(574\) 36.3731i 1.51818i
\(575\) −3.00000 + 5.19615i −0.125109 + 0.216695i
\(576\) 0 0
\(577\) 6.92820i 0.288425i 0.989547 + 0.144212i \(0.0460649\pi\)
−0.989547 + 0.144212i \(0.953935\pi\)
\(578\) 12.0000 + 6.92820i 0.499134 + 0.288175i
\(579\) 0 0
\(580\) 9.00000 + 5.19615i 0.373705 + 0.215758i
\(581\) −9.00000 −0.373383
\(582\) 0 0
\(583\) 20.7846i 0.860811i
\(584\) −12.0000 −0.496564
\(585\) 0 0
\(586\) −24.0000 −0.991431
\(587\) 10.3923i 0.428936i −0.976731 0.214468i \(-0.931198\pi\)
0.976731 0.214468i \(-0.0688018\pi\)
\(588\) 0 0
\(589\) −15.0000 −0.618064
\(590\) 9.00000 + 5.19615i 0.370524 + 0.213922i
\(591\) 0 0
\(592\) 22.5000 + 12.9904i 0.924744 + 0.533901i
\(593\) 27.7128i 1.13803i −0.822328 0.569014i \(-0.807325\pi\)
0.822328 0.569014i \(-0.192675\pi\)
\(594\) 0 0
\(595\) 4.50000 7.79423i 0.184482 0.319532i
\(596\) 0 0
\(597\) 0 0
\(598\) 4.50000 + 18.1865i 0.184019 + 0.743703i
\(599\) 13.5000 23.3827i 0.551595 0.955391i −0.446565 0.894751i \(-0.647353\pi\)
0.998160 0.0606393i \(-0.0193139\pi\)
\(600\) 0 0
\(601\) 22.0000 0.897399 0.448699 0.893683i \(-0.351887\pi\)
0.448699 + 0.893683i \(0.351887\pi\)
\(602\) 1.50000 + 2.59808i 0.0611354 + 0.105890i
\(603\) 0 0
\(604\) −10.5000 + 6.06218i −0.427239 + 0.246667i
\(605\) 1.50000 + 0.866025i 0.0609837 + 0.0352089i
\(606\) 0 0
\(607\) 8.00000 0.324710 0.162355 0.986732i \(-0.448091\pi\)
0.162355 + 0.986732i \(0.448091\pi\)
\(608\) 4.50000 + 7.79423i 0.182499 + 0.316098i
\(609\) 0 0
\(610\) −7.50000 12.9904i −0.303666 0.525965i
\(611\) −4.50000 18.1865i −0.182051 0.735748i
\(612\) 0 0
\(613\) −10.5000 6.06218i −0.424091 0.244849i 0.272735 0.962089i \(-0.412072\pi\)
−0.696826 + 0.717240i \(0.745405\pi\)
\(614\) −42.0000 −1.69498
\(615\) 0 0
\(616\) −9.00000 5.19615i −0.362620 0.209359i
\(617\) 27.7128i 1.11568i −0.829950 0.557838i \(-0.811631\pi\)
0.829950 0.557838i \(-0.188369\pi\)
\(618\) 0 0
\(619\) 22.5000 12.9904i 0.904351 0.522127i 0.0257420 0.999669i \(-0.491805\pi\)
0.878609 + 0.477541i \(0.158472\pi\)
\(620\) 7.50000 + 12.9904i 0.301207 + 0.521706i
\(621\) 0 0
\(622\) 40.5000 + 23.3827i 1.62390 + 0.937560i
\(623\) −13.5000 23.3827i −0.540866 0.936808i
\(624\) 0 0
\(625\) 5.50000 9.52628i 0.220000 0.381051i
\(626\) 28.5000 16.4545i 1.13909 0.657653i
\(627\) 0 0
\(628\) 11.5000 19.9186i 0.458900 0.794838i
\(629\) 15.5885i 0.621552i
\(630\) 0 0
\(631\) −7.50000 + 4.33013i −0.298570 + 0.172380i −0.641800 0.766872i \(-0.721812\pi\)
0.343230 + 0.939251i \(0.388479\pi\)
\(632\) −16.5000 + 9.52628i −0.656335 + 0.378935i
\(633\) 0 0
\(634\) −7.50000 12.9904i −0.297863 0.515914i
\(635\) −7.50000 + 4.33013i −0.297628 + 0.171836i
\(636\) 0 0
\(637\) 14.0000 3.46410i 0.554700 0.137253i
\(638\) −36.0000 −1.42525
\(639\) 0 0
\(640\) −10.5000 + 18.1865i −0.415049 + 0.718886i
\(641\) 19.5000 33.7750i 0.770204 1.33403i −0.167247 0.985915i \(-0.553488\pi\)
0.937451 0.348117i \(-0.113179\pi\)
\(642\) 0 0
\(643\) 3.46410i 0.136611i 0.997664 + 0.0683054i \(0.0217592\pi\)
−0.997664 + 0.0683054i \(0.978241\pi\)
\(644\) 5.19615i 0.204757i
\(645\) 0 0
\(646\) 4.50000 7.79423i 0.177050 0.306660i
\(647\) −4.50000 + 7.79423i −0.176913 + 0.306423i −0.940822 0.338902i \(-0.889945\pi\)
0.763908 + 0.645325i \(0.223278\pi\)
\(648\) 0 0
\(649\) −12.0000 −0.471041
\(650\) 3.00000 + 12.1244i 0.117670 + 0.475556i
\(651\) 0 0
\(652\) −10.5000 + 6.06218i −0.411212 + 0.237413i
\(653\) −22.5000 38.9711i −0.880493 1.52506i −0.850794 0.525500i \(-0.823878\pi\)
−0.0296993 0.999559i \(-0.509455\pi\)
\(654\) 0 0
\(655\) −22.5000 + 12.9904i −0.879148 + 0.507576i
\(656\) −52.5000 + 30.3109i −2.04978 + 1.18344i
\(657\) 0 0
\(658\) 15.5885i 0.607701i
\(659\) 19.5000 33.7750i 0.759612 1.31569i −0.183436 0.983032i \(-0.558722\pi\)
0.943049 0.332655i \(-0.107945\pi\)
\(660\) 0 0
\(661\) −40.5000 + 23.3827i −1.57527 + 0.909481i −0.579761 + 0.814787i \(0.696854\pi\)
−0.995506 + 0.0946945i \(0.969813\pi\)
\(662\) −13.5000 + 23.3827i −0.524692 + 0.908794i
\(663\) 0 0
\(664\) −4.50000 7.79423i −0.174634 0.302475i
\(665\) 4.50000 + 2.59808i 0.174503 + 0.100749i
\(666\) 0 0
\(667\) −9.00000 15.5885i −0.348481 0.603587i
\(668\) 4.50000 2.59808i 0.174110 0.100523i
\(669\) 0 0
\(670\) 36.3731i 1.40521i
\(671\) 15.0000 + 8.66025i 0.579069 + 0.334325i
\(672\) 0 0
\(673\) −34.0000 −1.31060 −0.655302 0.755367i \(-0.727459\pi\)
−0.655302 + 0.755367i \(0.727459\pi\)
\(674\) 43.5000 + 25.1147i 1.67556 + 0.967384i
\(675\) 0 0
\(676\) 11.0000 + 6.92820i 0.423077 + 0.266469i
\(677\) −10.5000 18.1865i −0.403548 0.698965i 0.590603 0.806962i \(-0.298890\pi\)
−0.994151 + 0.107997i \(0.965556\pi\)
\(678\) 0 0
\(679\) 13.5000 + 23.3827i 0.518082 + 0.897345i
\(680\) 9.00000 0.345134
\(681\) 0 0
\(682\) −45.0000 25.9808i −1.72314 0.994855i
\(683\) 19.5000 11.2583i 0.746147 0.430788i −0.0781532 0.996941i \(-0.524902\pi\)
0.824300 + 0.566153i \(0.191569\pi\)
\(684\) 0 0
\(685\) −4.50000 7.79423i −0.171936 0.297802i
\(686\) 33.0000 1.25995
\(687\) 0 0
\(688\) −2.50000 + 4.33013i −0.0953116 + 0.165085i
\(689\) 6.00000 20.7846i 0.228582 0.791831i
\(690\) 0 0
\(691\) 17.3205i 0.658903i −0.944172 0.329452i \(-0.893136\pi\)
0.944172 0.329452i \(-0.106864\pi\)
\(692\) 10.5000 18.1865i 0.399150 0.691348i
\(693\) 0 0
\(694\) 20.7846i 0.788973i
\(695\) 24.0000 + 13.8564i 0.910372 + 0.525603i
\(696\) 0 0
\(697\) 31.5000 + 18.1865i 1.19315 + 0.688864i
\(698\) 48.0000 1.81683
\(699\) 0 0
\(700\) 3.46410i 0.130931i
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) 0 0
\(703\) 9.00000 0.339441
\(704\) 3.46410i 0.130558i
\(705\) 0 0
\(706\) 12.0000 0.451626
\(707\) 9.00000 + 5.19615i 0.338480 + 0.195421i
\(708\) 0 0
\(709\) −10.5000 6.06218i −0.394336 0.227670i 0.289701 0.957117i \(-0.406444\pi\)
−0.684037 + 0.729447i \(0.739777\pi\)
\(710\) 25.9808i 0.975041i
\(711\) 0 0
\(712\) 13.5000 23.3827i 0.505934 0.876303i
\(713\) 25.9808i 0.972987i
\(714\) 0 0
\(715\) 15.0000 + 15.5885i 0.560968 + 0.582975i
\(716\) −1.50000 + 2.59808i −0.0560576 + 0.0970947i
\(717\) 0 0
\(718\) −18.0000 −0.671754
\(719\) −19.5000 33.7750i −0.727227 1.25959i −0.958051 0.286599i \(-0.907475\pi\)
0.230823 0.972996i \(-0.425858\pi\)
\(720\) 0 0
\(721\) 19.5000 11.2583i 0.726218 0.419282i
\(722\) −24.0000 13.8564i −0.893188 0.515682i
\(723\) 0 0
\(724\) 22.0000 0.817624
\(725\) −6.00000 10.3923i −0.222834 0.385961i
\(726\) 0 0
\(727\) −0.500000 0.866025i −0.0185440 0.0321191i 0.856605 0.515974i \(-0.172570\pi\)
−0.875148 + 0.483854i \(0.839236\pi\)
\(728\) −7.50000 7.79423i −0.277968 0.288873i
\(729\) 0 0
\(730\) 18.0000 + 10.3923i 0.666210 + 0.384636i
\(731\) 3.00000 0.110959
\(732\) 0 0
\(733\) −16.5000 9.52628i −0.609441 0.351861i 0.163305 0.986576i \(-0.447784\pi\)
−0.772747 + 0.634714i \(0.781118\pi\)
\(734\) 13.8564i 0.511449i
\(735\) 0 0
\(736\) −13.5000 + 7.79423i −0.497617 + 0.287299i
\(737\) 21.0000 + 36.3731i 0.773545 + 1.33982i
\(738\) 0 0
\(739\) −28.5000 16.4545i −1.04839 0.605288i −0.126191 0.992006i \(-0.540275\pi\)
−0.922198 + 0.386718i \(0.873609\pi\)
\(740\) −4.50000 7.79423i −0.165423 0.286522i
\(741\) 0 0
\(742\) 9.00000 15.5885i 0.330400 0.572270i
\(743\) −10.5000 + 6.06218i −0.385208 + 0.222400i −0.680082 0.733136i \(-0.738056\pi\)
0.294874 + 0.955536i \(0.404722\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 24.2487i 0.887808i
\(747\) 0 0
\(748\) 9.00000 5.19615i 0.329073 0.189990i
\(749\) 22.5000 12.9904i 0.822132 0.474658i
\(750\) 0 0
\(751\) 9.50000 + 16.4545i 0.346660 + 0.600433i 0.985654 0.168779i \(-0.0539825\pi\)
−0.638994 + 0.769212i \(0.720649\pi\)
\(752\) 22.5000 12.9904i 0.820491 0.473710i
\(753\) 0 0
\(754\) −36.0000 10.3923i −1.31104 0.378465i
\(755\) −21.0000 −0.764268
\(756\) 0 0
\(757\) −3.50000 + 6.06218i −0.127210 + 0.220334i −0.922595 0.385771i \(-0.873935\pi\)
0.795385 + 0.606105i \(0.207269\pi\)
\(758\) 10.5000 18.1865i 0.381377 0.660565i
\(759\) 0 0
\(760\) 5.19615i 0.188484i
\(761\) 13.8564i 0.502294i 0.967949 + 0.251147i \(0.0808078\pi\)
−0.967949 + 0.251147i \(0.919192\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −1.50000 + 2.59808i −0.0542681 + 0.0939951i
\(765\) 0 0
\(766\) 6.00000 0.216789
\(767\) −12.0000 3.46410i −0.433295 0.125081i
\(768\) 0 0
\(769\) 19.5000 11.2583i 0.703188 0.405986i −0.105346 0.994436i \(-0.533595\pi\)
0.808534 + 0.588450i \(0.200262\pi\)
\(770\) 9.00000 + 15.5885i 0.324337 + 0.561769i
\(771\) 0 0
\(772\) 4.50000 2.59808i 0.161959 0.0935068i
\(773\) −25.5000 + 14.7224i −0.917171 + 0.529529i −0.882732 0.469878i \(-0.844298\pi\)
−0.0344397 + 0.999407i \(0.510965\pi\)
\(774\) 0 0
\(775\) 17.3205i 0.622171i
\(776\) −13.5000 + 23.3827i −0.484622 + 0.839390i
\(777\) 0 0
\(778\) −4.50000 + 2.59808i −0.161333 + 0.0931455i
\(779\) −10.5000 + 18.1865i −0.376202 + 0.651600i
\(780\) 0 0
\(781\) 15.0000 + 25.9808i 0.536742 + 0.929665i
\(782\) 13.5000 + 7.79423i 0.482759 + 0.278721i
\(783\) 0 0
\(784\) 10.0000 + 17.3205i 0.357143 + 0.618590i
\(785\) 34.5000 19.9186i 1.23136 0.710925i
\(786\) 0 0
\(787\) 3.46410i 0.123482i −0.998092 0.0617409i \(-0.980335\pi\)
0.998092 0.0617409i \(-0.0196653\pi\)
\(788\) 7.50000 + 4.33013i 0.267176 + 0.154254i
\(789\) 0 0
\(790\) 33.0000 1.17409
\(791\) −9.00000 5.19615i −0.320003 0.184754i
\(792\) 0 0
\(793\) 12.5000 + 12.9904i 0.443888 + 0.461302i
\(794\) −22.5000 38.9711i −0.798495 1.38303i
\(795\) 0 0
\(796\) 6.50000 + 11.2583i 0.230386 + 0.399041i
\(797\) −18.0000 −0.637593 −0.318796 0.947823i \(-0.603279\pi\)
−0.318796 + 0.947823i \(0.603279\pi\)
\(798\) 0 0
\(799\) −13.5000 7.79423i −0.477596 0.275740i
\(800\) −9.00000 + 5.19615i −0.318198 + 0.183712i
\(801\) 0 0
\(802\) −25.5000 44.1673i −0.900436 1.55960i
\(803\) −24.0000 −0.846942
\(804\) 0 0
\(805\) −4.50000 + 7.79423i −0.158604 + 0.274710i
\(806\) −37.5000 38.9711i −1.32088 1.37270i
\(807\) 0 0
\(808\) 10.3923i 0.365600i
\(809\) 13.5000 23.3827i 0.474635 0.822091i −0.524943 0.851137i \(-0.675914\pi\)
0.999578 + 0.0290457i \(0.00924684\pi\)
\(810\) 0 0
\(811\) 51.9615i 1.82462i 0.409505 + 0.912308i \(0.365701\pi\)
−0.409505 + 0.912308i \(0.634299\pi\)
\(812\) −9.00000 5.19615i −0.315838 0.182349i
\(813\) 0 0
\(814\) 27.0000 + 15.5885i 0.946350 + 0.546375i
\(815\) −21.0000 −0.735598
\(816\) 0 0
\(817\) 1.73205i 0.0605968i
\(818\) 12.0000 0.419570
\(819\) 0 0
\(820\) 21.0000 0.733352
\(821\) 27.7128i 0.967184i 0.875294 + 0.483592i \(0.160668\pi\)
−0.875294 + 0.483592i \(0.839332\pi\)
\(822\) 0 0
\(823\) 56.0000 1.95204 0.976019 0.217687i \(-0.0698512\pi\)
0.976019 + 0.217687i \(0.0698512\pi\)
\(824\) 19.5000 + 11.2583i 0.679315 + 0.392203i
\(825\) 0 0
\(826\) −9.00000 5.19615i −0.313150 0.180797i
\(827\) 24.2487i 0.843210i −0.906780 0.421605i \(-0.861467\pi\)
0.906780 0.421605i \(-0.138533\pi\)
\(828\) 0 0
\(829\) 14.5000 25.1147i 0.503606 0.872271i −0.496385 0.868102i \(-0.665340\pi\)
0.999991 0.00416865i \(-0.00132693\pi\)
\(830\) 15.5885i 0.541083i
\(831\) 0 0
\(832\) 1.00000 3.46410i 0.0346688 0.120096i
\(833\) 6.00000 10.3923i 0.207888 0.360072i
\(834\) 0 0
\(835\) 9.00000 0.311458
\(836\) 3.00000 + 5.19615i 0.103757 + 0.179713i
\(837\) 0 0
\(838\) −13.5000 + 7.79423i −0.466350 + 0.269247i
\(839\) 10.5000 + 6.06218i 0.362500 + 0.209290i 0.670177 0.742201i \(-0.266218\pi\)
−0.307677 + 0.951491i \(0.599552\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 7.50000 + 12.9904i 0.258467 + 0.447678i
\(843\) 0 0
\(844\) 6.50000 + 11.2583i 0.223739 + 0.387528i
\(845\) 10.5000 + 19.9186i 0.361211 + 0.685220i
\(846\) 0 0
\(847\) −1.50000 0.866025i −0.0515406 0.0297570i
\(848\) 30.0000 1.03020
\(849\) 0 0
\(850\) 9.00000 + 5.19615i 0.308697 + 0.178227i
\(851\) 15.5885i 0.534365i
\(852\) 0 0
\(853\) −4.50000 + 2.59808i −0.154077 + 0.0889564i −0.575056 0.818114i \(-0.695020\pi\)
0.420979 + 0.907070i \(0.361687\pi\)
\(854\) 7.50000 + 12.9904i 0.256645 + 0.444522i
\(855\) 0 0
\(856\) 22.5000 + 12.9904i 0.769034 + 0.444002i
\(857\) 1.50000 + 2.59808i 0.0512390 + 0.0887486i 0.890507 0.454969i \(-0.150350\pi\)
−0.839268 + 0.543718i \(0.817016\pi\)
\(858\) 0 0
\(859\) 2.50000 4.33013i 0.0852989 0.147742i −0.820220 0.572049i \(-0.806149\pi\)
0.905519 + 0.424307i \(0.139482\pi\)
\(860\) 1.50000 0.866025i 0.0511496 0.0295312i
\(861\) 0 0
\(862\) 19.5000 33.7750i 0.664173 1.15038i
\(863\) 17.3205i 0.589597i 0.955559 + 0.294798i \(0.0952525\pi\)
−0.955559 + 0.294798i \(0.904747\pi\)
\(864\) 0 0
\(865\) 31.5000 18.1865i 1.07103 0.618361i
\(866\) −7.50000 + 4.33013i −0.254860 + 0.147144i
\(867\) 0 0
\(868\) −7.50000 12.9904i −0.254567 0.440922i
\(869\) −33.0000 + 19.0526i −1.11945 + 0.646314i
\(870\) 0 0
\(871\) 10.5000 + 42.4352i 0.355779 + 1.43786i
\(872\) 0 0
\(873\) 0 0
\(874\) −4.50000 + 7.79423i −0.152215 + 0.263644i
\(875\) −10.5000 + 18.1865i −0.354965 + 0.614817i
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 13.8564i 0.467631i
\(879\) 0 0
\(880\) −15.0000 + 25.9808i −0.505650 + 0.875811i
\(881\) −4.50000 + 7.79423i −0.151609 + 0.262594i −0.931819 0.362923i \(-0.881779\pi\)
0.780210 + 0.625517i \(0.215112\pi\)
\(882\) 0 0
\(883\) 40.0000 1.34611 0.673054 0.739594i \(-0.264982\pi\)
0.673054 + 0.739594i \(0.264982\pi\)
\(884\) 10.5000 2.59808i 0.353153 0.0873828i
\(885\) 0 0
\(886\) −31.5000 + 18.1865i −1.05826 + 0.610989i
\(887\) −7.50000 12.9904i −0.251825 0.436174i 0.712203 0.701974i \(-0.247698\pi\)
−0.964028 + 0.265799i \(0.914364\pi\)
\(888\) 0 0
\(889\) 7.50000 4.33013i 0.251542 0.145228i
\(890\) −40.5000 + 23.3827i −1.35756 + 0.783789i
\(891\) 0 0
\(892\) 3.46410i 0.115987i
\(893\) 4.50000 7.79423i 0.150587 0.260824i
\(894\) 0 0
\(895\) −4.50000 + 2.59808i −0.150418 + 0.0868441i
\(896\) 10.5000 18.1865i 0.350780 0.607569i
\(897\) 0 0
\(898\) −13.5000 23.3827i −0.450501 0.780290i
\(899\) 45.0000 + 25.9808i 1.50083 + 0.866507i
\(900\) 0 0
\(901\) −9.00000 15.5885i −0.299833 0.519327i
\(902\) −63.0000 + 36.3731i −2.09767 + 1.21109i
\(903\) 0 0
\(904\) 10.3923i 0.345643i
\(905\) 33.0000 + 19.0526i 1.09696 + 0.633328i
\(906\) 0 0
\(907\) 4.00000 0.132818 0.0664089 0.997792i \(-0.478846\pi\)
0.0664089 + 0.997792i \(0.478846\pi\)
\(908\) −10.5000 6.06218i −0.348455 0.201180i
\(909\) 0 0
\(910\) 4.50000 + 18.1865i 0.149174 + 0.602878i
\(911\) 22.5000 + 38.9711i 0.745458 + 1.29117i 0.949980 + 0.312310i \(0.101103\pi\)
−0.204522 + 0.978862i \(0.565564\pi\)
\(912\) 0 0
\(913\) −9.00000 15.5885i −0.297857 0.515903i
\(914\) 0 0
\(915\) 0 0
\(916\) −7.50000 4.33013i −0.247807 0.143071i
\(917\) 22.5000 12.9904i 0.743015 0.428980i
\(918\) 0 0
\(919\) −12.5000 21.6506i −0.412337 0.714189i 0.582808 0.812610i \(-0.301954\pi\)
−0.995145 + 0.0984214i \(0.968621\pi\)
\(920\) −9.00000 −0.296721
\(921\) 0 0
\(922\) 1.50000 2.59808i 0.0493999 0.0855631i
\(923\) 7.50000 + 30.3109i 0.246866 + 0.997695i
\(924\) 0 0
\(925\) 10.3923i 0.341697i
\(926\) 22.5000 38.9711i 0.739396 1.28067i
\(927\) 0 0
\(928\) 31.1769i 1.02343i
\(929\) −49.5000 28.5788i −1.62404 0.937641i −0.985823 0.167786i \(-0.946338\pi\)
−0.638219 0.769855i \(-0.720329\pi\)
\(930\) 0 0
\(931\) 6.00000 + 3.46410i 0.196642 + 0.113531i
\(932\) −18.0000 −0.589610
\(933\) 0 0
\(934\) 20.7846i 0.680093i
\(935\) 18.0000 0.588663
\(936\) 0 0
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 36.3731i 1.18762i
\(939\) 0 0
\(940\) −9.00000 −0.293548
\(941\) −13.5000 7.79423i −0.440087 0.254085i 0.263547 0.964646i \(-0.415107\pi\)
−0.703635 + 0.710562i \(0.748441\pi\)
\(942\) 0 0
\(943\) −31.5000 18.1865i −1.02578 0.592235i
\(944\) 17.3205i 0.563735i
\(945\) 0 0
\(946\) −3.00000 + 5.19615i −0.0975384 + 0.168941i
\(947\) 38.1051i 1.23825i −0.785292 0.619125i \(-0.787487\pi\)
0.785292 0.619125i \(-0.212513\pi\)
\(948\) 0 0
\(949\) −24.0000 6.92820i −0.779073 0.224899i
\(950\) −3.00000 + 5.19615i −0.0973329 + 0.168585i
\(951\) 0 0
\(952\) −9.00000 −0.291692
\(953\) 13.5000 + 23.3827i 0.437308 + 0.757439i 0.997481 0.0709362i \(-0.0225987\pi\)
−0.560173 + 0.828376i \(0.689265\pi\)
\(954\) 0 0
\(955\) −4.50000 + 2.59808i −0.145617 + 0.0840718i
\(956\) −4.50000 2.59808i −0.145540 0.0840278i
\(957\) 0 0
\(958\) −42.0000 −1.35696
\(959\) 4.50000 + 7.79423i 0.145313 + 0.251689i
\(960\) 0 0
\(961\) 22.0000 + 38.1051i 0.709677 + 1.22920i
\(962\) 22.5000 + 23.3827i 0.725429 + 0.753888i
\(963\) 0 0
\(964\) 4.50000 + 2.59808i 0.144935 + 0.0836784i
\(965\) 9.00000 0.289720
\(966\) 0 0
\(967\) −10.5000 6.06218i −0.337657 0.194946i 0.321578 0.946883i \(-0.395787\pi\)
−0.659236 + 0.751936i \(0.729120\pi\)
\(968\) 1.73205i 0.0556702i
\(969\) 0 0
\(970\) 40.5000 23.3827i 1.30038 0.750773i
\(971\) −13.5000 23.3827i −0.433236 0.750386i 0.563914 0.825833i \(-0.309295\pi\)
−0.997150 + 0.0754473i \(0.975962\pi\)
\(972\) 0 0
\(973\) −24.0000 13.8564i −0.769405 0.444216i
\(974\) −7.50000 12.9904i −0.240316 0.416239i
\(975\) 0 0
\(976\) −12.5000 + 21.6506i −0.400115 + 0.693020i
\(977\) 22.5000 12.9904i 0.719839 0.415599i −0.0948546 0.995491i \(-0.530239\pi\)
0.814693 + 0.579892i \(0.196905\pi\)
\(978\) 0 0
\(979\) 27.0000 46.7654i 0.862924 1.49463i
\(980\) 6.92820i 0.221313i
\(981\) 0 0
\(982\) 4.50000 2.59808i 0.143601 0.0829079i
\(983\) −4.50000 + 2.59808i −0.143528 + 0.0828658i −0.570044 0.821614i \(-0.693074\pi\)
0.426517 + 0.904480i \(0.359741\pi\)
\(984\) 0 0
\(985\) 7.50000 + 12.9904i 0.238970 + 0.413908i
\(986\) −27.0000 + 15.5885i −0.859855 + 0.496438i
\(987\) 0 0
\(988\) 1.50000 + 6.06218i 0.0477214 + 0.192864i
\(989\) −3.00000 −0.0953945
\(990\) 0 0
\(991\) 18.5000 32.0429i 0.587672 1.01788i −0.406865 0.913488i \(-0.633378\pi\)
0.994537 0.104389i \(-0.0332887\pi\)
\(992\) 22.5000 38.9711i 0.714376 1.23734i
\(993\) 0 0
\(994\) 25.9808i 0.824060i
\(995\) 22.5167i 0.713826i
\(996\) 0 0
\(997\) −11.5000 + 19.9186i −0.364209 + 0.630828i −0.988649 0.150245i \(-0.951994\pi\)
0.624440 + 0.781073i \(0.285327\pi\)
\(998\) 22.5000 38.9711i 0.712225 1.23361i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.l.a.199.1 2
3.2 odd 2 117.2.l.a.4.1 2
9.2 odd 6 117.2.r.a.43.1 yes 2
9.7 even 3 351.2.r.a.316.1 2
13.10 even 6 351.2.r.a.10.1 2
39.23 odd 6 117.2.r.a.49.1 yes 2
117.88 even 6 inner 351.2.l.a.127.1 2
117.101 odd 6 117.2.l.a.88.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.l.a.4.1 2 3.2 odd 2
117.2.l.a.88.1 yes 2 117.101 odd 6
117.2.r.a.43.1 yes 2 9.2 odd 6
117.2.r.a.49.1 yes 2 39.23 odd 6
351.2.l.a.127.1 2 117.88 even 6 inner
351.2.l.a.199.1 2 1.1 even 1 trivial
351.2.r.a.10.1 2 13.10 even 6
351.2.r.a.316.1 2 9.7 even 3