Properties

Label 351.2.l.b.199.11
Level $351$
Weight $2$
Character 351.199
Analytic conductor $2.803$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [351,2,Mod(127,351)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(351, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("351.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.l (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.11
Character \(\chi\) \(=\) 351.199
Dual form 351.2.l.b.127.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.59035i q^{2} -4.70993 q^{4} +(-1.18696 - 0.685292i) q^{5} +(-3.20825 - 1.85228i) q^{7} -7.01967i q^{8} +(1.77515 - 3.07465i) q^{10} -0.487471i q^{11} +(3.11904 + 1.80875i) q^{13} +(4.79807 - 8.31050i) q^{14} +8.76356 q^{16} +(-2.88951 - 5.00477i) q^{17} +(-2.80767 + 1.62101i) q^{19} +(5.59049 + 3.22767i) q^{20} +1.26272 q^{22} +(0.175893 + 0.304656i) q^{23} +(-1.56075 - 2.70330i) q^{25} +(-4.68529 + 8.07942i) q^{26} +(15.1106 + 8.72412i) q^{28} -3.00808 q^{29} +(-3.62047 - 2.09028i) q^{31} +8.66137i q^{32} +(12.9641 - 7.48484i) q^{34} +(2.53871 + 4.39718i) q^{35} +(-7.56549 - 4.36794i) q^{37} +(-4.19899 - 7.27286i) q^{38} +(-4.81052 + 8.33206i) q^{40} +(-1.44970 + 0.836982i) q^{41} +(-5.78344 + 10.0172i) q^{43} +2.29595i q^{44} +(-0.789167 + 0.455626i) q^{46} +(-3.26623 + 1.88576i) q^{47} +(3.36191 + 5.82301i) q^{49} +(7.00250 - 4.04289i) q^{50} +(-14.6905 - 8.51907i) q^{52} +12.2232 q^{53} +(-0.334060 + 0.578609i) q^{55} +(-13.0024 + 22.5208i) q^{56} -7.79200i q^{58} +5.70642i q^{59} +(1.17729 - 2.03913i) q^{61} +(5.41456 - 9.37829i) q^{62} -4.90889 q^{64} +(-2.46266 - 4.28437i) q^{65} +(0.0679883 - 0.0392530i) q^{67} +(13.6094 + 23.5721i) q^{68} +(-11.3902 + 6.57615i) q^{70} +(-0.940139 + 0.542789i) q^{71} +2.49602i q^{73} +(11.3145 - 19.5973i) q^{74} +(13.2239 - 7.63484i) q^{76} +(-0.902935 + 1.56393i) q^{77} +(-1.16667 - 2.02073i) q^{79} +(-10.4020 - 6.00559i) q^{80} +(-2.16808 - 3.75522i) q^{82} +(2.19957 - 1.26992i) q^{83} +7.92062i q^{85} +(-25.9481 - 14.9812i) q^{86} -3.42189 q^{88} +(-14.0114 - 8.08948i) q^{89} +(-6.65636 - 11.5803i) q^{91} +(-0.828445 - 1.43491i) q^{92} +(-4.88478 - 8.46068i) q^{94} +4.44346 q^{95} +(-0.732699 - 0.423024i) q^{97} +(-15.0836 + 8.70854i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 20 q^{4} + 3 q^{5} - 6 q^{7} - 7 q^{10} + 9 q^{14} + 24 q^{16} - 9 q^{17} - 6 q^{19} + 24 q^{20} + 26 q^{22} - 6 q^{23} + 4 q^{25} + 12 q^{26} + 3 q^{28} - 48 q^{29} - 27 q^{31} + 15 q^{34} + 27 q^{35}+ \cdots - 117 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.59035i 1.83166i 0.401571 + 0.915828i \(0.368464\pi\)
−0.401571 + 0.915828i \(0.631536\pi\)
\(3\) 0 0
\(4\) −4.70993 −2.35496
\(5\) −1.18696 0.685292i −0.530825 0.306472i 0.210528 0.977588i \(-0.432482\pi\)
−0.741352 + 0.671116i \(0.765815\pi\)
\(6\) 0 0
\(7\) −3.20825 1.85228i −1.21260 0.700098i −0.249279 0.968432i \(-0.580194\pi\)
−0.963326 + 0.268334i \(0.913527\pi\)
\(8\) 7.01967i 2.48183i
\(9\) 0 0
\(10\) 1.77515 3.07465i 0.561351 0.972288i
\(11\) 0.487471i 0.146978i −0.997296 0.0734891i \(-0.976587\pi\)
0.997296 0.0734891i \(-0.0234134\pi\)
\(12\) 0 0
\(13\) 3.11904 + 1.80875i 0.865067 + 0.501656i
\(14\) 4.79807 8.31050i 1.28234 2.22107i
\(15\) 0 0
\(16\) 8.76356 2.19089
\(17\) −2.88951 5.00477i −0.700808 1.21384i −0.968183 0.250243i \(-0.919490\pi\)
0.267375 0.963593i \(-0.413844\pi\)
\(18\) 0 0
\(19\) −2.80767 + 1.62101i −0.644124 + 0.371885i −0.786201 0.617970i \(-0.787955\pi\)
0.142077 + 0.989856i \(0.454622\pi\)
\(20\) 5.59049 + 3.22767i 1.25007 + 0.721730i
\(21\) 0 0
\(22\) 1.26272 0.269213
\(23\) 0.175893 + 0.304656i 0.0366763 + 0.0635252i 0.883781 0.467901i \(-0.154990\pi\)
−0.847105 + 0.531426i \(0.821656\pi\)
\(24\) 0 0
\(25\) −1.56075 2.70330i −0.312150 0.540660i
\(26\) −4.68529 + 8.07942i −0.918861 + 1.58451i
\(27\) 0 0
\(28\) 15.1106 + 8.72412i 2.85564 + 1.64870i
\(29\) −3.00808 −0.558587 −0.279294 0.960206i \(-0.590100\pi\)
−0.279294 + 0.960206i \(0.590100\pi\)
\(30\) 0 0
\(31\) −3.62047 2.09028i −0.650255 0.375425i 0.138299 0.990391i \(-0.455837\pi\)
−0.788554 + 0.614965i \(0.789170\pi\)
\(32\) 8.66137i 1.53113i
\(33\) 0 0
\(34\) 12.9641 7.48484i 2.22333 1.28364i
\(35\) 2.53871 + 4.39718i 0.429120 + 0.743258i
\(36\) 0 0
\(37\) −7.56549 4.36794i −1.24376 0.718084i −0.273901 0.961758i \(-0.588314\pi\)
−0.969857 + 0.243673i \(0.921648\pi\)
\(38\) −4.19899 7.27286i −0.681165 1.17981i
\(39\) 0 0
\(40\) −4.81052 + 8.33206i −0.760610 + 1.31741i
\(41\) −1.44970 + 0.836982i −0.226404 + 0.130715i −0.608912 0.793238i \(-0.708394\pi\)
0.382508 + 0.923952i \(0.375061\pi\)
\(42\) 0 0
\(43\) −5.78344 + 10.0172i −0.881967 + 1.52761i −0.0328156 + 0.999461i \(0.510447\pi\)
−0.849151 + 0.528150i \(0.822886\pi\)
\(44\) 2.29595i 0.346128i
\(45\) 0 0
\(46\) −0.789167 + 0.455626i −0.116356 + 0.0671784i
\(47\) −3.26623 + 1.88576i −0.476428 + 0.275066i −0.718927 0.695086i \(-0.755366\pi\)
0.242499 + 0.970152i \(0.422033\pi\)
\(48\) 0 0
\(49\) 3.36191 + 5.82301i 0.480273 + 0.831858i
\(50\) 7.00250 4.04289i 0.990303 0.571752i
\(51\) 0 0
\(52\) −14.6905 8.51907i −2.03720 1.18138i
\(53\) 12.2232 1.67898 0.839492 0.543373i \(-0.182853\pi\)
0.839492 + 0.543373i \(0.182853\pi\)
\(54\) 0 0
\(55\) −0.334060 + 0.578609i −0.0450446 + 0.0780196i
\(56\) −13.0024 + 22.5208i −1.73752 + 3.00947i
\(57\) 0 0
\(58\) 7.79200i 1.02314i
\(59\) 5.70642i 0.742912i 0.928451 + 0.371456i \(0.121141\pi\)
−0.928451 + 0.371456i \(0.878859\pi\)
\(60\) 0 0
\(61\) 1.17729 2.03913i 0.150737 0.261084i −0.780762 0.624829i \(-0.785169\pi\)
0.931499 + 0.363745i \(0.118502\pi\)
\(62\) 5.41456 9.37829i 0.687650 1.19104i
\(63\) 0 0
\(64\) −4.90889 −0.613611
\(65\) −2.46266 4.28437i −0.305456 0.531410i
\(66\) 0 0
\(67\) 0.0679883 0.0392530i 0.00830609 0.00479552i −0.495841 0.868413i \(-0.665140\pi\)
0.504147 + 0.863618i \(0.331807\pi\)
\(68\) 13.6094 + 23.5721i 1.65038 + 2.85854i
\(69\) 0 0
\(70\) −11.3902 + 6.57615i −1.36139 + 0.786001i
\(71\) −0.940139 + 0.542789i −0.111574 + 0.0644172i −0.554748 0.832018i \(-0.687186\pi\)
0.443175 + 0.896435i \(0.353852\pi\)
\(72\) 0 0
\(73\) 2.49602i 0.292137i 0.989274 + 0.146068i \(0.0466620\pi\)
−0.989274 + 0.146068i \(0.953338\pi\)
\(74\) 11.3145 19.5973i 1.31528 2.27814i
\(75\) 0 0
\(76\) 13.2239 7.63484i 1.51689 0.875776i
\(77\) −0.902935 + 1.56393i −0.102899 + 0.178226i
\(78\) 0 0
\(79\) −1.16667 2.02073i −0.131260 0.227350i 0.792902 0.609349i \(-0.208569\pi\)
−0.924163 + 0.381999i \(0.875236\pi\)
\(80\) −10.4020 6.00559i −1.16298 0.671446i
\(81\) 0 0
\(82\) −2.16808 3.75522i −0.239424 0.414695i
\(83\) 2.19957 1.26992i 0.241434 0.139392i −0.374401 0.927267i \(-0.622152\pi\)
0.615836 + 0.787875i \(0.288818\pi\)
\(84\) 0 0
\(85\) 7.92062i 0.859112i
\(86\) −25.9481 14.9812i −2.79806 1.61546i
\(87\) 0 0
\(88\) −3.42189 −0.364774
\(89\) −14.0114 8.08948i −1.48520 0.857483i −0.485346 0.874322i \(-0.661306\pi\)
−0.999858 + 0.0168392i \(0.994640\pi\)
\(90\) 0 0
\(91\) −6.65636 11.5803i −0.697776 1.21394i
\(92\) −0.828445 1.43491i −0.0863713 0.149600i
\(93\) 0 0
\(94\) −4.88478 8.46068i −0.503826 0.872652i
\(95\) 4.44346 0.455889
\(96\) 0 0
\(97\) −0.732699 0.423024i −0.0743943 0.0429516i 0.462341 0.886702i \(-0.347009\pi\)
−0.536736 + 0.843750i \(0.680343\pi\)
\(98\) −15.0836 + 8.70854i −1.52368 + 0.879696i
\(99\) 0 0
\(100\) 7.35102 + 12.7323i 0.735102 + 1.27323i
\(101\) 3.02905 0.301401 0.150701 0.988579i \(-0.451847\pi\)
0.150701 + 0.988579i \(0.451847\pi\)
\(102\) 0 0
\(103\) 2.74723 4.75835i 0.270693 0.468854i −0.698347 0.715760i \(-0.746081\pi\)
0.969039 + 0.246906i \(0.0794139\pi\)
\(104\) 12.6968 21.8946i 1.24502 2.14695i
\(105\) 0 0
\(106\) 31.6624i 3.07532i
\(107\) 2.78934 4.83127i 0.269655 0.467057i −0.699118 0.715007i \(-0.746424\pi\)
0.968773 + 0.247950i \(0.0797569\pi\)
\(108\) 0 0
\(109\) 0.977746i 0.0936511i −0.998903 0.0468256i \(-0.985090\pi\)
0.998903 0.0468256i \(-0.0149105\pi\)
\(110\) −1.49880 0.865333i −0.142905 0.0825063i
\(111\) 0 0
\(112\) −28.1157 16.2326i −2.65668 1.53384i
\(113\) 1.66014 0.156173 0.0780866 0.996947i \(-0.475119\pi\)
0.0780866 + 0.996947i \(0.475119\pi\)
\(114\) 0 0
\(115\) 0.482153i 0.0449610i
\(116\) 14.1679 1.31545
\(117\) 0 0
\(118\) −14.7816 −1.36076
\(119\) 21.4087i 1.96254i
\(120\) 0 0
\(121\) 10.7624 0.978397
\(122\) 5.28207 + 3.04961i 0.478216 + 0.276098i
\(123\) 0 0
\(124\) 17.0521 + 9.84506i 1.53133 + 0.884112i
\(125\) 11.1312i 0.995604i
\(126\) 0 0
\(127\) 8.91305 15.4379i 0.790905 1.36989i −0.134502 0.990913i \(-0.542943\pi\)
0.925407 0.378975i \(-0.123723\pi\)
\(128\) 4.60699i 0.407204i
\(129\) 0 0
\(130\) 11.0980 6.37916i 0.973360 0.559489i
\(131\) −8.49796 + 14.7189i −0.742470 + 1.28600i 0.208898 + 0.977937i \(0.433012\pi\)
−0.951368 + 0.308058i \(0.900321\pi\)
\(132\) 0 0
\(133\) 12.0103 1.04142
\(134\) 0.101679 + 0.176114i 0.00878375 + 0.0152139i
\(135\) 0 0
\(136\) −35.1318 + 20.2834i −3.01253 + 1.73928i
\(137\) 1.87952 + 1.08514i 0.160579 + 0.0927101i 0.578136 0.815941i \(-0.303780\pi\)
−0.417557 + 0.908651i \(0.637114\pi\)
\(138\) 0 0
\(139\) −9.19253 −0.779700 −0.389850 0.920878i \(-0.627473\pi\)
−0.389850 + 0.920878i \(0.627473\pi\)
\(140\) −11.9571 20.7104i −1.01056 1.75035i
\(141\) 0 0
\(142\) −1.40602 2.43529i −0.117990 0.204365i
\(143\) 0.881712 1.52044i 0.0737325 0.127146i
\(144\) 0 0
\(145\) 3.57048 + 2.06141i 0.296512 + 0.171191i
\(146\) −6.46557 −0.535094
\(147\) 0 0
\(148\) 35.6329 + 20.5727i 2.92901 + 1.69106i
\(149\) 5.79717i 0.474923i 0.971397 + 0.237461i \(0.0763153\pi\)
−0.971397 + 0.237461i \(0.923685\pi\)
\(150\) 0 0
\(151\) −12.1366 + 7.00709i −0.987666 + 0.570229i −0.904576 0.426313i \(-0.859812\pi\)
−0.0830899 + 0.996542i \(0.526479\pi\)
\(152\) 11.3789 + 19.7089i 0.922954 + 1.59860i
\(153\) 0 0
\(154\) −4.05113 2.33892i −0.326449 0.188476i
\(155\) 2.86490 + 4.96215i 0.230114 + 0.398570i
\(156\) 0 0
\(157\) 2.77149 4.80037i 0.221189 0.383111i −0.733980 0.679171i \(-0.762339\pi\)
0.955169 + 0.296060i \(0.0956728\pi\)
\(158\) 5.23440 3.02208i 0.416426 0.240424i
\(159\) 0 0
\(160\) 5.93556 10.2807i 0.469248 0.812761i
\(161\) 1.30322i 0.102708i
\(162\) 0 0
\(163\) −0.109427 + 0.0631777i −0.00857098 + 0.00494846i −0.504279 0.863541i \(-0.668242\pi\)
0.495708 + 0.868489i \(0.334908\pi\)
\(164\) 6.82796 3.94212i 0.533174 0.307828i
\(165\) 0 0
\(166\) 3.28955 + 5.69767i 0.255319 + 0.442225i
\(167\) 7.99623 4.61663i 0.618767 0.357245i −0.157622 0.987500i \(-0.550383\pi\)
0.776389 + 0.630254i \(0.217049\pi\)
\(168\) 0 0
\(169\) 6.45687 + 11.2831i 0.496682 + 0.867932i
\(170\) −20.5172 −1.57360
\(171\) 0 0
\(172\) 27.2396 47.1804i 2.07700 3.59747i
\(173\) 8.08378 14.0015i 0.614599 1.06452i −0.375856 0.926678i \(-0.622651\pi\)
0.990455 0.137838i \(-0.0440154\pi\)
\(174\) 0 0
\(175\) 11.5638i 0.874142i
\(176\) 4.27198i 0.322013i
\(177\) 0 0
\(178\) 20.9546 36.2944i 1.57061 2.72038i
\(179\) −4.88798 + 8.46622i −0.365345 + 0.632795i −0.988831 0.149039i \(-0.952382\pi\)
0.623487 + 0.781834i \(0.285715\pi\)
\(180\) 0 0
\(181\) 10.9633 0.814896 0.407448 0.913229i \(-0.366419\pi\)
0.407448 + 0.913229i \(0.366419\pi\)
\(182\) 29.9970 17.2423i 2.22352 1.27809i
\(183\) 0 0
\(184\) 2.13858 1.23471i 0.157659 0.0910242i
\(185\) 5.98662 + 10.3691i 0.440145 + 0.762354i
\(186\) 0 0
\(187\) −2.43968 + 1.40855i −0.178407 + 0.103003i
\(188\) 15.3837 8.88178i 1.12197 0.647770i
\(189\) 0 0
\(190\) 11.5101i 0.835032i
\(191\) −1.09288 + 1.89292i −0.0790778 + 0.136967i −0.902852 0.429951i \(-0.858531\pi\)
0.823775 + 0.566918i \(0.191864\pi\)
\(192\) 0 0
\(193\) 2.64074 1.52463i 0.190085 0.109746i −0.401937 0.915667i \(-0.631663\pi\)
0.592022 + 0.805922i \(0.298330\pi\)
\(194\) 1.09578 1.89795i 0.0786725 0.136265i
\(195\) 0 0
\(196\) −15.8344 27.4259i −1.13103 1.95900i
\(197\) −8.84639 5.10747i −0.630279 0.363892i 0.150581 0.988598i \(-0.451886\pi\)
−0.780860 + 0.624706i \(0.785219\pi\)
\(198\) 0 0
\(199\) −3.41850 5.92102i −0.242331 0.419730i 0.719047 0.694962i \(-0.244579\pi\)
−0.961378 + 0.275232i \(0.911245\pi\)
\(200\) −18.9763 + 10.9559i −1.34182 + 0.774702i
\(201\) 0 0
\(202\) 7.84630i 0.552064i
\(203\) 9.65069 + 5.57183i 0.677345 + 0.391066i
\(204\) 0 0
\(205\) 2.29431 0.160241
\(206\) 12.3258 + 7.11630i 0.858779 + 0.495816i
\(207\) 0 0
\(208\) 27.3339 + 15.8511i 1.89527 + 1.09907i
\(209\) 0.790195 + 1.36866i 0.0546590 + 0.0946721i
\(210\) 0 0
\(211\) 11.5354 + 19.9799i 0.794128 + 1.37547i 0.923391 + 0.383860i \(0.125405\pi\)
−0.129264 + 0.991610i \(0.541261\pi\)
\(212\) −57.5703 −3.95394
\(213\) 0 0
\(214\) 12.5147 + 7.22536i 0.855487 + 0.493916i
\(215\) 13.7294 7.92669i 0.936339 0.540596i
\(216\) 0 0
\(217\) 7.74358 + 13.4123i 0.525669 + 0.910485i
\(218\) 2.53271 0.171537
\(219\) 0 0
\(220\) 1.57340 2.72521i 0.106078 0.183733i
\(221\) 0.0398687 20.8365i 0.00268186 1.40161i
\(222\) 0 0
\(223\) 9.67359i 0.647791i −0.946093 0.323896i \(-0.895007\pi\)
0.946093 0.323896i \(-0.104993\pi\)
\(224\) 16.0433 27.7878i 1.07194 1.85665i
\(225\) 0 0
\(226\) 4.30036i 0.286055i
\(227\) −23.1988 13.3938i −1.53976 0.888978i −0.998852 0.0478937i \(-0.984749\pi\)
−0.540903 0.841085i \(-0.681918\pi\)
\(228\) 0 0
\(229\) −5.55568 3.20757i −0.367129 0.211962i 0.305074 0.952329i \(-0.401319\pi\)
−0.672204 + 0.740366i \(0.734652\pi\)
\(230\) 1.24895 0.0823531
\(231\) 0 0
\(232\) 21.1157i 1.38632i
\(233\) 21.9858 1.44034 0.720170 0.693798i \(-0.244064\pi\)
0.720170 + 0.693798i \(0.244064\pi\)
\(234\) 0 0
\(235\) 5.16917 0.337200
\(236\) 26.8768i 1.74953i
\(237\) 0 0
\(238\) −55.4562 −3.59469
\(239\) −9.86048 5.69295i −0.637821 0.368246i 0.145954 0.989291i \(-0.453375\pi\)
−0.783775 + 0.621045i \(0.786708\pi\)
\(240\) 0 0
\(241\) −17.4620 10.0817i −1.12483 0.649419i −0.182198 0.983262i \(-0.558321\pi\)
−0.942629 + 0.333843i \(0.891655\pi\)
\(242\) 27.8783i 1.79209i
\(243\) 0 0
\(244\) −5.54497 + 9.60416i −0.354980 + 0.614844i
\(245\) 9.21557i 0.588761i
\(246\) 0 0
\(247\) −11.6892 0.0223663i −0.743769 0.00142313i
\(248\) −14.6731 + 25.4145i −0.931740 + 1.61382i
\(249\) 0 0
\(250\) −28.8337 −1.82360
\(251\) −5.96356 10.3292i −0.376417 0.651973i 0.614121 0.789212i \(-0.289511\pi\)
−0.990538 + 0.137239i \(0.956177\pi\)
\(252\) 0 0
\(253\) 0.148511 0.0857430i 0.00933682 0.00539061i
\(254\) 39.9895 + 23.0879i 2.50916 + 1.44867i
\(255\) 0 0
\(256\) −21.7515 −1.35947
\(257\) 8.18195 + 14.1716i 0.510376 + 0.883997i 0.999928 + 0.0120231i \(0.00382717\pi\)
−0.489552 + 0.871974i \(0.662839\pi\)
\(258\) 0 0
\(259\) 16.1813 + 28.0269i 1.00546 + 1.74151i
\(260\) 11.5990 + 20.1790i 0.719337 + 1.25145i
\(261\) 0 0
\(262\) −38.1271 22.0127i −2.35550 1.35995i
\(263\) −14.7168 −0.907476 −0.453738 0.891135i \(-0.649910\pi\)
−0.453738 + 0.891135i \(0.649910\pi\)
\(264\) 0 0
\(265\) −14.5084 8.37645i −0.891246 0.514561i
\(266\) 31.1109i 1.90753i
\(267\) 0 0
\(268\) −0.320220 + 0.184879i −0.0195605 + 0.0112933i
\(269\) −13.6669 23.6718i −0.833288 1.44330i −0.895416 0.445230i \(-0.853122\pi\)
0.0621279 0.998068i \(-0.480211\pi\)
\(270\) 0 0
\(271\) 10.2655 + 5.92679i 0.623585 + 0.360027i 0.778263 0.627938i \(-0.216101\pi\)
−0.154678 + 0.987965i \(0.549434\pi\)
\(272\) −25.3223 43.8596i −1.53539 2.65938i
\(273\) 0 0
\(274\) −2.81090 + 4.86863i −0.169813 + 0.294125i
\(275\) −1.31778 + 0.760821i −0.0794652 + 0.0458792i
\(276\) 0 0
\(277\) 7.14586 12.3770i 0.429353 0.743661i −0.567463 0.823399i \(-0.692075\pi\)
0.996816 + 0.0797377i \(0.0254083\pi\)
\(278\) 23.8119i 1.42814i
\(279\) 0 0
\(280\) 30.8667 17.8209i 1.84464 1.06500i
\(281\) −20.3164 + 11.7297i −1.21198 + 0.699735i −0.963190 0.268823i \(-0.913365\pi\)
−0.248787 + 0.968558i \(0.580032\pi\)
\(282\) 0 0
\(283\) −13.6592 23.6584i −0.811953 1.40634i −0.911496 0.411310i \(-0.865071\pi\)
0.0995428 0.995033i \(-0.468262\pi\)
\(284\) 4.42798 2.55650i 0.262753 0.151700i
\(285\) 0 0
\(286\) 3.93849 + 2.28395i 0.232888 + 0.135053i
\(287\) 6.20132 0.366052
\(288\) 0 0
\(289\) −8.19849 + 14.2002i −0.482264 + 0.835306i
\(290\) −5.33979 + 9.24879i −0.313563 + 0.543108i
\(291\) 0 0
\(292\) 11.7561i 0.687972i
\(293\) 27.8967i 1.62974i −0.579642 0.814871i \(-0.696808\pi\)
0.579642 0.814871i \(-0.303192\pi\)
\(294\) 0 0
\(295\) 3.91056 6.77329i 0.227682 0.394356i
\(296\) −30.6615 + 53.1072i −1.78216 + 3.08679i
\(297\) 0 0
\(298\) −15.0167 −0.869895
\(299\) −0.00242694 + 1.26838i −0.000140353 + 0.0733525i
\(300\) 0 0
\(301\) 37.1095 21.4252i 2.13895 1.23493i
\(302\) −18.1508 31.4382i −1.04446 1.80906i
\(303\) 0 0
\(304\) −24.6052 + 14.2058i −1.41120 + 0.814759i
\(305\) −2.79480 + 1.61358i −0.160030 + 0.0923933i
\(306\) 0 0
\(307\) 28.7426i 1.64043i 0.572059 + 0.820213i \(0.306145\pi\)
−0.572059 + 0.820213i \(0.693855\pi\)
\(308\) 4.25276 7.36600i 0.242323 0.419717i
\(309\) 0 0
\(310\) −12.8537 + 7.42110i −0.730043 + 0.421490i
\(311\) −6.83305 + 11.8352i −0.387467 + 0.671112i −0.992108 0.125386i \(-0.959983\pi\)
0.604641 + 0.796498i \(0.293316\pi\)
\(312\) 0 0
\(313\) −5.90331 10.2248i −0.333675 0.577942i 0.649554 0.760315i \(-0.274955\pi\)
−0.983229 + 0.182373i \(0.941622\pi\)
\(314\) 12.4346 + 7.17915i 0.701728 + 0.405143i
\(315\) 0 0
\(316\) 5.49492 + 9.51748i 0.309113 + 0.535400i
\(317\) 26.0847 15.0600i 1.46506 0.845854i 0.465824 0.884878i \(-0.345758\pi\)
0.999238 + 0.0390236i \(0.0124248\pi\)
\(318\) 0 0
\(319\) 1.46635i 0.0821001i
\(320\) 5.82665 + 3.36402i 0.325720 + 0.188054i
\(321\) 0 0
\(322\) 3.37579 0.188126
\(323\) 16.2256 + 9.36783i 0.902814 + 0.521240i
\(324\) 0 0
\(325\) 0.0215349 11.2547i 0.00119454 0.624299i
\(326\) −0.163653 0.283454i −0.00906388 0.0156991i
\(327\) 0 0
\(328\) 5.87533 + 10.1764i 0.324411 + 0.561896i
\(329\) 13.9718 0.770292
\(330\) 0 0
\(331\) 8.20768 + 4.73870i 0.451135 + 0.260463i 0.708309 0.705902i \(-0.249458\pi\)
−0.257175 + 0.966365i \(0.582792\pi\)
\(332\) −10.3598 + 5.98125i −0.568569 + 0.328263i
\(333\) 0 0
\(334\) 11.9587 + 20.7131i 0.654350 + 1.13337i
\(335\) −0.107599 −0.00587877
\(336\) 0 0
\(337\) 8.14215 14.1026i 0.443531 0.768218i −0.554417 0.832239i \(-0.687059\pi\)
0.997949 + 0.0640203i \(0.0203922\pi\)
\(338\) −29.2273 + 16.7256i −1.58975 + 0.909751i
\(339\) 0 0
\(340\) 37.3055i 2.02318i
\(341\) −1.01895 + 1.76487i −0.0551793 + 0.0955733i
\(342\) 0 0
\(343\) 1.02310i 0.0552420i
\(344\) 70.3175 + 40.5978i 3.79127 + 2.18889i
\(345\) 0 0
\(346\) 36.2689 + 20.9399i 1.94983 + 1.12573i
\(347\) −3.27692 −0.175914 −0.0879571 0.996124i \(-0.528034\pi\)
−0.0879571 + 0.996124i \(0.528034\pi\)
\(348\) 0 0
\(349\) 23.3467i 1.24972i −0.780736 0.624861i \(-0.785156\pi\)
0.780736 0.624861i \(-0.214844\pi\)
\(350\) −29.9544 −1.60113
\(351\) 0 0
\(352\) 4.22217 0.225042
\(353\) 1.48233i 0.0788963i −0.999222 0.0394482i \(-0.987440\pi\)
0.999222 0.0394482i \(-0.0125600\pi\)
\(354\) 0 0
\(355\) 1.48788 0.0789683
\(356\) 65.9926 + 38.1009i 3.49760 + 2.01934i
\(357\) 0 0
\(358\) −21.9305 12.6616i −1.15906 0.669185i
\(359\) 5.04499i 0.266264i 0.991098 + 0.133132i \(0.0425035\pi\)
−0.991098 + 0.133132i \(0.957497\pi\)
\(360\) 0 0
\(361\) −4.24466 + 7.35196i −0.223403 + 0.386945i
\(362\) 28.3988i 1.49261i
\(363\) 0 0
\(364\) 31.3510 + 54.5422i 1.64324 + 2.85879i
\(365\) 1.71050 2.96267i 0.0895317 0.155073i
\(366\) 0 0
\(367\) −4.19706 −0.219085 −0.109542 0.993982i \(-0.534939\pi\)
−0.109542 + 0.993982i \(0.534939\pi\)
\(368\) 1.54145 + 2.66987i 0.0803537 + 0.139177i
\(369\) 0 0
\(370\) −26.8597 + 15.5075i −1.39637 + 0.806195i
\(371\) −39.2150 22.6408i −2.03594 1.17545i
\(372\) 0 0
\(373\) −27.2515 −1.41103 −0.705515 0.708695i \(-0.749284\pi\)
−0.705515 + 0.708695i \(0.749284\pi\)
\(374\) −3.64864 6.31964i −0.188667 0.326781i
\(375\) 0 0
\(376\) 13.2374 + 22.9278i 0.682666 + 1.18241i
\(377\) −9.38235 5.44086i −0.483215 0.280219i
\(378\) 0 0
\(379\) −3.91133 2.25821i −0.200912 0.115996i 0.396169 0.918178i \(-0.370339\pi\)
−0.597081 + 0.802181i \(0.703673\pi\)
\(380\) −20.9284 −1.07360
\(381\) 0 0
\(382\) −4.90332 2.83093i −0.250876 0.144843i
\(383\) 19.2761i 0.984961i −0.870324 0.492480i \(-0.836090\pi\)
0.870324 0.492480i \(-0.163910\pi\)
\(384\) 0 0
\(385\) 2.14350 1.23755i 0.109243 0.0630713i
\(386\) 3.94934 + 6.84045i 0.201016 + 0.348170i
\(387\) 0 0
\(388\) 3.45096 + 1.99241i 0.175196 + 0.101149i
\(389\) 2.21704 + 3.84003i 0.112409 + 0.194697i 0.916741 0.399482i \(-0.130810\pi\)
−0.804332 + 0.594180i \(0.797477\pi\)
\(390\) 0 0
\(391\) 1.01649 1.76061i 0.0514061 0.0890380i
\(392\) 40.8756 23.5995i 2.06453 1.19196i
\(393\) 0 0
\(394\) 13.2301 22.9153i 0.666525 1.15445i
\(395\) 3.19803i 0.160910i
\(396\) 0 0
\(397\) 5.79822 3.34760i 0.291004 0.168011i −0.347390 0.937721i \(-0.612932\pi\)
0.638395 + 0.769709i \(0.279599\pi\)
\(398\) 15.3375 8.85513i 0.768801 0.443867i
\(399\) 0 0
\(400\) −13.6777 23.6905i −0.683886 1.18453i
\(401\) 12.6939 7.32884i 0.633905 0.365985i −0.148358 0.988934i \(-0.547399\pi\)
0.782263 + 0.622949i \(0.214065\pi\)
\(402\) 0 0
\(403\) −7.51162 13.0682i −0.374180 0.650973i
\(404\) −14.2666 −0.709789
\(405\) 0 0
\(406\) −14.4330 + 24.9987i −0.716298 + 1.24066i
\(407\) −2.12924 + 3.68796i −0.105543 + 0.182805i
\(408\) 0 0
\(409\) 14.9121i 0.737358i 0.929557 + 0.368679i \(0.120190\pi\)
−0.929557 + 0.368679i \(0.879810\pi\)
\(410\) 5.94307i 0.293507i
\(411\) 0 0
\(412\) −12.9393 + 22.4115i −0.637472 + 1.10413i
\(413\) 10.5699 18.3076i 0.520111 0.900859i
\(414\) 0 0
\(415\) −3.48107 −0.170879
\(416\) −15.6662 + 27.0152i −0.768100 + 1.32453i
\(417\) 0 0
\(418\) −3.54531 + 2.04688i −0.173407 + 0.100116i
\(419\) −6.36693 11.0278i −0.311045 0.538745i 0.667544 0.744570i \(-0.267346\pi\)
−0.978589 + 0.205825i \(0.934012\pi\)
\(420\) 0 0
\(421\) 11.8508 6.84207i 0.577573 0.333462i −0.182595 0.983188i \(-0.558450\pi\)
0.760168 + 0.649726i \(0.225116\pi\)
\(422\) −51.7549 + 29.8807i −2.51939 + 1.45457i
\(423\) 0 0
\(424\) 85.8027i 4.16695i
\(425\) −9.01960 + 15.6224i −0.437515 + 0.757798i
\(426\) 0 0
\(427\) −7.55411 + 4.36136i −0.365569 + 0.211061i
\(428\) −13.1376 + 22.7549i −0.635028 + 1.09990i
\(429\) 0 0
\(430\) 20.5329 + 35.5641i 0.990186 + 1.71505i
\(431\) 19.8288 + 11.4482i 0.955120 + 0.551439i 0.894668 0.446732i \(-0.147412\pi\)
0.0604526 + 0.998171i \(0.480746\pi\)
\(432\) 0 0
\(433\) −7.61501 13.1896i −0.365954 0.633851i 0.622975 0.782242i \(-0.285924\pi\)
−0.988929 + 0.148391i \(0.952591\pi\)
\(434\) −34.7425 + 20.0586i −1.66769 + 0.962844i
\(435\) 0 0
\(436\) 4.60511i 0.220545i
\(437\) −0.987701 0.570250i −0.0472482 0.0272787i
\(438\) 0 0
\(439\) −27.3214 −1.30398 −0.651991 0.758227i \(-0.726066\pi\)
−0.651991 + 0.758227i \(0.726066\pi\)
\(440\) 4.06164 + 2.34499i 0.193631 + 0.111793i
\(441\) 0 0
\(442\) 53.9738 + 0.103274i 2.56727 + 0.00491225i
\(443\) 0.234040 + 0.405370i 0.0111196 + 0.0192597i 0.871532 0.490339i \(-0.163127\pi\)
−0.860412 + 0.509599i \(0.829794\pi\)
\(444\) 0 0
\(445\) 11.0873 + 19.2038i 0.525589 + 0.910346i
\(446\) 25.0580 1.18653
\(447\) 0 0
\(448\) 15.7489 + 9.09266i 0.744068 + 0.429588i
\(449\) −32.6429 + 18.8464i −1.54051 + 0.889416i −0.541708 + 0.840567i \(0.682222\pi\)
−0.998806 + 0.0488494i \(0.984445\pi\)
\(450\) 0 0
\(451\) 0.408005 + 0.706685i 0.0192122 + 0.0332765i
\(452\) −7.81915 −0.367782
\(453\) 0 0
\(454\) 34.6947 60.0930i 1.62830 2.82030i
\(455\) −0.0350285 + 18.3069i −0.00164216 + 0.858239i
\(456\) 0 0
\(457\) 30.8944i 1.44518i 0.691277 + 0.722590i \(0.257049\pi\)
−0.691277 + 0.722590i \(0.742951\pi\)
\(458\) 8.30874 14.3912i 0.388242 0.672455i
\(459\) 0 0
\(460\) 2.27091i 0.105882i
\(461\) 34.6487 + 20.0045i 1.61375 + 0.931700i 0.988490 + 0.151285i \(0.0483412\pi\)
0.625262 + 0.780415i \(0.284992\pi\)
\(462\) 0 0
\(463\) −12.0417 6.95225i −0.559623 0.323099i 0.193371 0.981126i \(-0.438058\pi\)
−0.752994 + 0.658027i \(0.771391\pi\)
\(464\) −26.3615 −1.22380
\(465\) 0 0
\(466\) 56.9511i 2.63821i
\(467\) 36.5921 1.69328 0.846640 0.532166i \(-0.178622\pi\)
0.846640 + 0.532166i \(0.178622\pi\)
\(468\) 0 0
\(469\) −0.290831 −0.0134293
\(470\) 13.3900i 0.617634i
\(471\) 0 0
\(472\) 40.0571 1.84378
\(473\) 4.88311 + 2.81926i 0.224525 + 0.129630i
\(474\) 0 0
\(475\) 8.76415 + 5.05998i 0.402127 + 0.232168i
\(476\) 100.834i 4.62170i
\(477\) 0 0
\(478\) 14.7467 25.5421i 0.674500 1.16827i
\(479\) 31.7921i 1.45262i −0.687368 0.726309i \(-0.741234\pi\)
0.687368 0.726309i \(-0.258766\pi\)
\(480\) 0 0
\(481\) −15.6966 27.3078i −0.715703 1.24513i
\(482\) 26.1151 45.2328i 1.18951 2.06030i
\(483\) 0 0
\(484\) −50.6900 −2.30409
\(485\) 0.579790 + 1.00423i 0.0263269 + 0.0455995i
\(486\) 0 0
\(487\) −1.10889 + 0.640220i −0.0502488 + 0.0290111i −0.524914 0.851155i \(-0.675902\pi\)
0.474665 + 0.880166i \(0.342569\pi\)
\(488\) −14.3140 8.26421i −0.647966 0.374103i
\(489\) 0 0
\(490\) 23.8716 1.07841
\(491\) −10.8321 18.7618i −0.488846 0.846706i 0.511072 0.859538i \(-0.329249\pi\)
−0.999918 + 0.0128321i \(0.995915\pi\)
\(492\) 0 0
\(493\) 8.69188 + 15.0548i 0.391462 + 0.678033i
\(494\) 0.0579366 30.2793i 0.00260669 1.36233i
\(495\) 0 0
\(496\) −31.7282 18.3183i −1.42464 0.822515i
\(497\) 4.02160 0.180393
\(498\) 0 0
\(499\) −8.28148 4.78131i −0.370730 0.214041i 0.303047 0.952975i \(-0.401996\pi\)
−0.673777 + 0.738935i \(0.735329\pi\)
\(500\) 52.4271i 2.34461i
\(501\) 0 0
\(502\) 26.7563 15.4477i 1.19419 0.689466i
\(503\) 12.2128 + 21.1531i 0.544540 + 0.943171i 0.998636 + 0.0522178i \(0.0166290\pi\)
−0.454096 + 0.890953i \(0.650038\pi\)
\(504\) 0 0
\(505\) −3.59536 2.07578i −0.159991 0.0923710i
\(506\) 0.222104 + 0.384696i 0.00987375 + 0.0171018i
\(507\) 0 0
\(508\) −41.9798 + 72.7112i −1.86255 + 3.22604i
\(509\) 12.9810 7.49461i 0.575375 0.332193i −0.183919 0.982941i \(-0.558878\pi\)
0.759293 + 0.650749i \(0.225545\pi\)
\(510\) 0 0
\(511\) 4.62334 8.00785i 0.204524 0.354246i
\(512\) 47.1301i 2.08287i
\(513\) 0 0
\(514\) −36.7093 + 21.1941i −1.61918 + 0.934834i
\(515\) −6.52171 + 3.76531i −0.287381 + 0.165919i
\(516\) 0 0
\(517\) 0.919252 + 1.59219i 0.0404287 + 0.0700245i
\(518\) −72.5995 + 41.9153i −3.18984 + 1.84165i
\(519\) 0 0
\(520\) −30.0748 + 17.2871i −1.31887 + 0.758088i
\(521\) −13.1757 −0.577239 −0.288619 0.957444i \(-0.593196\pi\)
−0.288619 + 0.957444i \(0.593196\pi\)
\(522\) 0 0
\(523\) −4.56640 + 7.90924i −0.199675 + 0.345847i −0.948423 0.317008i \(-0.897322\pi\)
0.748748 + 0.662854i \(0.230655\pi\)
\(524\) 40.0247 69.3249i 1.74849 3.02847i
\(525\) 0 0
\(526\) 38.1217i 1.66218i
\(527\) 24.1595i 1.05240i
\(528\) 0 0
\(529\) 11.4381 19.8114i 0.497310 0.861366i
\(530\) 21.6979 37.5820i 0.942499 1.63246i
\(531\) 0 0
\(532\) −56.5675 −2.45251
\(533\) −6.03555 0.0115485i −0.261429 0.000500220i
\(534\) 0 0
\(535\) −6.62166 + 3.82302i −0.286279 + 0.165283i
\(536\) −0.275543 0.477255i −0.0119017 0.0206143i
\(537\) 0 0
\(538\) 61.3184 35.4022i 2.64363 1.52630i
\(539\) 2.83855 1.63884i 0.122265 0.0705897i
\(540\) 0 0
\(541\) 1.26741i 0.0544903i −0.999629 0.0272451i \(-0.991327\pi\)
0.999629 0.0272451i \(-0.00867347\pi\)
\(542\) −15.3525 + 26.5913i −0.659445 + 1.14219i
\(543\) 0 0
\(544\) 43.3482 25.0271i 1.85854 1.07303i
\(545\) −0.670041 + 1.16055i −0.0287014 + 0.0497123i
\(546\) 0 0
\(547\) 16.8274 + 29.1459i 0.719487 + 1.24619i 0.961203 + 0.275840i \(0.0889561\pi\)
−0.241717 + 0.970347i \(0.577711\pi\)
\(548\) −8.85242 5.11095i −0.378157 0.218329i
\(549\) 0 0
\(550\) −1.97079 3.41352i −0.0840350 0.145553i
\(551\) 8.44571 4.87613i 0.359799 0.207730i
\(552\) 0 0
\(553\) 8.64400i 0.367580i
\(554\) 32.0608 + 18.5103i 1.36213 + 0.786427i
\(555\) 0 0
\(556\) 43.2961 1.83617
\(557\) −36.9465 21.3311i −1.56547 0.903826i −0.996686 0.0813415i \(-0.974080\pi\)
−0.568787 0.822485i \(-0.692587\pi\)
\(558\) 0 0
\(559\) −36.1574 + 20.7834i −1.52930 + 0.879042i
\(560\) 22.2481 + 38.5349i 0.940155 + 1.62840i
\(561\) 0 0
\(562\) −30.3841 52.6267i −1.28167 2.21993i
\(563\) −4.71871 −0.198870 −0.0994349 0.995044i \(-0.531703\pi\)
−0.0994349 + 0.995044i \(0.531703\pi\)
\(564\) 0 0
\(565\) −1.97052 1.13768i −0.0829006 0.0478627i
\(566\) 61.2835 35.3820i 2.57594 1.48722i
\(567\) 0 0
\(568\) 3.81020 + 6.59946i 0.159872 + 0.276907i
\(569\) 24.0375 1.00770 0.503851 0.863790i \(-0.331916\pi\)
0.503851 + 0.863790i \(0.331916\pi\)
\(570\) 0 0
\(571\) 5.86175 10.1528i 0.245306 0.424883i −0.716911 0.697164i \(-0.754445\pi\)
0.962218 + 0.272281i \(0.0877781\pi\)
\(572\) −4.15280 + 7.16118i −0.173637 + 0.299424i
\(573\) 0 0
\(574\) 16.0636i 0.670481i
\(575\) 0.549051 0.950985i 0.0228970 0.0396588i
\(576\) 0 0
\(577\) 6.65490i 0.277047i −0.990359 0.138523i \(-0.955764\pi\)
0.990359 0.138523i \(-0.0442356\pi\)
\(578\) −36.7835 21.2370i −1.52999 0.883342i
\(579\) 0 0
\(580\) −16.8167 9.70911i −0.698275 0.403149i
\(581\) −9.40904 −0.390353
\(582\) 0 0
\(583\) 5.95845i 0.246774i
\(584\) 17.5212 0.725033
\(585\) 0 0
\(586\) 72.2623 2.98513
\(587\) 21.5477i 0.889367i −0.895688 0.444684i \(-0.853316\pi\)
0.895688 0.444684i \(-0.146684\pi\)
\(588\) 0 0
\(589\) 13.5534 0.558460
\(590\) 17.5452 + 10.1297i 0.722325 + 0.417034i
\(591\) 0 0
\(592\) −66.3006 38.2787i −2.72494 1.57324i
\(593\) 0.0314626i 0.00129201i −1.00000 0.000646006i \(-0.999794\pi\)
1.00000 0.000646006i \(-0.000205630\pi\)
\(594\) 0 0
\(595\) 14.6712 25.4113i 0.601462 1.04176i
\(596\) 27.3042i 1.11843i
\(597\) 0 0
\(598\) −3.28556 0.00628662i −0.134356 0.000257079i
\(599\) −14.1320 + 24.4773i −0.577416 + 1.00011i 0.418358 + 0.908282i \(0.362606\pi\)
−0.995774 + 0.0918325i \(0.970728\pi\)
\(600\) 0 0
\(601\) −26.3337 −1.07417 −0.537087 0.843527i \(-0.680475\pi\)
−0.537087 + 0.843527i \(0.680475\pi\)
\(602\) 55.4987 + 96.1266i 2.26196 + 3.91783i
\(603\) 0 0
\(604\) 57.1627 33.0029i 2.32592 1.34287i
\(605\) −12.7745 7.37536i −0.519358 0.299851i
\(606\) 0 0
\(607\) 8.05575 0.326973 0.163486 0.986546i \(-0.447726\pi\)
0.163486 + 0.986546i \(0.447726\pi\)
\(608\) −14.0402 24.3183i −0.569404 0.986236i
\(609\) 0 0
\(610\) −4.17974 7.23952i −0.169233 0.293120i
\(611\) −13.5984 0.0260192i −0.550131 0.00105263i
\(612\) 0 0
\(613\) 31.5638 + 18.2234i 1.27485 + 0.736036i 0.975897 0.218232i \(-0.0700289\pi\)
0.298954 + 0.954267i \(0.403362\pi\)
\(614\) −74.4534 −3.00469
\(615\) 0 0
\(616\) 10.9783 + 6.33830i 0.442327 + 0.255378i
\(617\) 11.4369i 0.460432i 0.973140 + 0.230216i \(0.0739433\pi\)
−0.973140 + 0.230216i \(0.926057\pi\)
\(618\) 0 0
\(619\) 32.5739 18.8065i 1.30925 0.755899i 0.327283 0.944926i \(-0.393867\pi\)
0.981972 + 0.189028i \(0.0605336\pi\)
\(620\) −13.4935 23.3714i −0.541911 0.938617i
\(621\) 0 0
\(622\) −30.6573 17.7000i −1.22925 0.709705i
\(623\) 29.9680 + 51.9061i 1.20064 + 2.07958i
\(624\) 0 0
\(625\) −0.175637 + 0.304212i −0.00702548 + 0.0121685i
\(626\) 26.4859 15.2917i 1.05859 0.611178i
\(627\) 0 0
\(628\) −13.0535 + 22.6094i −0.520893 + 0.902213i
\(629\) 50.4847i 2.01296i
\(630\) 0 0
\(631\) −22.9975 + 13.2776i −0.915516 + 0.528573i −0.882202 0.470872i \(-0.843939\pi\)
−0.0333140 + 0.999445i \(0.510606\pi\)
\(632\) −14.1848 + 8.18962i −0.564242 + 0.325765i
\(633\) 0 0
\(634\) 39.0107 + 67.5685i 1.54931 + 2.68349i
\(635\) −21.1589 + 12.2161i −0.839664 + 0.484780i
\(636\) 0 0
\(637\) −0.0463869 + 24.2431i −0.00183792 + 0.960545i
\(638\) −3.79838 −0.150379
\(639\) 0 0
\(640\) 3.15713 5.46831i 0.124797 0.216154i
\(641\) −8.30243 + 14.3802i −0.327926 + 0.567985i −0.982100 0.188359i \(-0.939683\pi\)
0.654174 + 0.756344i \(0.273016\pi\)
\(642\) 0 0
\(643\) 3.67108i 0.144773i −0.997377 0.0723866i \(-0.976938\pi\)
0.997377 0.0723866i \(-0.0230615\pi\)
\(644\) 6.13806i 0.241873i
\(645\) 0 0
\(646\) −24.2660 + 42.0299i −0.954733 + 1.65365i
\(647\) 3.97129 6.87848i 0.156128 0.270421i −0.777341 0.629079i \(-0.783432\pi\)
0.933469 + 0.358658i \(0.116766\pi\)
\(648\) 0 0
\(649\) 2.78171 0.109192
\(650\) 29.1537 + 0.0557829i 1.14350 + 0.00218799i
\(651\) 0 0
\(652\) 0.515393 0.297562i 0.0201844 0.0116534i
\(653\) −17.9235 31.0443i −0.701399 1.21486i −0.967975 0.251045i \(-0.919226\pi\)
0.266576 0.963814i \(-0.414108\pi\)
\(654\) 0 0
\(655\) 20.1735 11.6472i 0.788243 0.455092i
\(656\) −12.7045 + 7.33494i −0.496027 + 0.286381i
\(657\) 0 0
\(658\) 36.1920i 1.41091i
\(659\) 9.36059 16.2130i 0.364637 0.631570i −0.624081 0.781360i \(-0.714526\pi\)
0.988718 + 0.149790i \(0.0478598\pi\)
\(660\) 0 0
\(661\) −25.3674 + 14.6459i −0.986679 + 0.569659i −0.904280 0.426940i \(-0.859591\pi\)
−0.0823989 + 0.996599i \(0.526258\pi\)
\(662\) −12.2749 + 21.2608i −0.477078 + 0.826323i
\(663\) 0 0
\(664\) −8.91444 15.4403i −0.345947 0.599198i
\(665\) −14.2557 8.23055i −0.552813 0.319167i
\(666\) 0 0
\(667\) −0.529102 0.916431i −0.0204869 0.0354844i
\(668\) −37.6617 + 21.7440i −1.45717 + 0.841300i
\(669\) 0 0
\(670\) 0.278720i 0.0107679i
\(671\) −0.994018 0.573897i −0.0383737 0.0221550i
\(672\) 0 0
\(673\) −9.27930 −0.357691 −0.178845 0.983877i \(-0.557236\pi\)
−0.178845 + 0.983877i \(0.557236\pi\)
\(674\) 36.5307 + 21.0910i 1.40711 + 0.812396i
\(675\) 0 0
\(676\) −30.4114 53.1427i −1.16967 2.04395i
\(677\) 21.0550 + 36.4684i 0.809210 + 1.40159i 0.913412 + 0.407037i \(0.133438\pi\)
−0.104202 + 0.994556i \(0.533229\pi\)
\(678\) 0 0
\(679\) 1.56712 + 2.71433i 0.0601406 + 0.104167i
\(680\) 55.6001 2.13217
\(681\) 0 0
\(682\) −4.57165 2.63944i −0.175057 0.101069i
\(683\) −28.6729 + 16.5543i −1.09714 + 0.633434i −0.935468 0.353411i \(-0.885022\pi\)
−0.161671 + 0.986845i \(0.551688\pi\)
\(684\) 0 0
\(685\) −1.48728 2.57604i −0.0568260 0.0984256i
\(686\) −2.65018 −0.101184
\(687\) 0 0
\(688\) −50.6835 + 87.7864i −1.93229 + 3.34683i
\(689\) 38.1246 + 22.1086i 1.45243 + 0.842272i
\(690\) 0 0
\(691\) 24.4135i 0.928733i −0.885643 0.464366i \(-0.846282\pi\)
0.885643 0.464366i \(-0.153718\pi\)
\(692\) −38.0740 + 65.9462i −1.44736 + 2.50690i
\(693\) 0 0
\(694\) 8.48837i 0.322214i
\(695\) 10.9112 + 6.29957i 0.413884 + 0.238956i
\(696\) 0 0
\(697\) 8.37781 + 4.83693i 0.317332 + 0.183212i
\(698\) 60.4763 2.28906
\(699\) 0 0
\(700\) 54.4647i 2.05857i
\(701\) −14.3928 −0.543607 −0.271803 0.962353i \(-0.587620\pi\)
−0.271803 + 0.962353i \(0.587620\pi\)
\(702\) 0 0
\(703\) 28.3219 1.06818
\(704\) 2.39294i 0.0901874i
\(705\) 0 0
\(706\) 3.83975 0.144511
\(707\) −9.71794 5.61065i −0.365481 0.211010i
\(708\) 0 0
\(709\) 29.2083 + 16.8634i 1.09694 + 0.633320i 0.935416 0.353548i \(-0.115025\pi\)
0.161526 + 0.986868i \(0.448358\pi\)
\(710\) 3.85412i 0.144643i
\(711\) 0 0
\(712\) −56.7854 + 98.3553i −2.12812 + 3.68602i
\(713\) 1.47066i 0.0550768i
\(714\) 0 0
\(715\) −2.08850 + 1.20048i −0.0781057 + 0.0448953i
\(716\) 23.0220 39.8753i 0.860373 1.49021i
\(717\) 0 0
\(718\) −13.0683 −0.487704
\(719\) −17.3402 30.0341i −0.646679 1.12008i −0.983911 0.178659i \(-0.942824\pi\)
0.337232 0.941422i \(-0.390509\pi\)
\(720\) 0 0
\(721\) −17.6276 + 10.1773i −0.656487 + 0.379023i
\(722\) −19.0442 10.9952i −0.708751 0.409197i
\(723\) 0 0
\(724\) −51.6363 −1.91905
\(725\) 4.69487 + 8.13175i 0.174363 + 0.302006i
\(726\) 0 0
\(727\) −2.57894 4.46685i −0.0956474 0.165666i 0.814231 0.580541i \(-0.197159\pi\)
−0.909879 + 0.414875i \(0.863825\pi\)
\(728\) −81.2896 + 46.7254i −3.01279 + 1.73176i
\(729\) 0 0
\(730\) 7.67437 + 4.43080i 0.284041 + 0.163991i
\(731\) 66.8452 2.47236
\(732\) 0 0
\(733\) 15.9989 + 9.23695i 0.590931 + 0.341174i 0.765466 0.643477i \(-0.222509\pi\)
−0.174534 + 0.984651i \(0.555842\pi\)
\(734\) 10.8719i 0.401288i
\(735\) 0 0
\(736\) −2.63874 + 1.52348i −0.0972653 + 0.0561561i
\(737\) −0.0191347 0.0331423i −0.000704837 0.00122081i
\(738\) 0 0
\(739\) 40.0149 + 23.1026i 1.47197 + 0.849844i 0.999504 0.0315024i \(-0.0100292\pi\)
0.472470 + 0.881347i \(0.343363\pi\)
\(740\) −28.1966 48.8379i −1.03653 1.79532i
\(741\) 0 0
\(742\) 58.6477 101.581i 2.15302 3.72915i
\(743\) −21.0503 + 12.1534i −0.772260 + 0.445865i −0.833680 0.552247i \(-0.813770\pi\)
0.0614202 + 0.998112i \(0.480437\pi\)
\(744\) 0 0
\(745\) 3.97275 6.88101i 0.145550 0.252101i
\(746\) 70.5910i 2.58452i
\(747\) 0 0
\(748\) 11.4907 6.63417i 0.420142 0.242569i
\(749\) −17.8978 + 10.3333i −0.653971 + 0.377570i
\(750\) 0 0
\(751\) 15.8328 + 27.4232i 0.577746 + 1.00069i 0.995737 + 0.0922350i \(0.0294011\pi\)
−0.417991 + 0.908451i \(0.637266\pi\)
\(752\) −28.6238 + 16.5259i −1.04380 + 0.602639i
\(753\) 0 0
\(754\) 14.0938 24.3036i 0.513264 0.885084i
\(755\) 19.2076 0.699036
\(756\) 0 0
\(757\) −10.5340 + 18.2454i −0.382863 + 0.663139i −0.991470 0.130333i \(-0.958395\pi\)
0.608607 + 0.793472i \(0.291729\pi\)
\(758\) 5.84955 10.1317i 0.212465 0.368001i
\(759\) 0 0
\(760\) 31.1916i 1.13144i
\(761\) 11.8420i 0.429272i 0.976694 + 0.214636i \(0.0688566\pi\)
−0.976694 + 0.214636i \(0.931143\pi\)
\(762\) 0 0
\(763\) −1.81106 + 3.13686i −0.0655649 + 0.113562i
\(764\) 5.14737 8.91550i 0.186225 0.322552i
\(765\) 0 0
\(766\) 49.9318 1.80411
\(767\) −10.3215 + 17.7986i −0.372686 + 0.642669i
\(768\) 0 0
\(769\) −23.3468 + 13.4793i −0.841906 + 0.486075i −0.857912 0.513797i \(-0.828238\pi\)
0.0160056 + 0.999872i \(0.494905\pi\)
\(770\) 3.20569 + 5.55241i 0.115525 + 0.200095i
\(771\) 0 0
\(772\) −12.4377 + 7.18091i −0.447643 + 0.258447i
\(773\) 30.2027 17.4375i 1.08631 0.627184i 0.153722 0.988114i \(-0.450874\pi\)
0.932593 + 0.360930i \(0.117541\pi\)
\(774\) 0 0
\(775\) 13.0496i 0.468756i
\(776\) −2.96949 + 5.14330i −0.106598 + 0.184634i
\(777\) 0 0
\(778\) −9.94703 + 5.74292i −0.356618 + 0.205894i
\(779\) 2.71351 4.69994i 0.0972216 0.168393i
\(780\) 0 0
\(781\) 0.264594 + 0.458291i 0.00946792 + 0.0163989i
\(782\) 4.56061 + 2.63307i 0.163087 + 0.0941583i
\(783\) 0 0
\(784\) 29.4623 + 51.0302i 1.05223 + 1.82251i
\(785\) −6.57931 + 3.79856i −0.234825 + 0.135577i
\(786\) 0 0
\(787\) 33.3246i 1.18789i −0.804504 0.593947i \(-0.797569\pi\)
0.804504 0.593947i \(-0.202431\pi\)
\(788\) 41.6658 + 24.0558i 1.48428 + 0.856952i
\(789\) 0 0
\(790\) −8.28403 −0.294732
\(791\) −5.32616 3.07506i −0.189376 0.109336i
\(792\) 0 0
\(793\) 7.36030 4.23072i 0.261372 0.150237i
\(794\) 8.67147 + 15.0194i 0.307739 + 0.533019i
\(795\) 0 0
\(796\) 16.1009 + 27.8876i 0.570681 + 0.988449i
\(797\) −38.5783 −1.36651 −0.683257 0.730178i \(-0.739437\pi\)
−0.683257 + 0.730178i \(0.739437\pi\)
\(798\) 0 0
\(799\) 18.8756 + 10.8978i 0.667769 + 0.385537i
\(800\) 23.4143 13.5182i 0.827820 0.477942i
\(801\) 0 0
\(802\) 18.9843 + 32.8818i 0.670359 + 1.16110i
\(803\) 1.21674 0.0429377
\(804\) 0 0
\(805\) −0.893085 + 1.54687i −0.0314771 + 0.0545199i
\(806\) 33.8512 19.4577i 1.19236 0.685369i
\(807\) 0 0
\(808\) 21.2629i 0.748026i
\(809\) −17.9720 + 31.1284i −0.631862 + 1.09442i 0.355309 + 0.934749i \(0.384376\pi\)
−0.987171 + 0.159668i \(0.948958\pi\)
\(810\) 0 0
\(811\) 27.4003i 0.962156i −0.876678 0.481078i \(-0.840245\pi\)
0.876678 0.481078i \(-0.159755\pi\)
\(812\) −45.4540 26.2429i −1.59512 0.920945i
\(813\) 0 0
\(814\) −9.55311 5.51549i −0.334836 0.193318i
\(815\) 0.173181 0.00606625
\(816\) 0 0
\(817\) 37.5001i 1.31196i
\(818\) −38.6277 −1.35059
\(819\) 0 0
\(820\) −10.8060 −0.377363
\(821\) 37.1277i 1.29576i 0.761741 + 0.647882i \(0.224345\pi\)
−0.761741 + 0.647882i \(0.775655\pi\)
\(822\) 0 0
\(823\) −14.0029 −0.488111 −0.244056 0.969761i \(-0.578478\pi\)
−0.244056 + 0.969761i \(0.578478\pi\)
\(824\) −33.4020 19.2847i −1.16361 0.671813i
\(825\) 0 0
\(826\) 47.4232 + 27.3798i 1.65006 + 0.952664i
\(827\) 16.4147i 0.570796i 0.958409 + 0.285398i \(0.0921258\pi\)
−0.958409 + 0.285398i \(0.907874\pi\)
\(828\) 0 0
\(829\) 18.1805 31.4895i 0.631435 1.09368i −0.355824 0.934553i \(-0.615800\pi\)
0.987259 0.159124i \(-0.0508669\pi\)
\(830\) 9.01720i 0.312992i
\(831\) 0 0
\(832\) −15.3110 8.87894i −0.530815 0.307822i
\(833\) 19.4285 33.6512i 0.673159 1.16595i
\(834\) 0 0
\(835\) −12.6549 −0.437942
\(836\) −3.72176 6.44628i −0.128720 0.222949i
\(837\) 0 0
\(838\) 28.5660 16.4926i 0.986796 0.569727i
\(839\) −26.3679 15.2235i −0.910321 0.525574i −0.0297863 0.999556i \(-0.509483\pi\)
−0.880534 + 0.473982i \(0.842816\pi\)
\(840\) 0 0
\(841\) −19.9514 −0.687980
\(842\) 17.7234 + 30.6978i 0.610788 + 1.05792i
\(843\) 0 0
\(844\) −54.3308 94.1037i −1.87014 3.23918i
\(845\) 0.0681844 17.8175i 0.00234561 0.612939i
\(846\) 0 0
\(847\) −34.5284 19.9350i −1.18641 0.684974i
\(848\) 107.119 3.67847
\(849\) 0 0
\(850\) −40.4675 23.3639i −1.38802 0.801376i
\(851\) 3.07316i 0.105347i
\(852\) 0 0
\(853\) −9.06197 + 5.23193i −0.310276 + 0.179138i −0.647050 0.762448i \(-0.723998\pi\)
0.336774 + 0.941586i \(0.390664\pi\)
\(854\) −11.2975 19.5678i −0.386592 0.669596i
\(855\) 0 0
\(856\) −33.9139 19.5802i −1.15915 0.669238i
\(857\) −3.72589 6.45343i −0.127274 0.220445i 0.795346 0.606156i \(-0.207289\pi\)
−0.922620 + 0.385711i \(0.873956\pi\)
\(858\) 0 0
\(859\) −19.7941 + 34.2843i −0.675365 + 1.16977i 0.300997 + 0.953625i \(0.402681\pi\)
−0.976362 + 0.216141i \(0.930653\pi\)
\(860\) −64.6646 + 37.3341i −2.20505 + 1.27308i
\(861\) 0 0
\(862\) −29.6548 + 51.3636i −1.01005 + 1.74945i
\(863\) 39.0451i 1.32911i −0.747240 0.664555i \(-0.768621\pi\)
0.747240 0.664555i \(-0.231379\pi\)
\(864\) 0 0
\(865\) −19.1903 + 11.0795i −0.652488 + 0.376714i
\(866\) 34.1657 19.7256i 1.16100 0.670302i
\(867\) 0 0
\(868\) −36.4717 63.1708i −1.23793 2.14416i
\(869\) −0.985047 + 0.568717i −0.0334154 + 0.0192924i
\(870\) 0 0
\(871\) 0.283057 0.000541604i 0.00959103 1.83516e-5i
\(872\) −6.86345 −0.232426
\(873\) 0 0
\(874\) 1.47715 2.55849i 0.0499653 0.0865424i
\(875\) 20.6181 35.7117i 0.697020 1.20727i
\(876\) 0 0
\(877\) 25.3962i 0.857567i 0.903407 + 0.428784i \(0.141058\pi\)
−0.903407 + 0.428784i \(0.858942\pi\)
\(878\) 70.7722i 2.38844i
\(879\) 0 0
\(880\) −2.92755 + 5.07067i −0.0986878 + 0.170932i
\(881\) −20.1610 + 34.9200i −0.679243 + 1.17648i 0.295966 + 0.955198i \(0.404358\pi\)
−0.975209 + 0.221285i \(0.928975\pi\)
\(882\) 0 0
\(883\) 2.60260 0.0875845 0.0437923 0.999041i \(-0.486056\pi\)
0.0437923 + 0.999041i \(0.486056\pi\)
\(884\) −0.187779 + 98.1383i −0.00631568 + 3.30075i
\(885\) 0 0
\(886\) −1.05005 + 0.606247i −0.0352772 + 0.0203673i
\(887\) 13.8663 + 24.0172i 0.465585 + 0.806418i 0.999228 0.0392926i \(-0.0125105\pi\)
−0.533642 + 0.845710i \(0.679177\pi\)
\(888\) 0 0
\(889\) −57.1906 + 33.0190i −1.91811 + 1.10742i
\(890\) −49.7446 + 28.7200i −1.66744 + 0.962698i
\(891\) 0 0
\(892\) 45.5619i 1.52552i
\(893\) 6.11366 10.5892i 0.204586 0.354353i
\(894\) 0 0
\(895\) 11.6037 6.69938i 0.387868 0.223936i
\(896\) 8.53345 14.7804i 0.285083 0.493777i
\(897\) 0 0
\(898\) −48.8188 84.5566i −1.62910 2.82169i
\(899\) 10.8907 + 6.28773i 0.363224 + 0.209708i
\(900\) 0 0
\(901\) −35.3190 61.1742i −1.17665 2.03801i
\(902\) −1.83056 + 1.05688i −0.0609511 + 0.0351901i
\(903\) 0 0
\(904\) 11.6537i 0.387595i
\(905\) −13.0130 7.51306i −0.432567 0.249742i
\(906\) 0 0
\(907\) −57.1851 −1.89880 −0.949400 0.314068i \(-0.898308\pi\)
−0.949400 + 0.314068i \(0.898308\pi\)
\(908\) 109.264 + 63.0839i 3.62607 + 2.09351i
\(909\) 0 0
\(910\) −47.4212 0.0907362i −1.57200 0.00300788i
\(911\) −19.8268 34.3411i −0.656893 1.13777i −0.981416 0.191894i \(-0.938537\pi\)
0.324523 0.945878i \(-0.394796\pi\)
\(912\) 0 0
\(913\) −0.619051 1.07223i −0.0204876 0.0354856i
\(914\) −80.0275 −2.64707
\(915\) 0 0
\(916\) 26.1668 + 15.1074i 0.864576 + 0.499163i
\(917\) 54.5271 31.4813i 1.80064 1.03960i
\(918\) 0 0
\(919\) −2.93836 5.08939i −0.0969276 0.167884i 0.813484 0.581587i \(-0.197568\pi\)
−0.910411 + 0.413704i \(0.864235\pi\)
\(920\) −3.38455 −0.111585
\(921\) 0 0
\(922\) −51.8186 + 89.7524i −1.70655 + 2.95584i
\(923\) −3.91410 0.00748928i −0.128834 0.000246513i
\(924\) 0 0
\(925\) 27.2690i 0.896601i
\(926\) 18.0088 31.1921i 0.591805 1.02504i
\(927\) 0 0
\(928\) 26.0541i 0.855269i
\(929\) 5.62125 + 3.24543i 0.184427 + 0.106479i 0.589371 0.807862i \(-0.299376\pi\)
−0.404944 + 0.914342i \(0.632709\pi\)
\(930\) 0 0
\(931\) −18.8783 10.8994i −0.618711 0.357213i
\(932\) −103.552 −3.39195
\(933\) 0 0
\(934\) 94.7864i 3.10151i
\(935\) 3.86107 0.126271
\(936\) 0 0
\(937\) −34.5116 −1.12744 −0.563722 0.825964i \(-0.690631\pi\)
−0.563722 + 0.825964i \(0.690631\pi\)
\(938\) 0.753355i 0.0245979i
\(939\) 0 0
\(940\) −24.3464 −0.794093
\(941\) −16.5489 9.55449i −0.539477 0.311467i 0.205390 0.978680i \(-0.434154\pi\)
−0.744867 + 0.667213i \(0.767487\pi\)
\(942\) 0 0
\(943\) −0.509984 0.294439i −0.0166074 0.00958826i
\(944\) 50.0085i 1.62764i
\(945\) 0 0
\(946\) −7.30288 + 12.6490i −0.237437 + 0.411253i
\(947\) 48.1442i 1.56448i −0.622980 0.782238i \(-0.714078\pi\)
0.622980 0.782238i \(-0.285922\pi\)
\(948\) 0 0
\(949\) −4.51467 + 7.78519i −0.146552 + 0.252718i
\(950\) −13.1071 + 22.7022i −0.425252 + 0.736558i
\(951\) 0 0
\(952\) 150.282 4.87068
\(953\) 14.5624 + 25.2228i 0.471721 + 0.817045i 0.999477 0.0323512i \(-0.0102995\pi\)
−0.527755 + 0.849396i \(0.676966\pi\)
\(954\) 0 0
\(955\) 2.59440 1.49788i 0.0839528 0.0484702i
\(956\) 46.4421 + 26.8134i 1.50205 + 0.867206i
\(957\) 0 0
\(958\) 82.3527 2.66070
\(959\) −4.01999 6.96282i −0.129812 0.224841i
\(960\) 0 0
\(961\) −6.76147 11.7112i −0.218112 0.377781i
\(962\) 70.7369 40.6597i 2.28065 1.31092i
\(963\) 0 0
\(964\) 82.2448 + 47.4841i 2.64893 + 1.52936i
\(965\) −4.17927 −0.134536
\(966\) 0 0
\(967\) 36.5969 + 21.1292i 1.17688 + 0.679469i 0.955290 0.295671i \(-0.0955433\pi\)
0.221586 + 0.975141i \(0.428877\pi\)
\(968\) 75.5483i 2.42821i
\(969\) 0 0
\(970\) −2.60130 + 1.50186i −0.0835226 + 0.0482218i
\(971\) 13.7985 + 23.8997i 0.442816 + 0.766979i 0.997897 0.0648168i \(-0.0206463\pi\)
−0.555082 + 0.831796i \(0.687313\pi\)
\(972\) 0 0
\(973\) 29.4919 + 17.0272i 0.945468 + 0.545866i
\(974\) −1.65840 2.87243i −0.0531384 0.0920385i
\(975\) 0 0
\(976\) 10.3173 17.8701i 0.330248 0.572006i
\(977\) 34.5310 19.9365i 1.10475 0.637825i 0.167282 0.985909i \(-0.446501\pi\)
0.937463 + 0.348084i \(0.113168\pi\)
\(978\) 0 0
\(979\) −3.94339 + 6.83015i −0.126031 + 0.218293i
\(980\) 43.4046i 1.38651i
\(981\) 0 0
\(982\) 48.5996 28.0590i 1.55087 0.895398i
\(983\) 7.38449 4.26344i 0.235529 0.135983i −0.377591 0.925972i \(-0.623248\pi\)
0.613120 + 0.789990i \(0.289914\pi\)
\(984\) 0 0
\(985\) 7.00021 + 12.1247i 0.223045 + 0.386326i
\(986\) −38.9972 + 22.5150i −1.24192 + 0.717024i
\(987\) 0 0
\(988\) 55.0555 + 0.105344i 1.75155 + 0.00335143i
\(989\) −4.06908 −0.129389
\(990\) 0 0
\(991\) 26.2767 45.5127i 0.834708 1.44576i −0.0595594 0.998225i \(-0.518970\pi\)
0.894268 0.447532i \(-0.147697\pi\)
\(992\) 18.1047 31.3582i 0.574824 0.995624i
\(993\) 0 0
\(994\) 10.4174i 0.330419i
\(995\) 9.37068i 0.297071i
\(996\) 0 0
\(997\) 2.25570 3.90698i 0.0714387 0.123735i −0.828093 0.560590i \(-0.810574\pi\)
0.899532 + 0.436855i \(0.143908\pi\)
\(998\) 12.3853 21.4519i 0.392049 0.679049i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.l.b.199.11 22
3.2 odd 2 117.2.l.b.4.1 22
9.2 odd 6 117.2.r.b.43.1 yes 22
9.7 even 3 351.2.r.b.316.11 22
13.10 even 6 351.2.r.b.10.11 22
39.23 odd 6 117.2.r.b.49.1 yes 22
117.88 even 6 inner 351.2.l.b.127.1 22
117.101 odd 6 117.2.l.b.88.11 yes 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.l.b.4.1 22 3.2 odd 2
117.2.l.b.88.11 yes 22 117.101 odd 6
117.2.r.b.43.1 yes 22 9.2 odd 6
117.2.r.b.49.1 yes 22 39.23 odd 6
351.2.l.b.127.1 22 117.88 even 6 inner
351.2.l.b.199.11 22 1.1 even 1 trivial
351.2.r.b.10.11 22 13.10 even 6
351.2.r.b.316.11 22 9.7 even 3