Properties

Label 351.2.l.b.199.3
Level $351$
Weight $2$
Character 351.199
Analytic conductor $2.803$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [351,2,Mod(127,351)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(351, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("351.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.l (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.3
Character \(\chi\) \(=\) 351.199
Dual form 351.2.l.b.127.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.93463i q^{2} -1.74278 q^{4} +(2.26677 + 1.30872i) q^{5} +(2.01692 + 1.16447i) q^{7} -0.497616i q^{8} +(2.53189 - 4.38536i) q^{10} +5.38716i q^{11} +(3.56568 - 0.534742i) q^{13} +(2.25282 - 3.90199i) q^{14} -4.44827 q^{16} +(-0.835786 - 1.44762i) q^{17} +(1.90355 - 1.09901i) q^{19} +(-3.95050 - 2.28082i) q^{20} +10.4221 q^{22} +(-2.10438 - 3.64489i) q^{23} +(0.925505 + 1.60302i) q^{25} +(-1.03453 - 6.89826i) q^{26} +(-3.51506 - 2.02942i) q^{28} -5.72509 q^{29} +(-7.55059 - 4.35934i) q^{31} +7.61052i q^{32} +(-2.80061 + 1.61693i) q^{34} +(3.04794 + 5.27918i) q^{35} +(-1.22479 - 0.707130i) q^{37} +(-2.12618 - 3.68265i) q^{38} +(0.651240 - 1.12798i) q^{40} +(1.31938 - 0.761744i) q^{41} +(-0.938835 + 1.62611i) q^{43} -9.38866i q^{44} +(-7.05150 + 4.07119i) q^{46} +(-4.47809 + 2.58543i) q^{47} +(-0.788015 - 1.36488i) q^{49} +(3.10125 - 1.79051i) q^{50} +(-6.21421 + 0.931939i) q^{52} +9.81151 q^{53} +(-7.05029 + 12.2115i) q^{55} +(0.579459 - 1.00365i) q^{56} +11.0759i q^{58} +7.61266i q^{59} +(0.467085 - 0.809015i) q^{61} +(-8.43369 + 14.6076i) q^{62} +5.82698 q^{64} +(8.78241 + 3.45434i) q^{65} +(-1.79128 + 1.03420i) q^{67} +(1.45659 + 2.52290i) q^{68} +(10.2133 - 5.89662i) q^{70} +(10.9702 - 6.33363i) q^{71} -12.6627i q^{73} +(-1.36803 + 2.36950i) q^{74} +(-3.31747 + 1.91534i) q^{76} +(-6.27319 + 10.8655i) q^{77} +(3.46731 + 6.00556i) q^{79} +(-10.0832 - 5.82155i) q^{80} +(-1.47369 - 2.55251i) q^{82} +(7.95495 - 4.59279i) q^{83} -4.37524i q^{85} +(3.14592 + 1.81630i) q^{86} +2.68073 q^{88} +(-8.62292 - 4.97845i) q^{89} +(7.81439 + 3.07359i) q^{91} +(3.66748 + 6.35226i) q^{92} +(5.00184 + 8.66343i) q^{94} +5.75321 q^{95} +(2.03695 + 1.17603i) q^{97} +(-2.64054 + 1.52452i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 20 q^{4} + 3 q^{5} - 6 q^{7} - 7 q^{10} + 9 q^{14} + 24 q^{16} - 9 q^{17} - 6 q^{19} + 24 q^{20} + 26 q^{22} - 6 q^{23} + 4 q^{25} + 12 q^{26} + 3 q^{28} - 48 q^{29} - 27 q^{31} + 15 q^{34} + 27 q^{35}+ \cdots - 117 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.93463i 1.36799i −0.729487 0.683994i \(-0.760241\pi\)
0.729487 0.683994i \(-0.239759\pi\)
\(3\) 0 0
\(4\) −1.74278 −0.871392
\(5\) 2.26677 + 1.30872i 1.01373 + 0.585278i 0.912282 0.409563i \(-0.134319\pi\)
0.101449 + 0.994841i \(0.467652\pi\)
\(6\) 0 0
\(7\) 2.01692 + 1.16447i 0.762325 + 0.440129i 0.830130 0.557570i \(-0.188266\pi\)
−0.0678048 + 0.997699i \(0.521600\pi\)
\(8\) 0.497616i 0.175934i
\(9\) 0 0
\(10\) 2.53189 4.38536i 0.800654 1.38677i
\(11\) 5.38716i 1.62429i 0.583456 + 0.812145i \(0.301700\pi\)
−0.583456 + 0.812145i \(0.698300\pi\)
\(12\) 0 0
\(13\) 3.56568 0.534742i 0.988941 0.148311i
\(14\) 2.25282 3.90199i 0.602091 1.04285i
\(15\) 0 0
\(16\) −4.44827 −1.11207
\(17\) −0.835786 1.44762i −0.202708 0.351100i 0.746692 0.665170i \(-0.231641\pi\)
−0.949400 + 0.314069i \(0.898308\pi\)
\(18\) 0 0
\(19\) 1.90355 1.09901i 0.436703 0.252131i −0.265495 0.964112i \(-0.585535\pi\)
0.702198 + 0.711982i \(0.252202\pi\)
\(20\) −3.95050 2.28082i −0.883358 0.510007i
\(21\) 0 0
\(22\) 10.4221 2.22201
\(23\) −2.10438 3.64489i −0.438793 0.760012i 0.558804 0.829300i \(-0.311261\pi\)
−0.997597 + 0.0692882i \(0.977927\pi\)
\(24\) 0 0
\(25\) 0.925505 + 1.60302i 0.185101 + 0.320604i
\(26\) −1.03453 6.89826i −0.202887 1.35286i
\(27\) 0 0
\(28\) −3.51506 2.02942i −0.664284 0.383525i
\(29\) −5.72509 −1.06312 −0.531561 0.847020i \(-0.678394\pi\)
−0.531561 + 0.847020i \(0.678394\pi\)
\(30\) 0 0
\(31\) −7.55059 4.35934i −1.35613 0.782960i −0.367027 0.930210i \(-0.619624\pi\)
−0.989099 + 0.147251i \(0.952958\pi\)
\(32\) 7.61052i 1.34536i
\(33\) 0 0
\(34\) −2.80061 + 1.61693i −0.480301 + 0.277302i
\(35\) 3.04794 + 5.27918i 0.515195 + 0.892344i
\(36\) 0 0
\(37\) −1.22479 0.707130i −0.201354 0.116252i 0.395933 0.918279i \(-0.370421\pi\)
−0.597287 + 0.802028i \(0.703755\pi\)
\(38\) −2.12618 3.68265i −0.344912 0.597405i
\(39\) 0 0
\(40\) 0.651240 1.12798i 0.102970 0.178350i
\(41\) 1.31938 0.761744i 0.206052 0.118964i −0.393423 0.919358i \(-0.628709\pi\)
0.599475 + 0.800393i \(0.295376\pi\)
\(42\) 0 0
\(43\) −0.938835 + 1.62611i −0.143171 + 0.247979i −0.928689 0.370859i \(-0.879063\pi\)
0.785518 + 0.618839i \(0.212397\pi\)
\(44\) 9.38866i 1.41539i
\(45\) 0 0
\(46\) −7.05150 + 4.07119i −1.03969 + 0.600264i
\(47\) −4.47809 + 2.58543i −0.653196 + 0.377123i −0.789680 0.613519i \(-0.789753\pi\)
0.136483 + 0.990642i \(0.456420\pi\)
\(48\) 0 0
\(49\) −0.788015 1.36488i −0.112574 0.194983i
\(50\) 3.10125 1.79051i 0.438583 0.253216i
\(51\) 0 0
\(52\) −6.21421 + 0.931939i −0.861756 + 0.129237i
\(53\) 9.81151 1.34771 0.673857 0.738862i \(-0.264636\pi\)
0.673857 + 0.738862i \(0.264636\pi\)
\(54\) 0 0
\(55\) −7.05029 + 12.2115i −0.950661 + 1.64659i
\(56\) 0.579459 1.00365i 0.0774335 0.134119i
\(57\) 0 0
\(58\) 11.0759i 1.45434i
\(59\) 7.61266i 0.991084i 0.868584 + 0.495542i \(0.165031\pi\)
−0.868584 + 0.495542i \(0.834969\pi\)
\(60\) 0 0
\(61\) 0.467085 0.809015i 0.0598041 0.103584i −0.834573 0.550897i \(-0.814286\pi\)
0.894377 + 0.447313i \(0.147619\pi\)
\(62\) −8.43369 + 14.6076i −1.07108 + 1.85516i
\(63\) 0 0
\(64\) 5.82698 0.728372
\(65\) 8.78241 + 3.45434i 1.08932 + 0.428458i
\(66\) 0 0
\(67\) −1.79128 + 1.03420i −0.218840 + 0.126347i −0.605413 0.795912i \(-0.706992\pi\)
0.386573 + 0.922259i \(0.373659\pi\)
\(68\) 1.45659 + 2.52290i 0.176638 + 0.305946i
\(69\) 0 0
\(70\) 10.2133 5.89662i 1.22072 0.704781i
\(71\) 10.9702 6.33363i 1.30192 0.751664i 0.321187 0.947016i \(-0.395918\pi\)
0.980733 + 0.195352i \(0.0625849\pi\)
\(72\) 0 0
\(73\) 12.6627i 1.48206i −0.671473 0.741029i \(-0.734338\pi\)
0.671473 0.741029i \(-0.265662\pi\)
\(74\) −1.36803 + 2.36950i −0.159031 + 0.275449i
\(75\) 0 0
\(76\) −3.31747 + 1.91534i −0.380540 + 0.219705i
\(77\) −6.27319 + 10.8655i −0.714896 + 1.23824i
\(78\) 0 0
\(79\) 3.46731 + 6.00556i 0.390103 + 0.675678i 0.992463 0.122547i \(-0.0391061\pi\)
−0.602360 + 0.798225i \(0.705773\pi\)
\(80\) −10.0832 5.82155i −1.12734 0.650869i
\(81\) 0 0
\(82\) −1.47369 2.55251i −0.162742 0.281877i
\(83\) 7.95495 4.59279i 0.873169 0.504124i 0.00476882 0.999989i \(-0.498482\pi\)
0.868400 + 0.495864i \(0.165149\pi\)
\(84\) 0 0
\(85\) 4.37524i 0.474562i
\(86\) 3.14592 + 1.81630i 0.339233 + 0.195856i
\(87\) 0 0
\(88\) 2.68073 0.285767
\(89\) −8.62292 4.97845i −0.914028 0.527714i −0.0323029 0.999478i \(-0.510284\pi\)
−0.881725 + 0.471764i \(0.843617\pi\)
\(90\) 0 0
\(91\) 7.81439 + 3.07359i 0.819170 + 0.322200i
\(92\) 3.66748 + 6.35226i 0.382361 + 0.662268i
\(93\) 0 0
\(94\) 5.00184 + 8.66343i 0.515900 + 0.893565i
\(95\) 5.75321 0.590266
\(96\) 0 0
\(97\) 2.03695 + 1.17603i 0.206821 + 0.119408i 0.599833 0.800125i \(-0.295234\pi\)
−0.393012 + 0.919533i \(0.628567\pi\)
\(98\) −2.64054 + 1.52452i −0.266735 + 0.153999i
\(99\) 0 0
\(100\) −1.61296 2.79372i −0.161296 0.279372i
\(101\) −12.2572 −1.21964 −0.609820 0.792540i \(-0.708758\pi\)
−0.609820 + 0.792540i \(0.708758\pi\)
\(102\) 0 0
\(103\) −5.10150 + 8.83607i −0.502666 + 0.870643i 0.497329 + 0.867562i \(0.334314\pi\)
−0.999995 + 0.00308139i \(0.999019\pi\)
\(104\) −0.266096 1.77434i −0.0260928 0.173988i
\(105\) 0 0
\(106\) 18.9816i 1.84366i
\(107\) −2.96835 + 5.14133i −0.286961 + 0.497032i −0.973083 0.230455i \(-0.925978\pi\)
0.686122 + 0.727487i \(0.259312\pi\)
\(108\) 0 0
\(109\) 12.1858i 1.16719i 0.812046 + 0.583594i \(0.198354\pi\)
−0.812046 + 0.583594i \(0.801646\pi\)
\(110\) 23.6246 + 13.6397i 2.25252 + 1.30049i
\(111\) 0 0
\(112\) −8.97182 5.17988i −0.847757 0.489453i
\(113\) 0.874510 0.0822670 0.0411335 0.999154i \(-0.486903\pi\)
0.0411335 + 0.999154i \(0.486903\pi\)
\(114\) 0 0
\(115\) 11.0162i 1.02726i
\(116\) 9.97759 0.926396
\(117\) 0 0
\(118\) 14.7277 1.35579
\(119\) 3.89299i 0.356870i
\(120\) 0 0
\(121\) −18.0215 −1.63832
\(122\) −1.56514 0.903635i −0.141701 0.0818113i
\(123\) 0 0
\(124\) 13.1591 + 7.59738i 1.18172 + 0.682265i
\(125\) 8.24230i 0.737214i
\(126\) 0 0
\(127\) −8.46736 + 14.6659i −0.751357 + 1.30139i 0.195808 + 0.980642i \(0.437267\pi\)
−0.947165 + 0.320746i \(0.896066\pi\)
\(128\) 3.94800i 0.348957i
\(129\) 0 0
\(130\) 6.68286 16.9907i 0.586126 1.49018i
\(131\) −6.88997 + 11.9338i −0.601980 + 1.04266i 0.390541 + 0.920585i \(0.372288\pi\)
−0.992521 + 0.122074i \(0.961045\pi\)
\(132\) 0 0
\(133\) 5.11907 0.443880
\(134\) 2.00078 + 3.46546i 0.172841 + 0.299370i
\(135\) 0 0
\(136\) −0.720360 + 0.415900i −0.0617704 + 0.0356631i
\(137\) −5.88782 3.39934i −0.503031 0.290425i 0.226933 0.973910i \(-0.427130\pi\)
−0.729964 + 0.683485i \(0.760463\pi\)
\(138\) 0 0
\(139\) 9.37249 0.794965 0.397482 0.917610i \(-0.369884\pi\)
0.397482 + 0.917610i \(0.369884\pi\)
\(140\) −5.31190 9.20048i −0.448937 0.777582i
\(141\) 0 0
\(142\) −12.2532 21.2232i −1.02827 1.78101i
\(143\) 2.88074 + 19.2089i 0.240899 + 1.60633i
\(144\) 0 0
\(145\) −12.9775 7.49254i −1.07772 0.622222i
\(146\) −24.4976 −2.02744
\(147\) 0 0
\(148\) 2.13454 + 1.23238i 0.175458 + 0.101301i
\(149\) 15.1119i 1.23802i −0.785384 0.619009i \(-0.787534\pi\)
0.785384 0.619009i \(-0.212466\pi\)
\(150\) 0 0
\(151\) −16.8896 + 9.75122i −1.37446 + 0.793543i −0.991486 0.130217i \(-0.958433\pi\)
−0.382972 + 0.923760i \(0.625099\pi\)
\(152\) −0.546886 0.947234i −0.0443583 0.0768308i
\(153\) 0 0
\(154\) 21.0207 + 12.1363i 1.69389 + 0.977970i
\(155\) −11.4103 19.7632i −0.916498 1.58742i
\(156\) 0 0
\(157\) −1.95414 + 3.38466i −0.155957 + 0.270125i −0.933407 0.358819i \(-0.883179\pi\)
0.777450 + 0.628945i \(0.216513\pi\)
\(158\) 11.6185 6.70796i 0.924320 0.533656i
\(159\) 0 0
\(160\) −9.96005 + 17.2513i −0.787411 + 1.36384i
\(161\) 9.80194i 0.772501i
\(162\) 0 0
\(163\) −6.22413 + 3.59350i −0.487511 + 0.281465i −0.723541 0.690281i \(-0.757487\pi\)
0.236030 + 0.971746i \(0.424154\pi\)
\(164\) −2.29939 + 1.32756i −0.179552 + 0.103665i
\(165\) 0 0
\(166\) −8.88534 15.3899i −0.689636 1.19448i
\(167\) 5.19037 2.99666i 0.401643 0.231889i −0.285550 0.958364i \(-0.592176\pi\)
0.687193 + 0.726475i \(0.258843\pi\)
\(168\) 0 0
\(169\) 12.4281 3.81343i 0.956008 0.293341i
\(170\) −8.46447 −0.649195
\(171\) 0 0
\(172\) 1.63619 2.83396i 0.124758 0.216087i
\(173\) −1.09116 + 1.88994i −0.0829591 + 0.143689i −0.904520 0.426432i \(-0.859770\pi\)
0.821561 + 0.570121i \(0.193104\pi\)
\(174\) 0 0
\(175\) 4.31089i 0.325873i
\(176\) 23.9635i 1.80632i
\(177\) 0 0
\(178\) −9.63144 + 16.6821i −0.721907 + 1.25038i
\(179\) 1.46465 2.53684i 0.109473 0.189612i −0.806084 0.591801i \(-0.798417\pi\)
0.915557 + 0.402189i \(0.131750\pi\)
\(180\) 0 0
\(181\) 23.2244 1.72625 0.863127 0.504986i \(-0.168502\pi\)
0.863127 + 0.504986i \(0.168502\pi\)
\(182\) 5.94626 15.1179i 0.440766 1.12062i
\(183\) 0 0
\(184\) −1.81375 + 1.04717i −0.133712 + 0.0771985i
\(185\) −1.85087 3.20581i −0.136079 0.235696i
\(186\) 0 0
\(187\) 7.79858 4.50251i 0.570289 0.329256i
\(188\) 7.80434 4.50584i 0.569190 0.328622i
\(189\) 0 0
\(190\) 11.1303i 0.807478i
\(191\) 4.81042 8.33189i 0.348070 0.602874i −0.637837 0.770171i \(-0.720171\pi\)
0.985906 + 0.167297i \(0.0535040\pi\)
\(192\) 0 0
\(193\) 17.4030 10.0476i 1.25270 0.723245i 0.281052 0.959692i \(-0.409317\pi\)
0.971644 + 0.236448i \(0.0759832\pi\)
\(194\) 2.27519 3.94074i 0.163349 0.282929i
\(195\) 0 0
\(196\) 1.37334 + 2.37870i 0.0980958 + 0.169907i
\(197\) −10.3727 5.98869i −0.739025 0.426676i 0.0826895 0.996575i \(-0.473649\pi\)
−0.821715 + 0.569899i \(0.806982\pi\)
\(198\) 0 0
\(199\) −8.85181 15.3318i −0.627488 1.08684i −0.988054 0.154108i \(-0.950750\pi\)
0.360566 0.932734i \(-0.382584\pi\)
\(200\) 0.797688 0.460546i 0.0564051 0.0325655i
\(201\) 0 0
\(202\) 23.7132i 1.66845i
\(203\) −11.5471 6.66670i −0.810444 0.467910i
\(204\) 0 0
\(205\) 3.98764 0.278509
\(206\) 17.0945 + 9.86951i 1.19103 + 0.687642i
\(207\) 0 0
\(208\) −15.8611 + 2.37867i −1.09977 + 0.164931i
\(209\) 5.92055 + 10.2547i 0.409533 + 0.709333i
\(210\) 0 0
\(211\) −11.0954 19.2178i −0.763840 1.32301i −0.940857 0.338803i \(-0.889978\pi\)
0.177017 0.984208i \(-0.443355\pi\)
\(212\) −17.0993 −1.17439
\(213\) 0 0
\(214\) 9.94657 + 5.74265i 0.679933 + 0.392560i
\(215\) −4.25625 + 2.45735i −0.290274 + 0.167590i
\(216\) 0 0
\(217\) −10.1526 17.5849i −0.689206 1.19374i
\(218\) 23.5750 1.59670
\(219\) 0 0
\(220\) 12.2871 21.2820i 0.828399 1.43483i
\(221\) −3.75425 4.71483i −0.252538 0.317154i
\(222\) 0 0
\(223\) 4.33152i 0.290060i 0.989427 + 0.145030i \(0.0463279\pi\)
−0.989427 + 0.145030i \(0.953672\pi\)
\(224\) −8.86223 + 15.3498i −0.592132 + 1.02560i
\(225\) 0 0
\(226\) 1.69185i 0.112540i
\(227\) 2.56338 + 1.47997i 0.170137 + 0.0982289i 0.582651 0.812723i \(-0.302016\pi\)
−0.412513 + 0.910952i \(0.635349\pi\)
\(228\) 0 0
\(229\) 9.82313 + 5.67139i 0.649131 + 0.374776i 0.788123 0.615518i \(-0.211053\pi\)
−0.138992 + 0.990293i \(0.544386\pi\)
\(230\) −21.3122 −1.40528
\(231\) 0 0
\(232\) 2.84889i 0.187039i
\(233\) −2.31530 −0.151680 −0.0758401 0.997120i \(-0.524164\pi\)
−0.0758401 + 0.997120i \(0.524164\pi\)
\(234\) 0 0
\(235\) −13.5344 −0.882887
\(236\) 13.2672i 0.863623i
\(237\) 0 0
\(238\) −7.53149 −0.488194
\(239\) 17.6746 + 10.2044i 1.14327 + 0.660069i 0.947239 0.320528i \(-0.103860\pi\)
0.196034 + 0.980597i \(0.437194\pi\)
\(240\) 0 0
\(241\) −7.56925 4.37011i −0.487578 0.281503i 0.235991 0.971755i \(-0.424166\pi\)
−0.723569 + 0.690252i \(0.757500\pi\)
\(242\) 34.8649i 2.24120i
\(243\) 0 0
\(244\) −0.814028 + 1.40994i −0.0521128 + 0.0902621i
\(245\) 4.12517i 0.263547i
\(246\) 0 0
\(247\) 6.19974 4.93663i 0.394480 0.314110i
\(248\) −2.16927 + 3.75729i −0.137749 + 0.238588i
\(249\) 0 0
\(250\) −15.9458 −1.00850
\(251\) 9.27060 + 16.0571i 0.585155 + 1.01352i 0.994856 + 0.101298i \(0.0322996\pi\)
−0.409701 + 0.912220i \(0.634367\pi\)
\(252\) 0 0
\(253\) 19.6356 11.3366i 1.23448 0.712727i
\(254\) 28.3731 + 16.3812i 1.78028 + 1.02785i
\(255\) 0 0
\(256\) 19.2919 1.20574
\(257\) 7.18835 + 12.4506i 0.448397 + 0.776647i 0.998282 0.0585939i \(-0.0186617\pi\)
−0.549885 + 0.835241i \(0.685328\pi\)
\(258\) 0 0
\(259\) −1.64687 2.85245i −0.102331 0.177243i
\(260\) −15.3058 6.02017i −0.949228 0.373355i
\(261\) 0 0
\(262\) 23.0874 + 13.3295i 1.42635 + 0.823501i
\(263\) −5.60712 −0.345750 −0.172875 0.984944i \(-0.555306\pi\)
−0.172875 + 0.984944i \(0.555306\pi\)
\(264\) 0 0
\(265\) 22.2405 + 12.8405i 1.36622 + 0.788788i
\(266\) 9.90350i 0.607222i
\(267\) 0 0
\(268\) 3.12181 1.80238i 0.190695 0.110098i
\(269\) 1.16337 + 2.01502i 0.0709319 + 0.122858i 0.899310 0.437312i \(-0.144069\pi\)
−0.828378 + 0.560169i \(0.810736\pi\)
\(270\) 0 0
\(271\) 1.59856 + 0.922926i 0.0971053 + 0.0560638i 0.547766 0.836631i \(-0.315478\pi\)
−0.450661 + 0.892695i \(0.648812\pi\)
\(272\) 3.71780 + 6.43942i 0.225425 + 0.390447i
\(273\) 0 0
\(274\) −6.57645 + 11.3907i −0.397298 + 0.688140i
\(275\) −8.63573 + 4.98584i −0.520754 + 0.300658i
\(276\) 0 0
\(277\) 0.267853 0.463934i 0.0160937 0.0278751i −0.857866 0.513873i \(-0.828210\pi\)
0.873960 + 0.485998i \(0.161544\pi\)
\(278\) 18.1323i 1.08750i
\(279\) 0 0
\(280\) 2.62700 1.51670i 0.156993 0.0906402i
\(281\) 18.0707 10.4331i 1.07801 0.622387i 0.147648 0.989040i \(-0.452830\pi\)
0.930358 + 0.366653i \(0.119496\pi\)
\(282\) 0 0
\(283\) 4.36529 + 7.56090i 0.259489 + 0.449449i 0.966105 0.258149i \(-0.0831124\pi\)
−0.706616 + 0.707597i \(0.749779\pi\)
\(284\) −19.1187 + 11.0382i −1.13448 + 0.654994i
\(285\) 0 0
\(286\) 37.1620 5.57316i 2.19744 0.329548i
\(287\) 3.54811 0.209439
\(288\) 0 0
\(289\) 7.10292 12.3026i 0.417819 0.723684i
\(290\) −14.4953 + 25.1066i −0.851192 + 1.47431i
\(291\) 0 0
\(292\) 22.0684i 1.29145i
\(293\) 3.04751i 0.178038i 0.996030 + 0.0890188i \(0.0283731\pi\)
−0.996030 + 0.0890188i \(0.971627\pi\)
\(294\) 0 0
\(295\) −9.96286 + 17.2562i −0.580060 + 1.00469i
\(296\) −0.351879 + 0.609473i −0.0204526 + 0.0354249i
\(297\) 0 0
\(298\) −29.2360 −1.69359
\(299\) −9.45260 11.8712i −0.546658 0.686529i
\(300\) 0 0
\(301\) −3.78711 + 2.18649i −0.218286 + 0.126027i
\(302\) 18.8650 + 32.6751i 1.08556 + 1.88024i
\(303\) 0 0
\(304\) −8.46748 + 4.88870i −0.485644 + 0.280386i
\(305\) 2.11755 1.22257i 0.121251 0.0700040i
\(306\) 0 0
\(307\) 22.0214i 1.25683i 0.777880 + 0.628413i \(0.216295\pi\)
−0.777880 + 0.628413i \(0.783705\pi\)
\(308\) 10.9328 18.9362i 0.622955 1.07899i
\(309\) 0 0
\(310\) −38.2345 + 22.0747i −2.17157 + 1.25376i
\(311\) −3.39883 + 5.88694i −0.192730 + 0.333818i −0.946154 0.323717i \(-0.895067\pi\)
0.753424 + 0.657535i \(0.228401\pi\)
\(312\) 0 0
\(313\) 3.05617 + 5.29344i 0.172745 + 0.299203i 0.939379 0.342882i \(-0.111403\pi\)
−0.766634 + 0.642085i \(0.778070\pi\)
\(314\) 6.54806 + 3.78052i 0.369528 + 0.213347i
\(315\) 0 0
\(316\) −6.04278 10.4664i −0.339933 0.588781i
\(317\) −15.0342 + 8.67999i −0.844404 + 0.487517i −0.858759 0.512380i \(-0.828764\pi\)
0.0143546 + 0.999897i \(0.495431\pi\)
\(318\) 0 0
\(319\) 30.8420i 1.72682i
\(320\) 13.2084 + 7.62589i 0.738374 + 0.426300i
\(321\) 0 0
\(322\) −18.9631 −1.05677
\(323\) −3.18191 1.83708i −0.177046 0.102218i
\(324\) 0 0
\(325\) 4.15725 + 5.22095i 0.230603 + 0.289606i
\(326\) 6.95209 + 12.0414i 0.385041 + 0.666910i
\(327\) 0 0
\(328\) −0.379056 0.656544i −0.0209298 0.0362516i
\(329\) −12.0426 −0.663931
\(330\) 0 0
\(331\) −16.5137 9.53421i −0.907677 0.524048i −0.0279940 0.999608i \(-0.508912\pi\)
−0.879683 + 0.475561i \(0.842245\pi\)
\(332\) −13.8638 + 8.00425i −0.760873 + 0.439290i
\(333\) 0 0
\(334\) −5.79743 10.0414i −0.317221 0.549443i
\(335\) −5.41390 −0.295793
\(336\) 0 0
\(337\) −12.0678 + 20.9020i −0.657372 + 1.13860i 0.323921 + 0.946084i \(0.394999\pi\)
−0.981293 + 0.192518i \(0.938335\pi\)
\(338\) −7.37757 24.0438i −0.401287 1.30781i
\(339\) 0 0
\(340\) 7.62511i 0.413530i
\(341\) 23.4844 40.6762i 1.27175 2.20274i
\(342\) 0 0
\(343\) 19.9731i 1.07844i
\(344\) 0.809178 + 0.467179i 0.0436279 + 0.0251886i
\(345\) 0 0
\(346\) 3.65633 + 2.11098i 0.196565 + 0.113487i
\(347\) −1.02919 −0.0552500 −0.0276250 0.999618i \(-0.508794\pi\)
−0.0276250 + 0.999618i \(0.508794\pi\)
\(348\) 0 0
\(349\) 28.3410i 1.51706i −0.651637 0.758531i \(-0.725918\pi\)
0.651637 0.758531i \(-0.274082\pi\)
\(350\) 8.33997 0.445790
\(351\) 0 0
\(352\) −40.9991 −2.18526
\(353\) 7.71417i 0.410584i 0.978701 + 0.205292i \(0.0658144\pi\)
−0.978701 + 0.205292i \(0.934186\pi\)
\(354\) 0 0
\(355\) 33.1559 1.75973
\(356\) 15.0279 + 8.67636i 0.796477 + 0.459846i
\(357\) 0 0
\(358\) −4.90784 2.83354i −0.259388 0.149757i
\(359\) 6.01669i 0.317549i −0.987315 0.158774i \(-0.949246\pi\)
0.987315 0.158774i \(-0.0507543\pi\)
\(360\) 0 0
\(361\) −7.08434 + 12.2704i −0.372860 + 0.645813i
\(362\) 44.9305i 2.36150i
\(363\) 0 0
\(364\) −13.6188 5.35661i −0.713819 0.280763i
\(365\) 16.5720 28.7035i 0.867416 1.50241i
\(366\) 0 0
\(367\) 24.3910 1.27320 0.636600 0.771194i \(-0.280340\pi\)
0.636600 + 0.771194i \(0.280340\pi\)
\(368\) 9.36084 + 16.2134i 0.487967 + 0.845184i
\(369\) 0 0
\(370\) −6.20204 + 3.58075i −0.322429 + 0.186154i
\(371\) 19.7891 + 11.4252i 1.02740 + 0.593168i
\(372\) 0 0
\(373\) 5.37633 0.278376 0.139188 0.990266i \(-0.455551\pi\)
0.139188 + 0.990266i \(0.455551\pi\)
\(374\) −8.71068 15.0873i −0.450419 0.780148i
\(375\) 0 0
\(376\) 1.28655 + 2.22837i 0.0663487 + 0.114919i
\(377\) −20.4138 + 3.06144i −1.05136 + 0.157672i
\(378\) 0 0
\(379\) 19.7362 + 11.3947i 1.01378 + 0.585305i 0.912296 0.409532i \(-0.134308\pi\)
0.101482 + 0.994837i \(0.467641\pi\)
\(380\) −10.0266 −0.514354
\(381\) 0 0
\(382\) −16.1191 9.30637i −0.824725 0.476155i
\(383\) 24.8883i 1.27173i 0.771799 + 0.635866i \(0.219357\pi\)
−0.771799 + 0.635866i \(0.780643\pi\)
\(384\) 0 0
\(385\) −28.4398 + 16.4197i −1.44943 + 0.836826i
\(386\) −19.4384 33.6684i −0.989390 1.71367i
\(387\) 0 0
\(388\) −3.54996 2.04957i −0.180222 0.104051i
\(389\) 7.53659 + 13.0537i 0.382120 + 0.661851i 0.991365 0.131131i \(-0.0418607\pi\)
−0.609245 + 0.792982i \(0.708527\pi\)
\(390\) 0 0
\(391\) −3.51762 + 6.09269i −0.177894 + 0.308121i
\(392\) −0.679187 + 0.392129i −0.0343041 + 0.0198055i
\(393\) 0 0
\(394\) −11.5859 + 20.0673i −0.583688 + 1.01098i
\(395\) 18.1510i 0.913275i
\(396\) 0 0
\(397\) −2.33549 + 1.34840i −0.117215 + 0.0676741i −0.557461 0.830203i \(-0.688224\pi\)
0.440246 + 0.897877i \(0.354891\pi\)
\(398\) −29.6613 + 17.1250i −1.48679 + 0.858397i
\(399\) 0 0
\(400\) −4.11690 7.13067i −0.205845 0.356534i
\(401\) −1.05376 + 0.608391i −0.0526225 + 0.0303816i −0.526080 0.850435i \(-0.676339\pi\)
0.473458 + 0.880816i \(0.343006\pi\)
\(402\) 0 0
\(403\) −29.2541 11.5064i −1.45725 0.573173i
\(404\) 21.3617 1.06279
\(405\) 0 0
\(406\) −12.8976 + 22.3393i −0.640096 + 1.10868i
\(407\) 3.80942 6.59812i 0.188826 0.327056i
\(408\) 0 0
\(409\) 34.4077i 1.70135i 0.525693 + 0.850675i \(0.323806\pi\)
−0.525693 + 0.850675i \(0.676194\pi\)
\(410\) 7.71460i 0.380997i
\(411\) 0 0
\(412\) 8.89082 15.3994i 0.438019 0.758672i
\(413\) −8.86472 + 15.3542i −0.436205 + 0.755528i
\(414\) 0 0
\(415\) 24.0427 1.18021
\(416\) 4.06966 + 27.1366i 0.199531 + 1.33048i
\(417\) 0 0
\(418\) 19.8390 11.4541i 0.970359 0.560237i
\(419\) −10.8961 18.8726i −0.532310 0.921988i −0.999288 0.0377193i \(-0.987991\pi\)
0.466978 0.884269i \(-0.345343\pi\)
\(420\) 0 0
\(421\) 22.4288 12.9493i 1.09311 0.631109i 0.158710 0.987325i \(-0.449267\pi\)
0.934404 + 0.356216i \(0.115933\pi\)
\(422\) −37.1794 + 21.4655i −1.80986 + 1.04492i
\(423\) 0 0
\(424\) 4.88236i 0.237108i
\(425\) 1.54705 2.67956i 0.0750428 0.129978i
\(426\) 0 0
\(427\) 1.88415 1.08781i 0.0911803 0.0526430i
\(428\) 5.17320 8.96024i 0.250056 0.433110i
\(429\) 0 0
\(430\) 4.75405 + 8.23426i 0.229261 + 0.397091i
\(431\) −24.4387 14.1097i −1.17717 0.679639i −0.221812 0.975090i \(-0.571197\pi\)
−0.955358 + 0.295450i \(0.904530\pi\)
\(432\) 0 0
\(433\) 13.4398 + 23.2784i 0.645874 + 1.11869i 0.984099 + 0.177622i \(0.0568403\pi\)
−0.338225 + 0.941065i \(0.609826\pi\)
\(434\) −34.0202 + 19.6416i −1.63302 + 0.942826i
\(435\) 0 0
\(436\) 21.2372i 1.01708i
\(437\) −8.01155 4.62547i −0.383245 0.221266i
\(438\) 0 0
\(439\) 1.69589 0.0809402 0.0404701 0.999181i \(-0.487114\pi\)
0.0404701 + 0.999181i \(0.487114\pi\)
\(440\) 6.07662 + 3.50834i 0.289691 + 0.167253i
\(441\) 0 0
\(442\) −9.12144 + 7.26307i −0.433863 + 0.345469i
\(443\) −1.72899 2.99471i −0.0821470 0.142283i 0.822025 0.569452i \(-0.192844\pi\)
−0.904172 + 0.427169i \(0.859511\pi\)
\(444\) 0 0
\(445\) −13.0308 22.5700i −0.617719 1.06992i
\(446\) 8.37988 0.396799
\(447\) 0 0
\(448\) 11.7526 + 6.78534i 0.555256 + 0.320577i
\(449\) 24.3114 14.0362i 1.14732 0.662408i 0.199090 0.979981i \(-0.436201\pi\)
0.948234 + 0.317574i \(0.102868\pi\)
\(450\) 0 0
\(451\) 4.10363 + 7.10770i 0.193233 + 0.334689i
\(452\) −1.52408 −0.0716868
\(453\) 0 0
\(454\) 2.86319 4.95918i 0.134376 0.232746i
\(455\) 13.6910 + 17.1940i 0.641842 + 0.806067i
\(456\) 0 0
\(457\) 9.85430i 0.460965i −0.973076 0.230482i \(-0.925970\pi\)
0.973076 0.230482i \(-0.0740304\pi\)
\(458\) 10.9720 19.0041i 0.512689 0.888004i
\(459\) 0 0
\(460\) 19.1988i 0.895150i
\(461\) −3.58315 2.06873i −0.166884 0.0963506i 0.414232 0.910171i \(-0.364050\pi\)
−0.581116 + 0.813821i \(0.697384\pi\)
\(462\) 0 0
\(463\) −1.95999 1.13160i −0.0910883 0.0525898i 0.453764 0.891122i \(-0.350081\pi\)
−0.544852 + 0.838532i \(0.683414\pi\)
\(464\) 25.4667 1.18226
\(465\) 0 0
\(466\) 4.47924i 0.207497i
\(467\) 11.5713 0.535454 0.267727 0.963495i \(-0.413727\pi\)
0.267727 + 0.963495i \(0.413727\pi\)
\(468\) 0 0
\(469\) −4.81716 −0.222436
\(470\) 26.1840i 1.20778i
\(471\) 0 0
\(472\) 3.78818 0.174365
\(473\) −8.76011 5.05765i −0.402790 0.232551i
\(474\) 0 0
\(475\) 3.52348 + 2.03428i 0.161668 + 0.0933393i
\(476\) 6.78465i 0.310974i
\(477\) 0 0
\(478\) 19.7417 34.1937i 0.902967 1.56398i
\(479\) 28.9364i 1.32214i −0.750325 0.661069i \(-0.770103\pi\)
0.750325 0.661069i \(-0.229897\pi\)
\(480\) 0 0
\(481\) −4.74532 1.86645i −0.216368 0.0851030i
\(482\) −8.45453 + 14.6437i −0.385093 + 0.667001i
\(483\) 0 0
\(484\) 31.4076 1.42762
\(485\) 3.07820 + 5.33160i 0.139774 + 0.242095i
\(486\) 0 0
\(487\) 3.64815 2.10626i 0.165313 0.0954438i −0.415061 0.909794i \(-0.636240\pi\)
0.580374 + 0.814350i \(0.302906\pi\)
\(488\) −0.402578 0.232429i −0.0182239 0.0105216i
\(489\) 0 0
\(490\) −7.98067 −0.360530
\(491\) 6.93597 + 12.0135i 0.313016 + 0.542159i 0.979014 0.203794i \(-0.0653274\pi\)
−0.665998 + 0.745954i \(0.731994\pi\)
\(492\) 0 0
\(493\) 4.78495 + 8.28777i 0.215503 + 0.373262i
\(494\) −9.55054 11.9942i −0.429699 0.539644i
\(495\) 0 0
\(496\) 33.5871 + 19.3915i 1.50810 + 0.870704i
\(497\) 29.5013 1.32332
\(498\) 0 0
\(499\) −9.03377 5.21565i −0.404407 0.233484i 0.283977 0.958831i \(-0.408346\pi\)
−0.688384 + 0.725347i \(0.741679\pi\)
\(500\) 14.3646i 0.642403i
\(501\) 0 0
\(502\) 31.0646 17.9352i 1.38648 0.800485i
\(503\) 13.8296 + 23.9535i 0.616630 + 1.06803i 0.990096 + 0.140390i \(0.0448358\pi\)
−0.373466 + 0.927644i \(0.621831\pi\)
\(504\) 0 0
\(505\) −27.7844 16.0413i −1.23639 0.713829i
\(506\) −21.9321 37.9876i −0.975002 1.68875i
\(507\) 0 0
\(508\) 14.7568 25.5595i 0.654727 1.13402i
\(509\) 22.6496 13.0768i 1.00393 0.579618i 0.0945197 0.995523i \(-0.469868\pi\)
0.909408 + 0.415905i \(0.136535\pi\)
\(510\) 0 0
\(511\) 14.7454 25.5397i 0.652296 1.12981i
\(512\) 29.4266i 1.30048i
\(513\) 0 0
\(514\) 24.0873 13.9068i 1.06244 0.613402i
\(515\) −23.1279 + 13.3529i −1.01914 + 0.588399i
\(516\) 0 0
\(517\) −13.9281 24.1242i −0.612557 1.06098i
\(518\) −5.51844 + 3.18607i −0.242466 + 0.139988i
\(519\) 0 0
\(520\) 1.71893 4.37026i 0.0753803 0.191649i
\(521\) −9.78810 −0.428825 −0.214412 0.976743i \(-0.568784\pi\)
−0.214412 + 0.976743i \(0.568784\pi\)
\(522\) 0 0
\(523\) 17.0184 29.4767i 0.744161 1.28892i −0.206425 0.978462i \(-0.566183\pi\)
0.950586 0.310462i \(-0.100484\pi\)
\(524\) 12.0077 20.7980i 0.524561 0.908566i
\(525\) 0 0
\(526\) 10.8477i 0.472982i
\(527\) 14.5739i 0.634848i
\(528\) 0 0
\(529\) 2.64319 4.57815i 0.114921 0.199050i
\(530\) 24.8417 43.0270i 1.07905 1.86897i
\(531\) 0 0
\(532\) −8.92144 −0.386793
\(533\) 4.29714 3.42166i 0.186130 0.148208i
\(534\) 0 0
\(535\) −13.4572 + 7.76949i −0.581803 + 0.335904i
\(536\) 0.514632 + 0.891369i 0.0222287 + 0.0385013i
\(537\) 0 0
\(538\) 3.89831 2.25069i 0.168068 0.0970340i
\(539\) 7.35284 4.24516i 0.316709 0.182852i
\(540\) 0 0
\(541\) 21.1460i 0.909138i −0.890711 0.454569i \(-0.849793\pi\)
0.890711 0.454569i \(-0.150207\pi\)
\(542\) 1.78552 3.09261i 0.0766946 0.132839i
\(543\) 0 0
\(544\) 11.0172 6.36076i 0.472357 0.272715i
\(545\) −15.9478 + 27.6224i −0.683129 + 1.18321i
\(546\) 0 0
\(547\) 0.443127 + 0.767519i 0.0189468 + 0.0328168i 0.875343 0.483502i \(-0.160635\pi\)
−0.856397 + 0.516319i \(0.827302\pi\)
\(548\) 10.2612 + 5.92431i 0.438337 + 0.253074i
\(549\) 0 0
\(550\) 9.64575 + 16.7069i 0.411296 + 0.712386i
\(551\) −10.8980 + 6.29194i −0.464269 + 0.268046i
\(552\) 0 0
\(553\) 16.1503i 0.686782i
\(554\) −0.897540 0.518195i −0.0381328 0.0220160i
\(555\) 0 0
\(556\) −16.3342 −0.692726
\(557\) −8.55128 4.93708i −0.362329 0.209191i 0.307773 0.951460i \(-0.400416\pi\)
−0.670102 + 0.742269i \(0.733750\pi\)
\(558\) 0 0
\(559\) −2.47803 + 6.30021i −0.104810 + 0.266471i
\(560\) −13.5580 23.4832i −0.572932 0.992347i
\(561\) 0 0
\(562\) −20.1842 34.9600i −0.851418 1.47470i
\(563\) −5.29479 −0.223149 −0.111574 0.993756i \(-0.535589\pi\)
−0.111574 + 0.993756i \(0.535589\pi\)
\(564\) 0 0
\(565\) 1.98231 + 1.14449i 0.0833966 + 0.0481491i
\(566\) 14.6275 8.44521i 0.614841 0.354978i
\(567\) 0 0
\(568\) −3.15172 5.45893i −0.132243 0.229052i
\(569\) 3.83481 0.160764 0.0803818 0.996764i \(-0.474386\pi\)
0.0803818 + 0.996764i \(0.474386\pi\)
\(570\) 0 0
\(571\) −20.0761 + 34.7728i −0.840159 + 1.45520i 0.0496009 + 0.998769i \(0.484205\pi\)
−0.889760 + 0.456429i \(0.849128\pi\)
\(572\) −5.02051 33.4769i −0.209918 1.39974i
\(573\) 0 0
\(574\) 6.86428i 0.286509i
\(575\) 3.89522 6.74672i 0.162442 0.281358i
\(576\) 0 0
\(577\) 31.4632i 1.30983i 0.755702 + 0.654915i \(0.227296\pi\)
−0.755702 + 0.654915i \(0.772704\pi\)
\(578\) −23.8010 13.7415i −0.989991 0.571572i
\(579\) 0 0
\(580\) 22.6169 + 13.0579i 0.939117 + 0.542199i
\(581\) 21.3927 0.887518
\(582\) 0 0
\(583\) 52.8562i 2.18908i
\(584\) −6.30116 −0.260744
\(585\) 0 0
\(586\) 5.89580 0.243553
\(587\) 34.6673i 1.43087i 0.698679 + 0.715436i \(0.253772\pi\)
−0.698679 + 0.715436i \(0.746228\pi\)
\(588\) 0 0
\(589\) −19.1639 −0.789633
\(590\) 33.3843 + 19.2744i 1.37441 + 0.793515i
\(591\) 0 0
\(592\) 5.44818 + 3.14551i 0.223919 + 0.129280i
\(593\) 8.17407i 0.335669i −0.985815 0.167835i \(-0.946323\pi\)
0.985815 0.167835i \(-0.0536774\pi\)
\(594\) 0 0
\(595\) 5.09484 8.82453i 0.208868 0.361770i
\(596\) 26.3369i 1.07880i
\(597\) 0 0
\(598\) −22.9663 + 18.2873i −0.939164 + 0.747822i
\(599\) 20.5243 35.5492i 0.838601 1.45250i −0.0524634 0.998623i \(-0.516707\pi\)
0.891064 0.453877i \(-0.149959\pi\)
\(600\) 0 0
\(601\) −16.0851 −0.656127 −0.328063 0.944656i \(-0.606396\pi\)
−0.328063 + 0.944656i \(0.606396\pi\)
\(602\) 4.23005 + 7.32666i 0.172404 + 0.298612i
\(603\) 0 0
\(604\) 29.4350 16.9943i 1.19769 0.691488i
\(605\) −40.8506 23.5851i −1.66081 0.958871i
\(606\) 0 0
\(607\) 12.3021 0.499328 0.249664 0.968333i \(-0.419680\pi\)
0.249664 + 0.968333i \(0.419680\pi\)
\(608\) 8.36405 + 14.4870i 0.339207 + 0.587524i
\(609\) 0 0
\(610\) −2.36521 4.09667i −0.0957647 0.165869i
\(611\) −14.5849 + 11.6134i −0.590041 + 0.469828i
\(612\) 0 0
\(613\) 11.2160 + 6.47556i 0.453010 + 0.261546i 0.709101 0.705107i \(-0.249101\pi\)
−0.256091 + 0.966653i \(0.582435\pi\)
\(614\) 42.6032 1.71932
\(615\) 0 0
\(616\) 5.40684 + 3.12164i 0.217848 + 0.125774i
\(617\) 39.4798i 1.58940i −0.607004 0.794699i \(-0.707629\pi\)
0.607004 0.794699i \(-0.292371\pi\)
\(618\) 0 0
\(619\) 0.671784 0.387855i 0.0270013 0.0155892i −0.486439 0.873715i \(-0.661704\pi\)
0.513440 + 0.858126i \(0.328371\pi\)
\(620\) 19.8857 + 34.4431i 0.798630 + 1.38327i
\(621\) 0 0
\(622\) 11.3890 + 6.57547i 0.456659 + 0.263652i
\(623\) −11.5945 20.0823i −0.464524 0.804580i
\(624\) 0 0
\(625\) 15.4144 26.6985i 0.616576 1.06794i
\(626\) 10.2408 5.91255i 0.409306 0.236313i
\(627\) 0 0
\(628\) 3.40564 5.89874i 0.135900 0.235385i
\(629\) 2.36404i 0.0942604i
\(630\) 0 0
\(631\) −5.40986 + 3.12338i −0.215363 + 0.124340i −0.603801 0.797135i \(-0.706348\pi\)
0.388438 + 0.921475i \(0.373015\pi\)
\(632\) 2.98846 1.72539i 0.118875 0.0686323i
\(633\) 0 0
\(634\) 16.7926 + 29.0856i 0.666918 + 1.15514i
\(635\) −38.3872 + 22.1628i −1.52335 + 0.879506i
\(636\) 0 0
\(637\) −3.53967 4.44534i −0.140247 0.176131i
\(638\) −59.6677 −2.36227
\(639\) 0 0
\(640\) −5.16684 + 8.94922i −0.204237 + 0.353749i
\(641\) −13.1720 + 22.8145i −0.520262 + 0.901120i 0.479461 + 0.877563i \(0.340832\pi\)
−0.999723 + 0.0235565i \(0.992501\pi\)
\(642\) 0 0
\(643\) 22.5012i 0.887361i −0.896185 0.443681i \(-0.853672\pi\)
0.896185 0.443681i \(-0.146328\pi\)
\(644\) 17.0827i 0.673152i
\(645\) 0 0
\(646\) −3.55406 + 6.15582i −0.139833 + 0.242197i
\(647\) 2.07443 3.59302i 0.0815542 0.141256i −0.822363 0.568962i \(-0.807345\pi\)
0.903918 + 0.427706i \(0.140678\pi\)
\(648\) 0 0
\(649\) −41.0106 −1.60981
\(650\) 10.1006 8.04274i 0.396178 0.315462i
\(651\) 0 0
\(652\) 10.8473 6.26270i 0.424814 0.245266i
\(653\) −2.22555 3.85477i −0.0870927 0.150849i 0.819188 0.573525i \(-0.194424\pi\)
−0.906281 + 0.422676i \(0.861091\pi\)
\(654\) 0 0
\(655\) −31.2360 + 18.0341i −1.22049 + 0.704651i
\(656\) −5.86895 + 3.38844i −0.229144 + 0.132296i
\(657\) 0 0
\(658\) 23.2980i 0.908249i
\(659\) 6.70705 11.6169i 0.261269 0.452532i −0.705310 0.708899i \(-0.749192\pi\)
0.966580 + 0.256367i \(0.0825256\pi\)
\(660\) 0 0
\(661\) −4.79886 + 2.77062i −0.186654 + 0.107765i −0.590415 0.807100i \(-0.701036\pi\)
0.403761 + 0.914864i \(0.367703\pi\)
\(662\) −18.4451 + 31.9479i −0.716891 + 1.24169i
\(663\) 0 0
\(664\) −2.28544 3.95851i −0.0886924 0.153620i
\(665\) 11.6038 + 6.69944i 0.449975 + 0.259793i
\(666\) 0 0
\(667\) 12.0477 + 20.8673i 0.466490 + 0.807985i
\(668\) −9.04570 + 5.22254i −0.349989 + 0.202066i
\(669\) 0 0
\(670\) 10.4739i 0.404641i
\(671\) 4.35829 + 2.51626i 0.168250 + 0.0971392i
\(672\) 0 0
\(673\) 13.8135 0.532473 0.266236 0.963908i \(-0.414220\pi\)
0.266236 + 0.963908i \(0.414220\pi\)
\(674\) 40.4375 + 23.3466i 1.55759 + 0.899278i
\(675\) 0 0
\(676\) −21.6595 + 6.64599i −0.833058 + 0.255615i
\(677\) −4.70621 8.15139i −0.180874 0.313284i 0.761304 0.648395i \(-0.224559\pi\)
−0.942179 + 0.335111i \(0.891226\pi\)
\(678\) 0 0
\(679\) 2.73891 + 4.74394i 0.105110 + 0.182056i
\(680\) −2.17719 −0.0834914
\(681\) 0 0
\(682\) −78.6934 45.4336i −3.01332 1.73974i
\(683\) 16.9642 9.79429i 0.649117 0.374768i −0.139001 0.990292i \(-0.544389\pi\)
0.788118 + 0.615524i \(0.211056\pi\)
\(684\) 0 0
\(685\) −8.89757 15.4110i −0.339959 0.588826i
\(686\) −38.6405 −1.47530
\(687\) 0 0
\(688\) 4.17619 7.23337i 0.159216 0.275770i
\(689\) 34.9847 5.24662i 1.33281 0.199880i
\(690\) 0 0
\(691\) 1.40342i 0.0533886i −0.999644 0.0266943i \(-0.991502\pi\)
0.999644 0.0266943i \(-0.00849807\pi\)
\(692\) 1.90165 3.29375i 0.0722899 0.125210i
\(693\) 0 0
\(694\) 1.99110i 0.0755813i
\(695\) 21.2453 + 12.2660i 0.805881 + 0.465275i
\(696\) 0 0
\(697\) −2.20544 1.27331i −0.0835369 0.0482300i
\(698\) −54.8294 −2.07532
\(699\) 0 0
\(700\) 7.51296i 0.283963i
\(701\) −19.4308 −0.733892 −0.366946 0.930242i \(-0.619597\pi\)
−0.366946 + 0.930242i \(0.619597\pi\)
\(702\) 0 0
\(703\) −3.10858 −0.117242
\(704\) 31.3909i 1.18309i
\(705\) 0 0
\(706\) 14.9241 0.561674
\(707\) −24.7219 14.2732i −0.929763 0.536799i
\(708\) 0 0
\(709\) −3.16828 1.82921i −0.118987 0.0686972i 0.439325 0.898328i \(-0.355218\pi\)
−0.558312 + 0.829631i \(0.688551\pi\)
\(710\) 64.1442i 2.40729i
\(711\) 0 0
\(712\) −2.47735 + 4.29090i −0.0928427 + 0.160808i
\(713\) 36.6947i 1.37423i
\(714\) 0 0
\(715\) −18.6091 + 47.3122i −0.695940 + 1.76938i
\(716\) −2.55256 + 4.42117i −0.0953937 + 0.165227i
\(717\) 0 0
\(718\) −11.6401 −0.434403
\(719\) −3.56798 6.17992i −0.133063 0.230472i 0.791793 0.610790i \(-0.209148\pi\)
−0.924856 + 0.380318i \(0.875815\pi\)
\(720\) 0 0
\(721\) −20.5787 + 11.8811i −0.766390 + 0.442476i
\(722\) 23.7387 + 13.7056i 0.883464 + 0.510068i
\(723\) 0 0
\(724\) −40.4751 −1.50425
\(725\) −5.29859 9.17743i −0.196785 0.340841i
\(726\) 0 0
\(727\) −18.8741 32.6908i −0.700000 1.21244i −0.968466 0.249146i \(-0.919850\pi\)
0.268466 0.963289i \(-0.413483\pi\)
\(728\) 1.52947 3.88856i 0.0566859 0.144120i
\(729\) 0 0
\(730\) −55.5305 32.0606i −2.05528 1.18662i
\(731\) 3.13866 0.116088
\(732\) 0 0
\(733\) 25.7477 + 14.8654i 0.951012 + 0.549067i 0.893395 0.449272i \(-0.148316\pi\)
0.0576170 + 0.998339i \(0.481650\pi\)
\(734\) 47.1875i 1.74172i
\(735\) 0 0
\(736\) 27.7395 16.0154i 1.02249 0.590335i
\(737\) −5.57138 9.64991i −0.205224 0.355459i
\(738\) 0 0
\(739\) −32.8161 18.9464i −1.20716 0.696955i −0.245023 0.969517i \(-0.578795\pi\)
−0.962138 + 0.272563i \(0.912129\pi\)
\(740\) 3.22567 + 5.58703i 0.118578 + 0.205383i
\(741\) 0 0
\(742\) 22.1035 38.2845i 0.811447 1.40547i
\(743\) −4.18486 + 2.41613i −0.153528 + 0.0886393i −0.574796 0.818297i \(-0.694919\pi\)
0.421268 + 0.906936i \(0.361585\pi\)
\(744\) 0 0
\(745\) 19.7773 34.2553i 0.724585 1.25502i
\(746\) 10.4012i 0.380815i
\(747\) 0 0
\(748\) −13.5912 + 7.84691i −0.496945 + 0.286911i
\(749\) −11.9739 + 6.91312i −0.437516 + 0.252600i
\(750\) 0 0
\(751\) 17.1031 + 29.6234i 0.624100 + 1.08097i 0.988714 + 0.149815i \(0.0478677\pi\)
−0.364614 + 0.931159i \(0.618799\pi\)
\(752\) 19.9197 11.5007i 0.726398 0.419386i
\(753\) 0 0
\(754\) 5.92275 + 39.4931i 0.215694 + 1.43825i
\(755\) −51.0466 −1.85777
\(756\) 0 0
\(757\) 9.88450 17.1205i 0.359258 0.622253i −0.628579 0.777746i \(-0.716363\pi\)
0.987837 + 0.155492i \(0.0496964\pi\)
\(758\) 22.0445 38.1821i 0.800690 1.38684i
\(759\) 0 0
\(760\) 2.86289i 0.103848i
\(761\) 17.7648i 0.643972i 0.946744 + 0.321986i \(0.104350\pi\)
−0.946744 + 0.321986i \(0.895650\pi\)
\(762\) 0 0
\(763\) −14.1900 + 24.5778i −0.513712 + 0.889776i
\(764\) −8.38352 + 14.5207i −0.303305 + 0.525340i
\(765\) 0 0
\(766\) 48.1496 1.73971
\(767\) 4.07081 + 27.1443i 0.146988 + 0.980124i
\(768\) 0 0
\(769\) −14.0558 + 8.11511i −0.506865 + 0.292638i −0.731544 0.681794i \(-0.761200\pi\)
0.224679 + 0.974433i \(0.427867\pi\)
\(770\) 31.7660 + 55.0204i 1.14477 + 1.98280i
\(771\) 0 0
\(772\) −30.3297 + 17.5109i −1.09159 + 0.630230i
\(773\) −14.3635 + 8.29274i −0.516617 + 0.298269i −0.735550 0.677471i \(-0.763076\pi\)
0.218932 + 0.975740i \(0.429743\pi\)
\(774\) 0 0
\(775\) 16.1383i 0.579706i
\(776\) 0.585213 1.01362i 0.0210079 0.0363868i
\(777\) 0 0
\(778\) 25.2541 14.5805i 0.905405 0.522736i
\(779\) 1.67433 2.90003i 0.0599891 0.103904i
\(780\) 0 0
\(781\) 34.1203 + 59.0981i 1.22092 + 2.11470i
\(782\) 11.7871 + 6.80528i 0.421506 + 0.243356i
\(783\) 0 0
\(784\) 3.50530 + 6.07137i 0.125189 + 0.216834i
\(785\) −8.85916 + 5.11484i −0.316197 + 0.182556i
\(786\) 0 0
\(787\) 10.2478i 0.365295i −0.983178 0.182648i \(-0.941533\pi\)
0.983178 0.182648i \(-0.0584668\pi\)
\(788\) 18.0774 + 10.4370i 0.643981 + 0.371803i
\(789\) 0 0
\(790\) 35.1154 1.24935
\(791\) 1.76382 + 1.01834i 0.0627142 + 0.0362080i
\(792\) 0 0
\(793\) 1.23286 3.13445i 0.0437801 0.111308i
\(794\) 2.60865 + 4.51831i 0.0925774 + 0.160349i
\(795\) 0 0
\(796\) 15.4268 + 26.7200i 0.546789 + 0.947066i
\(797\) 20.3566 0.721067 0.360534 0.932746i \(-0.382595\pi\)
0.360534 + 0.932746i \(0.382595\pi\)
\(798\) 0 0
\(799\) 7.48545 + 4.32172i 0.264816 + 0.152892i
\(800\) −12.1998 + 7.04357i −0.431329 + 0.249028i
\(801\) 0 0
\(802\) 1.17701 + 2.03864i 0.0415617 + 0.0719870i
\(803\) 68.2160 2.40729
\(804\) 0 0
\(805\) 12.8280 22.2188i 0.452128 0.783109i
\(806\) −22.2605 + 56.5958i −0.784094 + 1.99350i
\(807\) 0 0
\(808\) 6.09939i 0.214576i
\(809\) −18.8460 + 32.6423i −0.662591 + 1.14764i 0.317342 + 0.948311i \(0.397210\pi\)
−0.979932 + 0.199330i \(0.936124\pi\)
\(810\) 0 0
\(811\) 28.8949i 1.01464i −0.861758 0.507319i \(-0.830637\pi\)
0.861758 0.507319i \(-0.169363\pi\)
\(812\) 20.1240 + 11.6186i 0.706215 + 0.407734i
\(813\) 0 0
\(814\) −12.7649 7.36982i −0.447409 0.258312i
\(815\) −18.8116 −0.658941
\(816\) 0 0
\(817\) 4.12716i 0.144391i
\(818\) 66.5660 2.32743
\(819\) 0 0
\(820\) −6.94960 −0.242691
\(821\) 5.18436i 0.180935i −0.995899 0.0904677i \(-0.971164\pi\)
0.995899 0.0904677i \(-0.0288362\pi\)
\(822\) 0 0
\(823\) 17.6885 0.616582 0.308291 0.951292i \(-0.400243\pi\)
0.308291 + 0.951292i \(0.400243\pi\)
\(824\) 4.39696 + 2.53859i 0.153176 + 0.0884359i
\(825\) 0 0
\(826\) 29.7046 + 17.1499i 1.03355 + 0.596723i
\(827\) 15.0588i 0.523644i 0.965116 + 0.261822i \(0.0843234\pi\)
−0.965116 + 0.261822i \(0.915677\pi\)
\(828\) 0 0
\(829\) 4.72035 8.17589i 0.163945 0.283960i −0.772335 0.635215i \(-0.780911\pi\)
0.936280 + 0.351255i \(0.114245\pi\)
\(830\) 46.5137i 1.61452i
\(831\) 0 0
\(832\) 20.7771 3.11593i 0.720317 0.108025i
\(833\) −1.31722 + 2.28150i −0.0456391 + 0.0790492i
\(834\) 0 0
\(835\) 15.6872 0.542877
\(836\) −10.3183 17.8717i −0.356864 0.618107i
\(837\) 0 0
\(838\) −36.5115 + 21.0799i −1.26127 + 0.728194i
\(839\) −25.9632 14.9899i −0.896350 0.517508i −0.0203361 0.999793i \(-0.506474\pi\)
−0.876014 + 0.482285i \(0.839807\pi\)
\(840\) 0 0
\(841\) 3.77661 0.130228
\(842\) −25.0520 43.3914i −0.863350 1.49537i
\(843\) 0 0
\(844\) 19.3369 + 33.4926i 0.665605 + 1.15286i
\(845\) 33.1624 + 7.62075i 1.14082 + 0.262162i
\(846\) 0 0
\(847\) −36.3479 20.9855i −1.24893 0.721070i
\(848\) −43.6443 −1.49875
\(849\) 0 0
\(850\) −5.18396 2.99296i −0.177808 0.102658i
\(851\) 5.95228i 0.204041i
\(852\) 0 0
\(853\) −45.8672 + 26.4814i −1.57046 + 0.906706i −0.574349 + 0.818610i \(0.694745\pi\)
−0.996112 + 0.0880960i \(0.971922\pi\)
\(854\) −2.10451 3.64513i −0.0720150 0.124734i
\(855\) 0 0
\(856\) 2.55841 + 1.47710i 0.0874446 + 0.0504862i
\(857\) 15.1376 + 26.2190i 0.517089 + 0.895624i 0.999803 + 0.0198464i \(0.00631773\pi\)
−0.482714 + 0.875778i \(0.660349\pi\)
\(858\) 0 0
\(859\) −24.2634 + 42.0254i −0.827856 + 1.43389i 0.0718602 + 0.997415i \(0.477106\pi\)
−0.899717 + 0.436475i \(0.856227\pi\)
\(860\) 7.41773 4.28263i 0.252942 0.146036i
\(861\) 0 0
\(862\) −27.2970 + 47.2797i −0.929739 + 1.61035i
\(863\) 21.2534i 0.723473i −0.932280 0.361737i \(-0.882184\pi\)
0.932280 0.361737i \(-0.117816\pi\)
\(864\) 0 0
\(865\) −4.94680 + 2.85604i −0.168196 + 0.0971082i
\(866\) 45.0350 26.0010i 1.53035 0.883548i
\(867\) 0 0
\(868\) 17.6939 + 30.6467i 0.600569 + 1.04022i
\(869\) −32.3529 + 18.6790i −1.09750 + 0.633640i
\(870\) 0 0
\(871\) −5.83409 + 4.64548i −0.197681 + 0.157406i
\(872\) 6.06384 0.205348
\(873\) 0 0
\(874\) −8.94857 + 15.4994i −0.302690 + 0.524274i
\(875\) 9.59792 16.6241i 0.324469 0.561997i
\(876\) 0 0
\(877\) 43.3602i 1.46417i −0.681213 0.732085i \(-0.738547\pi\)
0.681213 0.732085i \(-0.261453\pi\)
\(878\) 3.28091i 0.110725i
\(879\) 0 0
\(880\) 31.3616 54.3199i 1.05720 1.83112i
\(881\) −25.4246 + 44.0368i −0.856578 + 1.48364i 0.0185957 + 0.999827i \(0.494080\pi\)
−0.875174 + 0.483809i \(0.839253\pi\)
\(882\) 0 0
\(883\) 29.1681 0.981586 0.490793 0.871276i \(-0.336707\pi\)
0.490793 + 0.871276i \(0.336707\pi\)
\(884\) 6.54284 + 8.21693i 0.220060 + 0.276365i
\(885\) 0 0
\(886\) −5.79364 + 3.34496i −0.194641 + 0.112376i
\(887\) −22.0569 38.2037i −0.740598 1.28275i −0.952223 0.305403i \(-0.901209\pi\)
0.211625 0.977351i \(-0.432125\pi\)
\(888\) 0 0
\(889\) −34.1560 + 19.7200i −1.14556 + 0.661387i
\(890\) −43.6646 + 25.2097i −1.46364 + 0.845033i
\(891\) 0 0
\(892\) 7.54891i 0.252756i
\(893\) −5.68283 + 9.84295i −0.190169 + 0.329382i
\(894\) 0 0
\(895\) 6.64004 3.83363i 0.221952 0.128144i
\(896\) −4.59734 + 7.96282i −0.153586 + 0.266019i
\(897\) 0 0
\(898\) −27.1548 47.0334i −0.906166 1.56953i
\(899\) 43.2278 + 24.9576i 1.44173 + 0.832382i
\(900\) 0 0
\(901\) −8.20032 14.2034i −0.273192 0.473183i
\(902\) 13.7508 7.93901i 0.457850 0.264340i
\(903\) 0 0
\(904\) 0.435170i 0.0144735i
\(905\) 52.6444 + 30.3942i 1.74996 + 1.01034i
\(906\) 0 0
\(907\) 21.2054 0.704113 0.352057 0.935979i \(-0.385482\pi\)
0.352057 + 0.935979i \(0.385482\pi\)
\(908\) −4.46742 2.57926i −0.148256 0.0855959i
\(909\) 0 0
\(910\) 33.2640 26.4869i 1.10269 0.878032i
\(911\) 18.2141 + 31.5478i 0.603460 + 1.04522i 0.992293 + 0.123915i \(0.0395451\pi\)
−0.388833 + 0.921308i \(0.627122\pi\)
\(912\) 0 0
\(913\) 24.7421 + 42.8546i 0.818844 + 1.41828i
\(914\) −19.0644 −0.630594
\(915\) 0 0
\(916\) −17.1196 9.88401i −0.565648 0.326577i
\(917\) −27.7931 + 16.0463i −0.917809 + 0.529897i
\(918\) 0 0
\(919\) 3.68012 + 6.37415i 0.121396 + 0.210264i 0.920318 0.391170i \(-0.127930\pi\)
−0.798922 + 0.601434i \(0.794596\pi\)
\(920\) −5.48182 −0.180730
\(921\) 0 0
\(922\) −4.00223 + 6.93207i −0.131806 + 0.228296i
\(923\) 35.7292 28.4499i 1.17604 0.936440i
\(924\) 0 0
\(925\) 2.61781i 0.0860731i
\(926\) −2.18922 + 3.79184i −0.0719423 + 0.124608i
\(927\) 0 0
\(928\) 43.5709i 1.43028i
\(929\) −2.05280 1.18519i −0.0673502 0.0388847i 0.465947 0.884813i \(-0.345714\pi\)
−0.533297 + 0.845928i \(0.679047\pi\)
\(930\) 0 0
\(931\) −3.00004 1.73208i −0.0983225 0.0567665i
\(932\) 4.03506 0.132173
\(933\) 0 0
\(934\) 22.3861i 0.732495i
\(935\) 23.5701 0.770826
\(936\) 0 0
\(937\) 36.8188 1.20282 0.601409 0.798941i \(-0.294606\pi\)
0.601409 + 0.798941i \(0.294606\pi\)
\(938\) 9.31942i 0.304290i
\(939\) 0 0
\(940\) 23.5876 0.769341
\(941\) 42.7909 + 24.7053i 1.39494 + 0.805371i 0.993857 0.110669i \(-0.0352995\pi\)
0.401086 + 0.916040i \(0.368633\pi\)
\(942\) 0 0
\(943\) −5.55294 3.20599i −0.180829 0.104401i
\(944\) 33.8632i 1.10215i
\(945\) 0 0
\(946\) −9.78467 + 16.9476i −0.318127 + 0.551012i
\(947\) 27.1891i 0.883525i −0.897132 0.441763i \(-0.854353\pi\)
0.897132 0.441763i \(-0.145647\pi\)
\(948\) 0 0
\(949\) −6.77128 45.1511i −0.219805 1.46567i
\(950\) 3.93558 6.81662i 0.127687 0.221160i
\(951\) 0 0
\(952\) −1.93721 −0.0627855
\(953\) −27.1090 46.9542i −0.878147 1.52100i −0.853372 0.521303i \(-0.825446\pi\)
−0.0247753 0.999693i \(-0.507887\pi\)
\(954\) 0 0
\(955\) 21.8082 12.5910i 0.705698 0.407435i
\(956\) −30.8030 17.7841i −0.996239 0.575179i
\(957\) 0 0
\(958\) −55.9811 −1.80867
\(959\) −7.91686 13.7124i −0.255649 0.442797i
\(960\) 0 0
\(961\) 22.5076 + 38.9843i 0.726052 + 1.25756i
\(962\) −3.61090 + 9.18043i −0.116420 + 0.295989i
\(963\) 0 0
\(964\) 13.1916 + 7.61615i 0.424872 + 0.245300i
\(965\) 52.5982 1.69320
\(966\) 0 0
\(967\) −19.6716 11.3574i −0.632595 0.365229i 0.149161 0.988813i \(-0.452343\pi\)
−0.781756 + 0.623584i \(0.785676\pi\)
\(968\) 8.96777i 0.288235i
\(969\) 0 0
\(970\) 10.3147 5.95517i 0.331184 0.191209i
\(971\) 23.0225 + 39.8762i 0.738828 + 1.27969i 0.953023 + 0.302897i \(0.0979538\pi\)
−0.214195 + 0.976791i \(0.568713\pi\)
\(972\) 0 0
\(973\) 18.9036 + 10.9140i 0.606022 + 0.349887i
\(974\) −4.07483 7.05781i −0.130566 0.226147i
\(975\) 0 0
\(976\) −2.07772 + 3.59872i −0.0665062 + 0.115192i
\(977\) −27.6584 + 15.9686i −0.884871 + 0.510881i −0.872261 0.489040i \(-0.837347\pi\)
−0.0126097 + 0.999920i \(0.504014\pi\)
\(978\) 0 0
\(979\) 26.8197 46.4530i 0.857161 1.48465i
\(980\) 7.18928i 0.229653i
\(981\) 0 0
\(982\) 23.2416 13.4185i 0.741668 0.428202i
\(983\) 2.20776 1.27465i 0.0704167 0.0406551i −0.464378 0.885637i \(-0.653722\pi\)
0.534795 + 0.844982i \(0.320389\pi\)
\(984\) 0 0
\(985\) −15.6751 27.1500i −0.499449 0.865071i
\(986\) 16.0338 9.25709i 0.510619 0.294806i
\(987\) 0 0
\(988\) −10.8048 + 8.60348i −0.343747 + 0.273713i
\(989\) 7.90265 0.251290
\(990\) 0 0
\(991\) −24.0678 + 41.6867i −0.764540 + 1.32422i 0.175949 + 0.984399i \(0.443701\pi\)
−0.940489 + 0.339824i \(0.889633\pi\)
\(992\) 33.1768 57.4639i 1.05336 1.82448i
\(993\) 0 0
\(994\) 57.0741i 1.81028i
\(995\) 46.3382i 1.46902i
\(996\) 0 0
\(997\) −11.9132 + 20.6343i −0.377295 + 0.653494i −0.990668 0.136299i \(-0.956479\pi\)
0.613373 + 0.789794i \(0.289812\pi\)
\(998\) −10.0903 + 17.4770i −0.319404 + 0.553224i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.l.b.199.3 22
3.2 odd 2 117.2.l.b.4.9 22
9.2 odd 6 117.2.r.b.43.9 yes 22
9.7 even 3 351.2.r.b.316.3 22
13.10 even 6 351.2.r.b.10.3 22
39.23 odd 6 117.2.r.b.49.9 yes 22
117.88 even 6 inner 351.2.l.b.127.9 22
117.101 odd 6 117.2.l.b.88.3 yes 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.l.b.4.9 22 3.2 odd 2
117.2.l.b.88.3 yes 22 117.101 odd 6
117.2.r.b.43.9 yes 22 9.2 odd 6
117.2.r.b.49.9 yes 22 39.23 odd 6
351.2.l.b.127.9 22 117.88 even 6 inner
351.2.l.b.199.3 22 1.1 even 1 trivial
351.2.r.b.10.3 22 13.10 even 6
351.2.r.b.316.3 22 9.7 even 3