Properties

Label 351.2.r.b.10.1
Level $351$
Weight $2$
Character 351.10
Analytic conductor $2.803$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [351,2,Mod(10,351)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(351, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("351.10");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 10.1
Character \(\chi\) \(=\) 351.10
Dual form 351.2.r.b.316.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.29626 - 1.32574i) q^{2} +(2.51519 + 4.35644i) q^{4} +(2.43120 + 1.40366i) q^{5} +0.261179i q^{7} -8.03502i q^{8} +(-3.72178 - 6.44631i) q^{10} +(1.34990 + 0.779366i) q^{11} +(-1.29932 + 3.36330i) q^{13} +(0.346256 - 0.599733i) q^{14} +(-5.62200 + 9.73759i) q^{16} +(-3.65449 + 6.32976i) q^{17} +(0.447398 + 0.258305i) q^{19} +14.1219i q^{20} +(-2.06648 - 3.57925i) q^{22} -2.74949 q^{23} +(1.44050 + 2.49502i) q^{25} +(7.44243 - 6.00043i) q^{26} +(-1.13781 + 0.656914i) q^{28} +(1.78313 - 3.08847i) q^{29} +(3.17297 + 1.83191i) q^{31} +(11.9020 - 6.87163i) q^{32} +(16.7833 - 9.68983i) q^{34} +(-0.366605 + 0.634978i) q^{35} +(1.90801 - 1.10159i) q^{37} +(-0.684893 - 1.18627i) q^{38} +(11.2784 - 19.5348i) q^{40} +7.42443i q^{41} -3.49719 q^{43} +7.84102i q^{44} +(6.31353 + 3.64512i) q^{46} +(7.10819 - 4.10392i) q^{47} +6.93179 q^{49} -7.63895i q^{50} +(-17.9200 + 2.79895i) q^{52} -4.68042 q^{53} +(2.18792 + 3.78960i) q^{55} +2.09858 q^{56} +(-8.18905 + 4.72795i) q^{58} +(9.64903 - 5.57087i) q^{59} -3.61462 q^{61} +(-4.85729 - 8.41308i) q^{62} -13.9521 q^{64} +(-7.87982 + 6.35307i) q^{65} +8.21327i q^{67} -36.7670 q^{68} +(1.68364 - 0.972048i) q^{70} +(5.40445 + 3.12026i) q^{71} +3.76021i q^{73} -5.84171 q^{74} +2.59875i q^{76} +(-0.203554 + 0.352565i) q^{77} +(-1.36567 - 2.36542i) q^{79} +(-27.3365 + 15.7827i) q^{80} +(9.84289 - 17.0484i) q^{82} +(7.18029 - 4.14554i) q^{83} +(-17.7696 + 10.2593i) q^{85} +(8.03044 + 4.63638i) q^{86} +(6.26222 - 10.8465i) q^{88} +(1.18531 - 0.684339i) q^{89} +(-0.878421 - 0.339353i) q^{91} +(-6.91550 - 11.9780i) q^{92} -21.7630 q^{94} +(0.725143 + 1.25599i) q^{95} -13.5427i q^{97} +(-15.9171 - 9.18977i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q + 10 q^{4} - 3 q^{5} - 7 q^{10} - 3 q^{11} + 3 q^{13} + 9 q^{14} - 12 q^{16} - 9 q^{17} - 6 q^{19} - 13 q^{22} + 12 q^{23} + 4 q^{25} + 12 q^{26} + 3 q^{28} + 24 q^{29} + 27 q^{31} - 15 q^{34} + 27 q^{35}+ \cdots - 117 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.29626 1.32574i −1.62370 0.937442i −0.985919 0.167222i \(-0.946520\pi\)
−0.637778 0.770220i \(-0.720146\pi\)
\(3\) 0 0
\(4\) 2.51519 + 4.35644i 1.25760 + 2.17822i
\(5\) 2.43120 + 1.40366i 1.08727 + 0.627734i 0.932848 0.360271i \(-0.117316\pi\)
0.154420 + 0.988005i \(0.450649\pi\)
\(6\) 0 0
\(7\) 0.261179i 0.0987162i 0.998781 + 0.0493581i \(0.0157176\pi\)
−0.998781 + 0.0493581i \(0.984282\pi\)
\(8\) 8.03502i 2.84081i
\(9\) 0 0
\(10\) −3.72178 6.44631i −1.17693 2.03850i
\(11\) 1.34990 + 0.779366i 0.407011 + 0.234988i 0.689504 0.724281i \(-0.257828\pi\)
−0.282494 + 0.959269i \(0.591162\pi\)
\(12\) 0 0
\(13\) −1.29932 + 3.36330i −0.360365 + 0.932811i
\(14\) 0.346256 0.599733i 0.0925407 0.160285i
\(15\) 0 0
\(16\) −5.62200 + 9.73759i −1.40550 + 2.43440i
\(17\) −3.65449 + 6.32976i −0.886344 + 1.53519i −0.0421777 + 0.999110i \(0.513430\pi\)
−0.844166 + 0.536082i \(0.819904\pi\)
\(18\) 0 0
\(19\) 0.447398 + 0.258305i 0.102640 + 0.0592593i 0.550441 0.834874i \(-0.314459\pi\)
−0.447801 + 0.894133i \(0.647793\pi\)
\(20\) 14.1219i 3.15774i
\(21\) 0 0
\(22\) −2.06648 3.57925i −0.440575 0.763098i
\(23\) −2.74949 −0.573308 −0.286654 0.958034i \(-0.592543\pi\)
−0.286654 + 0.958034i \(0.592543\pi\)
\(24\) 0 0
\(25\) 1.44050 + 2.49502i 0.288101 + 0.499005i
\(26\) 7.44243 6.00043i 1.45958 1.17678i
\(27\) 0 0
\(28\) −1.13781 + 0.656914i −0.215026 + 0.124145i
\(29\) 1.78313 3.08847i 0.331119 0.573515i −0.651612 0.758552i \(-0.725907\pi\)
0.982732 + 0.185037i \(0.0592405\pi\)
\(30\) 0 0
\(31\) 3.17297 + 1.83191i 0.569882 + 0.329021i 0.757102 0.653297i \(-0.226615\pi\)
−0.187221 + 0.982318i \(0.559948\pi\)
\(32\) 11.9020 6.87163i 2.10400 1.21474i
\(33\) 0 0
\(34\) 16.7833 9.68983i 2.87831 1.66179i
\(35\) −0.366605 + 0.634978i −0.0619675 + 0.107331i
\(36\) 0 0
\(37\) 1.90801 1.10159i 0.313675 0.181100i −0.334895 0.942256i \(-0.608701\pi\)
0.648570 + 0.761155i \(0.275367\pi\)
\(38\) −0.684893 1.18627i −0.111104 0.192438i
\(39\) 0 0
\(40\) 11.2784 19.5348i 1.78327 3.08872i
\(41\) 7.42443i 1.15950i 0.814794 + 0.579751i \(0.196850\pi\)
−0.814794 + 0.579751i \(0.803150\pi\)
\(42\) 0 0
\(43\) −3.49719 −0.533316 −0.266658 0.963791i \(-0.585919\pi\)
−0.266658 + 0.963791i \(0.585919\pi\)
\(44\) 7.84102i 1.18208i
\(45\) 0 0
\(46\) 6.31353 + 3.64512i 0.930880 + 0.537444i
\(47\) 7.10819 4.10392i 1.03684 0.598618i 0.117901 0.993025i \(-0.462383\pi\)
0.918936 + 0.394407i \(0.129050\pi\)
\(48\) 0 0
\(49\) 6.93179 0.990255
\(50\) 7.63895i 1.08031i
\(51\) 0 0
\(52\) −17.9200 + 2.79895i −2.48506 + 0.388144i
\(53\) −4.68042 −0.642905 −0.321452 0.946926i \(-0.604171\pi\)
−0.321452 + 0.946926i \(0.604171\pi\)
\(54\) 0 0
\(55\) 2.18792 + 3.78960i 0.295020 + 0.510989i
\(56\) 2.09858 0.280434
\(57\) 0 0
\(58\) −8.18905 + 4.72795i −1.07527 + 0.620810i
\(59\) 9.64903 5.57087i 1.25620 0.725265i 0.283864 0.958865i \(-0.408384\pi\)
0.972333 + 0.233599i \(0.0750504\pi\)
\(60\) 0 0
\(61\) −3.61462 −0.462805 −0.231403 0.972858i \(-0.574331\pi\)
−0.231403 + 0.972858i \(0.574331\pi\)
\(62\) −4.85729 8.41308i −0.616877 1.06846i
\(63\) 0 0
\(64\) −13.9521 −1.74401
\(65\) −7.87982 + 6.35307i −0.977371 + 0.788002i
\(66\) 0 0
\(67\) 8.21327i 1.00341i 0.865038 + 0.501706i \(0.167294\pi\)
−0.865038 + 0.501706i \(0.832706\pi\)
\(68\) −36.7670 −4.45865
\(69\) 0 0
\(70\) 1.68364 0.972048i 0.201233 0.116182i
\(71\) 5.40445 + 3.12026i 0.641390 + 0.370307i 0.785150 0.619306i \(-0.212586\pi\)
−0.143760 + 0.989613i \(0.545919\pi\)
\(72\) 0 0
\(73\) 3.76021i 0.440099i 0.975489 + 0.220050i \(0.0706220\pi\)
−0.975489 + 0.220050i \(0.929378\pi\)
\(74\) −5.84171 −0.679085
\(75\) 0 0
\(76\) 2.59875i 0.298097i
\(77\) −0.203554 + 0.352565i −0.0231971 + 0.0401785i
\(78\) 0 0
\(79\) −1.36567 2.36542i −0.153650 0.266130i 0.778916 0.627128i \(-0.215770\pi\)
−0.932567 + 0.360998i \(0.882436\pi\)
\(80\) −27.3365 + 15.7827i −3.05631 + 1.76456i
\(81\) 0 0
\(82\) 9.84289 17.0484i 1.08697 1.88268i
\(83\) 7.18029 4.14554i 0.788139 0.455032i −0.0511680 0.998690i \(-0.516294\pi\)
0.839307 + 0.543658i \(0.182961\pi\)
\(84\) 0 0
\(85\) −17.7696 + 10.2593i −1.92739 + 1.11278i
\(86\) 8.03044 + 4.63638i 0.865944 + 0.499953i
\(87\) 0 0
\(88\) 6.26222 10.8465i 0.667555 1.15624i
\(89\) 1.18531 0.684339i 0.125643 0.0725398i −0.435861 0.900014i \(-0.643556\pi\)
0.561504 + 0.827474i \(0.310223\pi\)
\(90\) 0 0
\(91\) −0.878421 0.339353i −0.0920836 0.0355739i
\(92\) −6.91550 11.9780i −0.720990 1.24879i
\(93\) 0 0
\(94\) −21.7630 −2.24468
\(95\) 0.725143 + 1.25599i 0.0743981 + 0.128861i
\(96\) 0 0
\(97\) 13.5427i 1.37506i −0.726158 0.687528i \(-0.758696\pi\)
0.726158 0.687528i \(-0.241304\pi\)
\(98\) −15.9171 9.18977i −1.60787 0.928307i
\(99\) 0 0
\(100\) −7.24628 + 12.5509i −0.724628 + 1.25509i
\(101\) −7.70477 + 13.3451i −0.766653 + 1.32788i 0.172715 + 0.984972i \(0.444746\pi\)
−0.939368 + 0.342911i \(0.888587\pi\)
\(102\) 0 0
\(103\) 5.49573 9.51889i 0.541510 0.937924i −0.457307 0.889309i \(-0.651186\pi\)
0.998818 0.0486148i \(-0.0154807\pi\)
\(104\) 27.0242 + 10.4400i 2.64994 + 1.02373i
\(105\) 0 0
\(106\) 10.7474 + 6.20503i 1.04388 + 0.602686i
\(107\) 0.595733 + 1.03184i 0.0575917 + 0.0997518i 0.893384 0.449294i \(-0.148325\pi\)
−0.835792 + 0.549046i \(0.814991\pi\)
\(108\) 0 0
\(109\) 1.56215i 0.149627i 0.997198 + 0.0748135i \(0.0238362\pi\)
−0.997198 + 0.0748135i \(0.976164\pi\)
\(110\) 11.6025i 1.10626i
\(111\) 0 0
\(112\) −2.54325 1.46835i −0.240314 0.138746i
\(113\) −2.29605 3.97687i −0.215994 0.374112i 0.737586 0.675254i \(-0.235966\pi\)
−0.953580 + 0.301141i \(0.902632\pi\)
\(114\) 0 0
\(115\) −6.68457 3.85934i −0.623340 0.359885i
\(116\) 17.9397 1.66566
\(117\) 0 0
\(118\) −29.5422 −2.71958
\(119\) −1.65320 0.954474i −0.151548 0.0874965i
\(120\) 0 0
\(121\) −4.28518 7.42214i −0.389562 0.674740i
\(122\) 8.30010 + 4.79207i 0.751456 + 0.433853i
\(123\) 0 0
\(124\) 18.4304i 1.65510i
\(125\) 5.94868i 0.532066i
\(126\) 0 0
\(127\) 5.62331 + 9.73987i 0.498988 + 0.864273i 0.999999 0.00116769i \(-0.000371687\pi\)
−0.501011 + 0.865441i \(0.667038\pi\)
\(128\) 8.23353 + 4.75363i 0.727749 + 0.420166i
\(129\) 0 0
\(130\) 26.5166 4.14166i 2.32566 0.363247i
\(131\) 1.93018 3.34317i 0.168640 0.292094i −0.769302 0.638886i \(-0.779396\pi\)
0.937942 + 0.346792i \(0.112729\pi\)
\(132\) 0 0
\(133\) −0.0674638 + 0.116851i −0.00584985 + 0.0101322i
\(134\) 10.8887 18.8598i 0.940640 1.62924i
\(135\) 0 0
\(136\) 50.8598 + 29.3639i 4.36119 + 2.51793i
\(137\) 2.23092i 0.190600i 0.995449 + 0.0953002i \(0.0303811\pi\)
−0.995449 + 0.0953002i \(0.969619\pi\)
\(138\) 0 0
\(139\) −8.12287 14.0692i −0.688973 1.19334i −0.972170 0.234275i \(-0.924729\pi\)
0.283197 0.959062i \(-0.408605\pi\)
\(140\) −3.68833 −0.311721
\(141\) 0 0
\(142\) −8.27333 14.3298i −0.694282 1.20253i
\(143\) −4.37519 + 3.52748i −0.365872 + 0.294983i
\(144\) 0 0
\(145\) 8.67031 5.00581i 0.720030 0.415710i
\(146\) 4.98508 8.63440i 0.412568 0.714588i
\(147\) 0 0
\(148\) 9.59803 + 5.54143i 0.788953 + 0.455502i
\(149\) −6.61334 + 3.81821i −0.541786 + 0.312800i −0.745802 0.666167i \(-0.767934\pi\)
0.204017 + 0.978967i \(0.434600\pi\)
\(150\) 0 0
\(151\) 10.8516 6.26520i 0.883095 0.509855i 0.0114171 0.999935i \(-0.496366\pi\)
0.871677 + 0.490080i \(0.163032\pi\)
\(152\) 2.07549 3.59485i 0.168344 0.291581i
\(153\) 0 0
\(154\) 0.934822 0.539720i 0.0753301 0.0434919i
\(155\) 5.14275 + 8.90751i 0.413076 + 0.715468i
\(156\) 0 0
\(157\) −5.04228 + 8.73349i −0.402418 + 0.697009i −0.994017 0.109224i \(-0.965164\pi\)
0.591599 + 0.806232i \(0.298497\pi\)
\(158\) 7.24214i 0.576153i
\(159\) 0 0
\(160\) 38.5816 3.05015
\(161\) 0.718108i 0.0565948i
\(162\) 0 0
\(163\) −10.8176 6.24553i −0.847297 0.489187i 0.0124407 0.999923i \(-0.496040\pi\)
−0.859738 + 0.510735i \(0.829373\pi\)
\(164\) −32.3441 + 18.6739i −2.52565 + 1.45818i
\(165\) 0 0
\(166\) −21.9837 −1.70627
\(167\) 24.3257i 1.88238i −0.337882 0.941189i \(-0.609710\pi\)
0.337882 0.941189i \(-0.390290\pi\)
\(168\) 0 0
\(169\) −9.62356 8.73998i −0.740274 0.672306i
\(170\) 54.4048 4.17265
\(171\) 0 0
\(172\) −8.79610 15.2353i −0.670696 1.16168i
\(173\) 10.5463 0.801822 0.400911 0.916117i \(-0.368694\pi\)
0.400911 + 0.916117i \(0.368694\pi\)
\(174\) 0 0
\(175\) −0.651647 + 0.376228i −0.0492599 + 0.0284402i
\(176\) −15.1783 + 8.76319i −1.14411 + 0.660550i
\(177\) 0 0
\(178\) −3.62903 −0.272007
\(179\) −3.54457 6.13938i −0.264934 0.458879i 0.702612 0.711573i \(-0.252017\pi\)
−0.967546 + 0.252694i \(0.918683\pi\)
\(180\) 0 0
\(181\) 15.7315 1.16931 0.584656 0.811281i \(-0.301230\pi\)
0.584656 + 0.811281i \(0.301230\pi\)
\(182\) 1.56718 + 1.94380i 0.116167 + 0.144084i
\(183\) 0 0
\(184\) 22.0922i 1.62866i
\(185\) 6.18502 0.454732
\(186\) 0 0
\(187\) −9.86640 + 5.69637i −0.721502 + 0.416560i
\(188\) 35.7569 + 20.6443i 2.60784 + 1.50564i
\(189\) 0 0
\(190\) 3.84542i 0.278976i
\(191\) −8.12183 −0.587675 −0.293837 0.955855i \(-0.594932\pi\)
−0.293837 + 0.955855i \(0.594932\pi\)
\(192\) 0 0
\(193\) 7.70792i 0.554828i 0.960750 + 0.277414i \(0.0894774\pi\)
−0.960750 + 0.277414i \(0.910523\pi\)
\(194\) −17.9542 + 31.0976i −1.28904 + 2.23268i
\(195\) 0 0
\(196\) 17.4348 + 30.1979i 1.24534 + 2.15699i
\(197\) 3.46949 2.00311i 0.247191 0.142716i −0.371287 0.928518i \(-0.621083\pi\)
0.618477 + 0.785803i \(0.287750\pi\)
\(198\) 0 0
\(199\) −6.44292 + 11.1595i −0.456726 + 0.791073i −0.998786 0.0492670i \(-0.984311\pi\)
0.542059 + 0.840340i \(0.317645\pi\)
\(200\) 20.0476 11.5745i 1.41758 0.818439i
\(201\) 0 0
\(202\) 35.3842 20.4291i 2.48963 1.43739i
\(203\) 0.806643 + 0.465716i 0.0566152 + 0.0326868i
\(204\) 0 0
\(205\) −10.4214 + 18.0503i −0.727859 + 1.26069i
\(206\) −25.2392 + 14.5719i −1.75850 + 1.01527i
\(207\) 0 0
\(208\) −25.4457 31.5607i −1.76434 2.18834i
\(209\) 0.402628 + 0.697373i 0.0278504 + 0.0482383i
\(210\) 0 0
\(211\) 17.2151 1.18513 0.592567 0.805521i \(-0.298114\pi\)
0.592567 + 0.805521i \(0.298114\pi\)
\(212\) −11.7721 20.3900i −0.808514 1.40039i
\(213\) 0 0
\(214\) 3.15916i 0.215956i
\(215\) −8.50238 4.90885i −0.579858 0.334781i
\(216\) 0 0
\(217\) −0.478456 + 0.828711i −0.0324797 + 0.0562565i
\(218\) 2.07101 3.58710i 0.140267 0.242949i
\(219\) 0 0
\(220\) −11.0061 + 19.0631i −0.742031 + 1.28524i
\(221\) −16.5405 20.5155i −1.11264 1.38002i
\(222\) 0 0
\(223\) 8.17028 + 4.71711i 0.547122 + 0.315881i 0.747961 0.663743i \(-0.231033\pi\)
−0.200838 + 0.979624i \(0.564367\pi\)
\(224\) 1.79472 + 3.10855i 0.119915 + 0.207699i
\(225\) 0 0
\(226\) 12.1759i 0.809927i
\(227\) 18.3577i 1.21844i −0.793001 0.609220i \(-0.791482\pi\)
0.793001 0.609220i \(-0.208518\pi\)
\(228\) 0 0
\(229\) −11.3476 6.55153i −0.749870 0.432937i 0.0757771 0.997125i \(-0.475856\pi\)
−0.825647 + 0.564187i \(0.809190\pi\)
\(230\) 10.2330 + 17.7241i 0.674743 + 1.16869i
\(231\) 0 0
\(232\) −24.8160 14.3275i −1.62925 0.940647i
\(233\) −4.84195 −0.317207 −0.158603 0.987342i \(-0.550699\pi\)
−0.158603 + 0.987342i \(0.550699\pi\)
\(234\) 0 0
\(235\) 23.0420 1.50309
\(236\) 48.5383 + 28.0236i 3.15958 + 1.82418i
\(237\) 0 0
\(238\) 2.53078 + 4.38343i 0.164046 + 0.284136i
\(239\) −13.6653 7.88968i −0.883936 0.510341i −0.0119822 0.999928i \(-0.503814\pi\)
−0.871954 + 0.489587i \(0.837147\pi\)
\(240\) 0 0
\(241\) 16.2866i 1.04911i −0.851375 0.524557i \(-0.824231\pi\)
0.851375 0.524557i \(-0.175769\pi\)
\(242\) 22.7242i 1.46077i
\(243\) 0 0
\(244\) −9.09147 15.7469i −0.582022 1.00809i
\(245\) 16.8526 + 9.72985i 1.07667 + 0.621617i
\(246\) 0 0
\(247\) −1.45007 + 1.16911i −0.0922656 + 0.0743888i
\(248\) 14.7195 25.4949i 0.934687 1.61893i
\(249\) 0 0
\(250\) −7.88642 + 13.6597i −0.498781 + 0.863914i
\(251\) −13.7361 + 23.7917i −0.867017 + 1.50172i −0.00198652 + 0.999998i \(0.500632\pi\)
−0.865030 + 0.501719i \(0.832701\pi\)
\(252\) 0 0
\(253\) −3.71154 2.14286i −0.233343 0.134720i
\(254\) 29.8203i 1.87109i
\(255\) 0 0
\(256\) 1.34789 + 2.33462i 0.0842434 + 0.145914i
\(257\) 9.79971 0.611289 0.305644 0.952146i \(-0.401128\pi\)
0.305644 + 0.952146i \(0.401128\pi\)
\(258\) 0 0
\(259\) 0.287712 + 0.498332i 0.0178775 + 0.0309648i
\(260\) −47.4960 18.3488i −2.94558 1.13794i
\(261\) 0 0
\(262\) −8.86436 + 5.11784i −0.547642 + 0.316181i
\(263\) 11.5486 20.0028i 0.712119 1.23343i −0.251941 0.967743i \(-0.581069\pi\)
0.964060 0.265684i \(-0.0855977\pi\)
\(264\) 0 0
\(265\) −11.3790 6.56970i −0.699009 0.403573i
\(266\) 0.309828 0.178879i 0.0189968 0.0109678i
\(267\) 0 0
\(268\) −35.7806 + 20.6580i −2.18565 + 1.26189i
\(269\) 10.8197 18.7403i 0.659688 1.14261i −0.321008 0.947076i \(-0.604022\pi\)
0.980696 0.195537i \(-0.0626450\pi\)
\(270\) 0 0
\(271\) −23.0990 + 13.3362i −1.40316 + 0.810116i −0.994716 0.102666i \(-0.967263\pi\)
−0.408447 + 0.912782i \(0.633929\pi\)
\(272\) −41.0911 71.1718i −2.49151 4.31542i
\(273\) 0 0
\(274\) 2.95763 5.12276i 0.178677 0.309478i
\(275\) 4.49072i 0.270800i
\(276\) 0 0
\(277\) 6.44278 0.387109 0.193554 0.981090i \(-0.437998\pi\)
0.193554 + 0.981090i \(0.437998\pi\)
\(278\) 43.0754i 2.58349i
\(279\) 0 0
\(280\) 5.10207 + 2.94568i 0.304907 + 0.176038i
\(281\) 1.22438 0.706894i 0.0730402 0.0421698i −0.463035 0.886340i \(-0.653240\pi\)
0.536075 + 0.844170i \(0.319906\pi\)
\(282\) 0 0
\(283\) 19.9798 1.18767 0.593837 0.804585i \(-0.297612\pi\)
0.593837 + 0.804585i \(0.297612\pi\)
\(284\) 31.3922i 1.86278i
\(285\) 0 0
\(286\) 14.7231 2.29961i 0.870594 0.135979i
\(287\) −1.93910 −0.114462
\(288\) 0 0
\(289\) −18.2106 31.5416i −1.07121 1.85539i
\(290\) −26.5457 −1.55882
\(291\) 0 0
\(292\) −16.3811 + 9.45765i −0.958634 + 0.553467i
\(293\) 2.92034 1.68606i 0.170608 0.0985005i −0.412265 0.911064i \(-0.635262\pi\)
0.582872 + 0.812564i \(0.301929\pi\)
\(294\) 0 0
\(295\) 31.2783 1.82110
\(296\) −8.85131 15.3309i −0.514472 0.891092i
\(297\) 0 0
\(298\) 20.2479 1.17293
\(299\) 3.57246 9.24736i 0.206601 0.534789i
\(300\) 0 0
\(301\) 0.913391i 0.0526470i
\(302\) −33.2242 −1.91184
\(303\) 0 0
\(304\) −5.03054 + 2.90438i −0.288521 + 0.166578i
\(305\) −8.78789 5.07369i −0.503193 0.290519i
\(306\) 0 0
\(307\) 20.7017i 1.18151i −0.806851 0.590756i \(-0.798830\pi\)
0.806851 0.590756i \(-0.201170\pi\)
\(308\) −2.04791 −0.116690
\(309\) 0 0
\(310\) 27.2719i 1.54894i
\(311\) −4.13884 + 7.16868i −0.234692 + 0.406499i −0.959183 0.282786i \(-0.908742\pi\)
0.724491 + 0.689284i \(0.242075\pi\)
\(312\) 0 0
\(313\) 6.19041 + 10.7221i 0.349902 + 0.606049i 0.986232 0.165369i \(-0.0528814\pi\)
−0.636329 + 0.771417i \(0.719548\pi\)
\(314\) 23.1567 13.3696i 1.30681 0.754488i
\(315\) 0 0
\(316\) 6.86987 11.8990i 0.386460 0.669369i
\(317\) −28.4498 + 16.4255i −1.59790 + 0.922547i −0.606006 + 0.795460i \(0.707229\pi\)
−0.991892 + 0.127087i \(0.959437\pi\)
\(318\) 0 0
\(319\) 4.81410 2.77942i 0.269538 0.155618i
\(320\) −33.9204 19.5839i −1.89621 1.09478i
\(321\) 0 0
\(322\) −0.952027 + 1.64896i −0.0530544 + 0.0918929i
\(323\) −3.27002 + 1.88795i −0.181949 + 0.105048i
\(324\) 0 0
\(325\) −10.2632 + 1.60302i −0.569299 + 0.0889194i
\(326\) 16.5599 + 28.6826i 0.917170 + 1.58858i
\(327\) 0 0
\(328\) 59.6555 3.29392
\(329\) 1.07186 + 1.85651i 0.0590933 + 0.102353i
\(330\) 0 0
\(331\) 13.8802i 0.762922i 0.924385 + 0.381461i \(0.124579\pi\)
−0.924385 + 0.381461i \(0.875421\pi\)
\(332\) 36.1196 + 20.8537i 1.98232 + 1.14449i
\(333\) 0 0
\(334\) −32.2496 + 55.8580i −1.76462 + 3.05641i
\(335\) −11.5286 + 19.9681i −0.629876 + 1.09098i
\(336\) 0 0
\(337\) −12.3880 + 21.4566i −0.674816 + 1.16882i 0.301706 + 0.953401i \(0.402444\pi\)
−0.976522 + 0.215415i \(0.930889\pi\)
\(338\) 10.5112 + 32.8276i 0.571733 + 1.78559i
\(339\) 0 0
\(340\) −89.3880 51.6082i −4.84774 2.79885i
\(341\) 2.85546 + 4.94580i 0.154632 + 0.267830i
\(342\) 0 0
\(343\) 3.63868i 0.196470i
\(344\) 28.1000i 1.51505i
\(345\) 0 0
\(346\) −24.2170 13.9817i −1.30192 0.751662i
\(347\) 9.52830 + 16.5035i 0.511506 + 0.885955i 0.999911 + 0.0133374i \(0.00424556\pi\)
−0.488405 + 0.872617i \(0.662421\pi\)
\(348\) 0 0
\(349\) 20.5588 + 11.8696i 1.10049 + 0.635367i 0.936349 0.351070i \(-0.114182\pi\)
0.164139 + 0.986437i \(0.447516\pi\)
\(350\) 1.99513 0.106644
\(351\) 0 0
\(352\) 21.4221 1.14180
\(353\) 1.89779 + 1.09569i 0.101009 + 0.0583176i 0.549654 0.835393i \(-0.314760\pi\)
−0.448644 + 0.893710i \(0.648093\pi\)
\(354\) 0 0
\(355\) 8.75954 + 15.1720i 0.464908 + 0.805245i
\(356\) 5.96256 + 3.44249i 0.316015 + 0.182452i
\(357\) 0 0
\(358\) 18.7968i 0.993441i
\(359\) 5.58420i 0.294723i −0.989083 0.147361i \(-0.952922\pi\)
0.989083 0.147361i \(-0.0470780\pi\)
\(360\) 0 0
\(361\) −9.36656 16.2234i −0.492977 0.853861i
\(362\) −36.1235 20.8559i −1.89861 1.09616i
\(363\) 0 0
\(364\) −0.731025 4.68033i −0.0383161 0.245316i
\(365\) −5.27805 + 9.14184i −0.276266 + 0.478506i
\(366\) 0 0
\(367\) 6.68867 11.5851i 0.349146 0.604738i −0.636952 0.770903i \(-0.719805\pi\)
0.986098 + 0.166165i \(0.0531384\pi\)
\(368\) 15.4576 26.7734i 0.805785 1.39566i
\(369\) 0 0
\(370\) −14.2024 8.19975i −0.738347 0.426285i
\(371\) 1.22242i 0.0634651i
\(372\) 0 0
\(373\) −3.90999 6.77230i −0.202451 0.350656i 0.746866 0.664974i \(-0.231558\pi\)
−0.949318 + 0.314318i \(0.898224\pi\)
\(374\) 30.2077 1.56200
\(375\) 0 0
\(376\) −32.9751 57.1145i −1.70056 2.94546i
\(377\) 8.07061 + 10.0101i 0.415658 + 0.515547i
\(378\) 0 0
\(379\) 32.9974 19.0510i 1.69496 0.978586i 0.744561 0.667554i \(-0.232659\pi\)
0.950399 0.311032i \(-0.100675\pi\)
\(380\) −3.64775 + 6.31809i −0.187126 + 0.324111i
\(381\) 0 0
\(382\) 18.6498 + 10.7675i 0.954206 + 0.550911i
\(383\) 15.4126 8.89848i 0.787548 0.454691i −0.0515506 0.998670i \(-0.516416\pi\)
0.839099 + 0.543979i \(0.183083\pi\)
\(384\) 0 0
\(385\) −0.989761 + 0.571439i −0.0504429 + 0.0291232i
\(386\) 10.2187 17.6994i 0.520120 0.900873i
\(387\) 0 0
\(388\) 58.9981 34.0626i 2.99518 1.72927i
\(389\) 17.2599 + 29.8950i 0.875112 + 1.51574i 0.856644 + 0.515909i \(0.172546\pi\)
0.0184682 + 0.999829i \(0.494121\pi\)
\(390\) 0 0
\(391\) 10.0480 17.4036i 0.508148 0.880139i
\(392\) 55.6971i 2.81313i
\(393\) 0 0
\(394\) −10.6224 −0.535151
\(395\) 7.66775i 0.385806i
\(396\) 0 0
\(397\) −7.59209 4.38329i −0.381036 0.219991i 0.297233 0.954805i \(-0.403936\pi\)
−0.678269 + 0.734814i \(0.737270\pi\)
\(398\) 29.5892 17.0833i 1.48317 0.856309i
\(399\) 0 0
\(400\) −32.3940 −1.61970
\(401\) 21.4944i 1.07338i 0.843780 + 0.536690i \(0.180325\pi\)
−0.843780 + 0.536690i \(0.819675\pi\)
\(402\) 0 0
\(403\) −10.2840 + 8.29140i −0.512280 + 0.413024i
\(404\) −77.5159 −3.85656
\(405\) 0 0
\(406\) −1.23484 2.13880i −0.0612840 0.106147i
\(407\) 3.43417 0.170225
\(408\) 0 0
\(409\) 30.7301 17.7420i 1.51951 0.877287i 0.519770 0.854306i \(-0.326018\pi\)
0.999736 0.0229809i \(-0.00731570\pi\)
\(410\) 47.8602 27.6321i 2.36365 1.36465i
\(411\) 0 0
\(412\) 55.2913 2.72401
\(413\) 1.45499 + 2.52012i 0.0715954 + 0.124007i
\(414\) 0 0
\(415\) 23.2757 1.14256
\(416\) 7.64687 + 48.9585i 0.374919 + 2.40039i
\(417\) 0 0
\(418\) 2.13513i 0.104433i
\(419\) 20.0287 0.978464 0.489232 0.872154i \(-0.337277\pi\)
0.489232 + 0.872154i \(0.337277\pi\)
\(420\) 0 0
\(421\) 15.3946 8.88807i 0.750286 0.433178i −0.0755111 0.997145i \(-0.524059\pi\)
0.825797 + 0.563967i \(0.190725\pi\)
\(422\) −39.5302 22.8228i −1.92430 1.11100i
\(423\) 0 0
\(424\) 37.6073i 1.82637i
\(425\) −21.0572 −1.02142
\(426\) 0 0
\(427\) 0.944062i 0.0456864i
\(428\) −2.99677 + 5.19055i −0.144854 + 0.250895i
\(429\) 0 0
\(430\) 13.0158 + 22.5440i 0.627676 + 1.08717i
\(431\) 1.72978 0.998690i 0.0833206 0.0481052i −0.457761 0.889075i \(-0.651348\pi\)
0.541081 + 0.840970i \(0.318015\pi\)
\(432\) 0 0
\(433\) −12.2465 + 21.2116i −0.588532 + 1.01937i 0.405893 + 0.913920i \(0.366960\pi\)
−0.994425 + 0.105446i \(0.966373\pi\)
\(434\) 2.19732 1.26862i 0.105475 0.0608957i
\(435\) 0 0
\(436\) −6.80543 + 3.92911i −0.325921 + 0.188170i
\(437\) −1.23012 0.710208i −0.0588444 0.0339738i
\(438\) 0 0
\(439\) −7.66518 + 13.2765i −0.365839 + 0.633652i −0.988910 0.148513i \(-0.952551\pi\)
0.623071 + 0.782165i \(0.285885\pi\)
\(440\) 30.4495 17.5800i 1.45162 0.838095i
\(441\) 0 0
\(442\) 10.7830 + 69.0373i 0.512895 + 3.28377i
\(443\) −4.73265 8.19718i −0.224855 0.389460i 0.731421 0.681926i \(-0.238857\pi\)
−0.956276 + 0.292466i \(0.905524\pi\)
\(444\) 0 0
\(445\) 3.84231 0.182143
\(446\) −12.5074 21.6634i −0.592241 1.02579i
\(447\) 0 0
\(448\) 3.64399i 0.172162i
\(449\) 14.1283 + 8.15697i 0.666755 + 0.384951i 0.794846 0.606811i \(-0.207552\pi\)
−0.128091 + 0.991762i \(0.540885\pi\)
\(450\) 0 0
\(451\) −5.78635 + 10.0223i −0.272469 + 0.471929i
\(452\) 11.5500 20.0052i 0.543266 0.940964i
\(453\) 0 0
\(454\) −24.3376 + 42.1539i −1.14222 + 1.97838i
\(455\) −1.65929 2.05804i −0.0777885 0.0964824i
\(456\) 0 0
\(457\) −1.87187 1.08073i −0.0875626 0.0505543i 0.455579 0.890195i \(-0.349432\pi\)
−0.543142 + 0.839641i \(0.682765\pi\)
\(458\) 17.3713 + 30.0880i 0.811708 + 1.40592i
\(459\) 0 0
\(460\) 38.8279i 1.81036i
\(461\) 3.06596i 0.142796i −0.997448 0.0713980i \(-0.977254\pi\)
0.997448 0.0713980i \(-0.0227460\pi\)
\(462\) 0 0
\(463\) 13.8184 + 7.97807i 0.642197 + 0.370772i 0.785460 0.618912i \(-0.212426\pi\)
−0.143264 + 0.989685i \(0.545760\pi\)
\(464\) 20.0495 + 34.7268i 0.930776 + 1.61215i
\(465\) 0 0
\(466\) 11.1184 + 6.41919i 0.515048 + 0.297363i
\(467\) −3.15406 −0.145952 −0.0729762 0.997334i \(-0.523250\pi\)
−0.0729762 + 0.997334i \(0.523250\pi\)
\(468\) 0 0
\(469\) −2.14513 −0.0990529
\(470\) −52.9102 30.5477i −2.44057 1.40906i
\(471\) 0 0
\(472\) −44.7621 77.5302i −2.06034 3.56862i
\(473\) −4.72086 2.72559i −0.217065 0.125323i
\(474\) 0 0
\(475\) 1.48836i 0.0682905i
\(476\) 9.60274i 0.440141i
\(477\) 0 0
\(478\) 20.9194 + 36.2334i 0.956830 + 1.65728i
\(479\) 8.60548 + 4.96837i 0.393194 + 0.227011i 0.683543 0.729910i \(-0.260438\pi\)
−0.290349 + 0.956921i \(0.593771\pi\)
\(480\) 0 0
\(481\) 1.22587 + 7.84853i 0.0558948 + 0.357862i
\(482\) −21.5919 + 37.3983i −0.983484 + 1.70344i
\(483\) 0 0
\(484\) 21.5561 37.3362i 0.979822 1.69710i
\(485\) 19.0093 32.9251i 0.863170 1.49505i
\(486\) 0 0
\(487\) −20.0246 11.5612i −0.907402 0.523889i −0.0278074 0.999613i \(-0.508853\pi\)
−0.879594 + 0.475725i \(0.842186\pi\)
\(488\) 29.0436i 1.31474i
\(489\) 0 0
\(490\) −25.7986 44.6844i −1.16546 2.01864i
\(491\) −29.7055 −1.34059 −0.670295 0.742095i \(-0.733832\pi\)
−0.670295 + 0.742095i \(0.733832\pi\)
\(492\) 0 0
\(493\) 13.0329 + 22.5736i 0.586971 + 1.01666i
\(494\) 4.87967 0.762161i 0.219547 0.0342912i
\(495\) 0 0
\(496\) −35.6768 + 20.5980i −1.60194 + 0.924878i
\(497\) −0.814945 + 1.41153i −0.0365553 + 0.0633156i
\(498\) 0 0
\(499\) −32.4943 18.7606i −1.45465 0.839841i −0.455907 0.890027i \(-0.650685\pi\)
−0.998740 + 0.0501867i \(0.984018\pi\)
\(500\) 25.9151 14.9621i 1.15896 0.669124i
\(501\) 0 0
\(502\) 63.0833 36.4212i 2.81555 1.62556i
\(503\) −14.5097 + 25.1315i −0.646956 + 1.12056i 0.336891 + 0.941544i \(0.390625\pi\)
−0.983846 + 0.179016i \(0.942709\pi\)
\(504\) 0 0
\(505\) −37.4637 + 21.6297i −1.66711 + 0.962509i
\(506\) 5.68176 + 9.84110i 0.252585 + 0.437490i
\(507\) 0 0
\(508\) −28.2874 + 48.9953i −1.25505 + 2.17381i
\(509\) 8.24121i 0.365285i 0.983179 + 0.182643i \(0.0584651\pi\)
−0.983179 + 0.182643i \(0.941535\pi\)
\(510\) 0 0
\(511\) −0.982086 −0.0434449
\(512\) 26.1624i 1.15622i
\(513\) 0 0
\(514\) −22.5026 12.9919i −0.992548 0.573048i
\(515\) 26.7225 15.4282i 1.17753 0.679849i
\(516\) 0 0
\(517\) 12.7938 0.562671
\(518\) 1.52573i 0.0670367i
\(519\) 0 0
\(520\) 51.0471 + 63.3145i 2.23856 + 2.77653i
\(521\) −37.2716 −1.63290 −0.816449 0.577418i \(-0.804060\pi\)
−0.816449 + 0.577418i \(0.804060\pi\)
\(522\) 0 0
\(523\) −1.53435 2.65756i −0.0670922 0.116207i 0.830528 0.556977i \(-0.188039\pi\)
−0.897620 + 0.440770i \(0.854706\pi\)
\(524\) 19.4191 0.848326
\(525\) 0 0
\(526\) −53.0372 + 30.6210i −2.31253 + 1.33514i
\(527\) −23.1911 + 13.3894i −1.01022 + 0.583252i
\(528\) 0 0
\(529\) −15.4403 −0.671317
\(530\) 17.4195 + 30.1714i 0.756653 + 1.31056i
\(531\) 0 0
\(532\) −0.678737 −0.0294270
\(533\) −24.9706 9.64668i −1.08160 0.417844i
\(534\) 0 0
\(535\) 3.34482i 0.144609i
\(536\) 65.9939 2.85050
\(537\) 0 0
\(538\) −49.6896 + 28.6883i −2.14227 + 1.23684i
\(539\) 9.35723 + 5.40240i 0.403044 + 0.232698i
\(540\) 0 0
\(541\) 7.25981i 0.312124i −0.987747 0.156062i \(-0.950120\pi\)
0.987747 0.156062i \(-0.0498799\pi\)
\(542\) 70.7215 3.03775
\(543\) 0 0
\(544\) 100.449i 4.30672i
\(545\) −2.19273 + 3.79791i −0.0939261 + 0.162685i
\(546\) 0 0
\(547\) −12.8226 22.2094i −0.548256 0.949607i −0.998394 0.0566482i \(-0.981959\pi\)
0.450138 0.892959i \(-0.351375\pi\)
\(548\) −9.71888 + 5.61120i −0.415170 + 0.239698i
\(549\) 0 0
\(550\) 5.95354 10.3118i 0.253860 0.439698i
\(551\) 1.59554 0.921184i 0.0679722 0.0392438i
\(552\) 0 0
\(553\) 0.617796 0.356685i 0.0262714 0.0151678i
\(554\) −14.7943 8.54147i −0.628548 0.362892i
\(555\) 0 0
\(556\) 40.8612 70.7736i 1.73290 3.00147i
\(557\) 7.49468 4.32706i 0.317560 0.183343i −0.332744 0.943017i \(-0.607975\pi\)
0.650304 + 0.759674i \(0.274641\pi\)
\(558\) 0 0
\(559\) 4.54395 11.7621i 0.192189 0.497483i
\(560\) −4.12210 7.13969i −0.174191 0.301707i
\(561\) 0 0
\(562\) −3.74864 −0.158127
\(563\) −23.0556 39.9334i −0.971677 1.68299i −0.690493 0.723339i \(-0.742606\pi\)
−0.281184 0.959654i \(-0.590727\pi\)
\(564\) 0 0
\(565\) 12.8914i 0.542347i
\(566\) −45.8786 26.4880i −1.92842 1.11338i
\(567\) 0 0
\(568\) 25.0714 43.4249i 1.05197 1.82207i
\(569\) 8.61575 14.9229i 0.361191 0.625601i −0.626966 0.779047i \(-0.715704\pi\)
0.988157 + 0.153445i \(0.0490369\pi\)
\(570\) 0 0
\(571\) 10.7707 18.6554i 0.450741 0.780706i −0.547692 0.836680i \(-0.684493\pi\)
0.998432 + 0.0559746i \(0.0178266\pi\)
\(572\) −26.3717 10.1880i −1.10266 0.425980i
\(573\) 0 0
\(574\) 4.45267 + 2.57075i 0.185851 + 0.107301i
\(575\) −3.96065 6.86005i −0.165171 0.286084i
\(576\) 0 0
\(577\) 19.9386i 0.830056i 0.909809 + 0.415028i \(0.136228\pi\)
−0.909809 + 0.415028i \(0.863772\pi\)
\(578\) 96.5702i 4.01679i
\(579\) 0 0
\(580\) 43.6150 + 25.1811i 1.81101 + 1.04559i
\(581\) 1.08273 + 1.87534i 0.0449191 + 0.0778021i
\(582\) 0 0
\(583\) −6.31810 3.64776i −0.261669 0.151075i
\(584\) 30.2134 1.25024
\(585\) 0 0
\(586\) −8.94111 −0.369354
\(587\) 14.3659 + 8.29416i 0.592945 + 0.342337i 0.766261 0.642529i \(-0.222115\pi\)
−0.173316 + 0.984866i \(0.555448\pi\)
\(588\) 0 0
\(589\) 0.946385 + 1.63919i 0.0389951 + 0.0675415i
\(590\) −71.8231 41.4671i −2.95691 1.70717i
\(591\) 0 0
\(592\) 24.7726i 1.01815i
\(593\) 15.4909i 0.636137i −0.948068 0.318068i \(-0.896966\pi\)
0.948068 0.318068i \(-0.103034\pi\)
\(594\) 0 0
\(595\) −2.67951 4.64104i −0.109849 0.190264i
\(596\) −33.2676 19.2071i −1.36270 0.786752i
\(597\) 0 0
\(598\) −20.4629 + 16.4981i −0.836790 + 0.674659i
\(599\) 17.4824 30.2804i 0.714312 1.23722i −0.248913 0.968526i \(-0.580073\pi\)
0.963224 0.268698i \(-0.0865934\pi\)
\(600\) 0 0
\(601\) −14.3337 + 24.8266i −0.584682 + 1.01270i 0.410233 + 0.911981i \(0.365447\pi\)
−0.994915 + 0.100718i \(0.967886\pi\)
\(602\) −1.21092 + 2.09738i −0.0493535 + 0.0854827i
\(603\) 0 0
\(604\) 54.5880 + 31.5164i 2.22115 + 1.28238i
\(605\) 24.0597i 0.978165i
\(606\) 0 0
\(607\) −8.13672 14.0932i −0.330259 0.572026i 0.652303 0.757958i \(-0.273803\pi\)
−0.982563 + 0.185932i \(0.940470\pi\)
\(608\) 7.09991 0.287939
\(609\) 0 0
\(610\) 13.4528 + 23.3010i 0.544689 + 0.943429i
\(611\) 4.56691 + 29.2393i 0.184757 + 1.18289i
\(612\) 0 0
\(613\) −18.0575 + 10.4255i −0.729336 + 0.421082i −0.818179 0.574964i \(-0.805016\pi\)
0.0888435 + 0.996046i \(0.471683\pi\)
\(614\) −27.4452 + 47.5365i −1.10760 + 1.91842i
\(615\) 0 0
\(616\) 2.83287 + 1.63556i 0.114140 + 0.0658985i
\(617\) 15.5643 8.98605i 0.626595 0.361765i −0.152837 0.988251i \(-0.548841\pi\)
0.779432 + 0.626487i \(0.215508\pi\)
\(618\) 0 0
\(619\) −6.56515 + 3.79039i −0.263876 + 0.152349i −0.626101 0.779742i \(-0.715350\pi\)
0.362226 + 0.932090i \(0.382017\pi\)
\(620\) −25.8700 + 44.8082i −1.03897 + 1.79954i
\(621\) 0 0
\(622\) 19.0077 10.9741i 0.762138 0.440021i
\(623\) 0.178735 + 0.309578i 0.00716085 + 0.0124030i
\(624\) 0 0
\(625\) 15.5524 26.9376i 0.622097 1.07750i
\(626\) 32.8276i 1.31205i
\(627\) 0 0
\(628\) −50.7293 −2.02432
\(629\) 16.1030i 0.642069i
\(630\) 0 0
\(631\) 11.9576 + 6.90373i 0.476025 + 0.274833i 0.718758 0.695260i \(-0.244711\pi\)
−0.242734 + 0.970093i \(0.578044\pi\)
\(632\) −19.0062 + 10.9732i −0.756026 + 0.436492i
\(633\) 0 0
\(634\) 87.1039 3.45934
\(635\) 31.5728i 1.25293i
\(636\) 0 0
\(637\) −9.00658 + 23.3137i −0.356854 + 0.923721i
\(638\) −14.7392 −0.583531
\(639\) 0 0
\(640\) 13.3449 + 23.1141i 0.527505 + 0.913665i
\(641\) −34.5348 −1.36404 −0.682022 0.731332i \(-0.738899\pi\)
−0.682022 + 0.731332i \(0.738899\pi\)
\(642\) 0 0
\(643\) −7.80782 + 4.50785i −0.307910 + 0.177772i −0.645991 0.763345i \(-0.723556\pi\)
0.338081 + 0.941117i \(0.390222\pi\)
\(644\) 3.12839 1.80618i 0.123276 0.0711734i
\(645\) 0 0
\(646\) 10.0117 0.393906
\(647\) −2.14777 3.72004i −0.0844374 0.146250i 0.820714 0.571339i \(-0.193576\pi\)
−0.905151 + 0.425089i \(0.860243\pi\)
\(648\) 0 0
\(649\) 17.3670 0.681714
\(650\) 25.6921 + 9.92541i 1.00773 + 0.389307i
\(651\) 0 0
\(652\) 62.8348i 2.46080i
\(653\) 37.1624 1.45428 0.727138 0.686491i \(-0.240850\pi\)
0.727138 + 0.686491i \(0.240850\pi\)
\(654\) 0 0
\(655\) 9.38531 5.41861i 0.366715 0.211723i
\(656\) −72.2960 41.7401i −2.82269 1.62968i
\(657\) 0 0
\(658\) 5.68402i 0.221586i
\(659\) −1.31776 −0.0513325 −0.0256663 0.999671i \(-0.508171\pi\)
−0.0256663 + 0.999671i \(0.508171\pi\)
\(660\) 0 0
\(661\) 33.5146i 1.30357i 0.758405 + 0.651783i \(0.225979\pi\)
−0.758405 + 0.651783i \(0.774021\pi\)
\(662\) 18.4015 31.8724i 0.715196 1.23875i
\(663\) 0 0
\(664\) −33.3095 57.6938i −1.29266 2.23895i
\(665\) −0.328036 + 0.189392i −0.0127207 + 0.00734430i
\(666\) 0 0
\(667\) −4.90270 + 8.49173i −0.189833 + 0.328801i
\(668\) 105.973 61.1837i 4.10023 2.36727i
\(669\) 0 0
\(670\) 52.9453 30.5680i 2.04545 1.18094i
\(671\) −4.87939 2.81712i −0.188367 0.108754i
\(672\) 0 0
\(673\) −11.5750 + 20.0485i −0.446184 + 0.772813i −0.998134 0.0610643i \(-0.980551\pi\)
0.551950 + 0.833877i \(0.313884\pi\)
\(674\) 56.8919 32.8466i 2.19140 1.26520i
\(675\) 0 0
\(676\) 13.8701 63.9072i 0.533465 2.45797i
\(677\) 8.44612 + 14.6291i 0.324611 + 0.562243i 0.981434 0.191803i \(-0.0614333\pi\)
−0.656823 + 0.754045i \(0.728100\pi\)
\(678\) 0 0
\(679\) 3.53707 0.135740
\(680\) 82.4337 + 142.779i 3.16119 + 5.47534i
\(681\) 0 0
\(682\) 15.1424i 0.579834i
\(683\) 19.4097 + 11.2062i 0.742692 + 0.428793i 0.823047 0.567973i \(-0.192272\pi\)
−0.0803552 + 0.996766i \(0.525605\pi\)
\(684\) 0 0
\(685\) −3.13145 + 5.42383i −0.119646 + 0.207234i
\(686\) 4.82396 8.35535i 0.184180 0.319009i
\(687\) 0 0
\(688\) 19.6612 34.0542i 0.749576 1.29830i
\(689\) 6.08134 15.7416i 0.231681 0.599709i
\(690\) 0 0
\(691\) −22.7060 13.1093i −0.863777 0.498702i 0.00149829 0.999999i \(-0.499523\pi\)
−0.865275 + 0.501297i \(0.832856\pi\)
\(692\) 26.5260 + 45.9444i 1.00837 + 1.74654i
\(693\) 0 0
\(694\) 50.5283i 1.91803i
\(695\) 45.6069i 1.72997i
\(696\) 0 0
\(697\) −46.9949 27.1325i −1.78006 1.02772i
\(698\) −31.4722 54.5114i −1.19124 2.06329i
\(699\) 0 0
\(700\) −3.27803 1.89257i −0.123898 0.0715326i
\(701\) 49.5379 1.87102 0.935510 0.353300i \(-0.114941\pi\)
0.935510 + 0.353300i \(0.114941\pi\)
\(702\) 0 0
\(703\) 1.13819 0.0429275
\(704\) −18.8339 10.8738i −0.709831 0.409821i
\(705\) 0 0
\(706\) −2.90520 5.03196i −0.109339 0.189380i
\(707\) −3.48544 2.01232i −0.131084 0.0756811i
\(708\) 0 0
\(709\) 28.9190i 1.08608i −0.839708 0.543038i \(-0.817274\pi\)
0.839708 0.543038i \(-0.182726\pi\)
\(710\) 46.4516i 1.74330i
\(711\) 0 0
\(712\) −5.49868 9.52399i −0.206072 0.356927i
\(713\) −8.72404 5.03683i −0.326718 0.188631i
\(714\) 0 0
\(715\) −15.5883 + 2.43476i −0.582971 + 0.0910549i
\(716\) 17.8306 30.8835i 0.666360 1.15417i
\(717\) 0 0
\(718\) −7.40322 + 12.8227i −0.276286 + 0.478541i
\(719\) 5.28737 9.15800i 0.197186 0.341536i −0.750429 0.660951i \(-0.770153\pi\)
0.947615 + 0.319415i \(0.103486\pi\)
\(720\) 0 0
\(721\) 2.48613 + 1.43537i 0.0925883 + 0.0534559i
\(722\) 49.6706i 1.84855i
\(723\) 0 0
\(724\) 39.5677 + 68.5333i 1.47052 + 2.54702i
\(725\) 10.2744 0.381583
\(726\) 0 0
\(727\) −4.91833 8.51880i −0.182411 0.315945i 0.760290 0.649584i \(-0.225057\pi\)
−0.942701 + 0.333639i \(0.891723\pi\)
\(728\) −2.72671 + 7.05814i −0.101059 + 0.261592i
\(729\) 0 0
\(730\) 24.2395 13.9947i 0.897143 0.517966i
\(731\) 12.7804 22.1364i 0.472701 0.818743i
\(732\) 0 0
\(733\) 42.6470 + 24.6222i 1.57520 + 0.909443i 0.995515 + 0.0946033i \(0.0301583\pi\)
0.579686 + 0.814840i \(0.303175\pi\)
\(734\) −30.7178 + 17.7349i −1.13381 + 0.654608i
\(735\) 0 0
\(736\) −32.7245 + 18.8935i −1.20624 + 0.696423i
\(737\) −6.40115 + 11.0871i −0.235789 + 0.408399i
\(738\) 0 0
\(739\) 7.35764 4.24793i 0.270655 0.156263i −0.358530 0.933518i \(-0.616722\pi\)
0.629185 + 0.777255i \(0.283389\pi\)
\(740\) 15.5565 + 26.9447i 0.571869 + 0.990506i
\(741\) 0 0
\(742\) −1.62062 + 2.80700i −0.0594949 + 0.103048i
\(743\) 27.3401i 1.00301i 0.865154 + 0.501506i \(0.167220\pi\)
−0.865154 + 0.501506i \(0.832780\pi\)
\(744\) 0 0
\(745\) −21.4378 −0.785421
\(746\) 20.7346i 0.759146i
\(747\) 0 0
\(748\) −49.6318 28.6549i −1.81472 1.04773i
\(749\) −0.269494 + 0.155593i −0.00984711 + 0.00568523i
\(750\) 0 0
\(751\) −32.4964 −1.18581 −0.592906 0.805272i \(-0.702019\pi\)
−0.592906 + 0.805272i \(0.702019\pi\)
\(752\) 92.2889i 3.36543i
\(753\) 0 0
\(754\) −5.26134 33.6853i −0.191607 1.22675i
\(755\) 35.1768 1.28021
\(756\) 0 0
\(757\) 18.7348 + 32.4496i 0.680928 + 1.17940i 0.974698 + 0.223525i \(0.0717566\pi\)
−0.293770 + 0.955876i \(0.594910\pi\)
\(758\) −101.027 −3.66947
\(759\) 0 0
\(760\) 10.0919 5.82654i 0.366071 0.211351i
\(761\) −16.1849 + 9.34435i −0.586702 + 0.338732i −0.763792 0.645462i \(-0.776665\pi\)
0.177091 + 0.984195i \(0.443331\pi\)
\(762\) 0 0
\(763\) −0.408001 −0.0147706
\(764\) −20.4280 35.3823i −0.739058 1.28009i
\(765\) 0 0
\(766\) −47.1884 −1.70499
\(767\) 6.19936 + 39.6909i 0.223846 + 1.43315i
\(768\) 0 0
\(769\) 44.9114i 1.61955i −0.586744 0.809773i \(-0.699590\pi\)
0.586744 0.809773i \(-0.300410\pi\)
\(770\) 3.03033 0.109205
\(771\) 0 0
\(772\) −33.5791 + 19.3869i −1.20854 + 0.697750i
\(773\) −2.77119 1.59995i −0.0996728 0.0575461i 0.449335 0.893363i \(-0.351661\pi\)
−0.549008 + 0.835817i \(0.684994\pi\)
\(774\) 0 0
\(775\) 10.5555i 0.379165i
\(776\) −108.816 −3.90627
\(777\) 0 0
\(778\) 91.5288i 3.28147i
\(779\) −1.91777 + 3.32167i −0.0687112 + 0.119011i
\(780\) 0 0
\(781\) 4.86365 + 8.42408i 0.174035 + 0.301437i
\(782\) −46.1455 + 26.6421i −1.65016 + 0.952719i
\(783\) 0 0
\(784\) −38.9705 + 67.4989i −1.39180 + 2.41067i
\(785\) −24.5176 + 14.1553i −0.875072 + 0.505223i
\(786\) 0 0
\(787\) −26.1957 + 15.1241i −0.933775 + 0.539115i −0.888003 0.459837i \(-0.847908\pi\)
−0.0457713 + 0.998952i \(0.514575\pi\)
\(788\) 17.4528 + 10.0764i 0.621732 + 0.358957i
\(789\) 0 0
\(790\) −10.1655 + 17.6071i −0.361671 + 0.626433i
\(791\) 1.03867 0.599678i 0.0369309 0.0213221i
\(792\) 0 0
\(793\) 4.69654 12.1571i 0.166779 0.431710i
\(794\) 11.6223 + 20.1303i 0.412458 + 0.714399i
\(795\) 0 0
\(796\) −64.8207 −2.29751
\(797\) 16.4758 + 28.5369i 0.583602 + 1.01083i 0.995048 + 0.0993945i \(0.0316906\pi\)
−0.411446 + 0.911434i \(0.634976\pi\)
\(798\) 0 0
\(799\) 59.9909i 2.12232i
\(800\) 34.2898 + 19.7972i 1.21233 + 0.699937i
\(801\) 0 0
\(802\) 28.4961 49.3567i 1.00623 1.74284i
\(803\) −2.93058 + 5.07591i −0.103418 + 0.179125i
\(804\) 0 0
\(805\) 1.00798 1.74587i 0.0355265 0.0615337i
\(806\) 34.6069 5.40528i 1.21897 0.190393i
\(807\) 0 0
\(808\) 107.228 + 61.9080i 3.77226 + 2.17792i
\(809\) −25.6465 44.4211i −0.901684 1.56176i −0.825308 0.564683i \(-0.808998\pi\)
−0.0763761 0.997079i \(-0.524335\pi\)
\(810\) 0 0
\(811\) 51.3422i 1.80287i 0.432915 + 0.901435i \(0.357485\pi\)
−0.432915 + 0.901435i \(0.642515\pi\)
\(812\) 4.68546i 0.164427i
\(813\) 0 0
\(814\) −7.88573 4.55283i −0.276395 0.159577i
\(815\) −17.5331 30.3683i −0.614159 1.06376i
\(816\) 0 0
\(817\) −1.56463 0.903342i −0.0547396 0.0316039i
\(818\) −94.0856 −3.28962
\(819\) 0 0
\(820\) −104.847 −3.66141
\(821\) 3.33889 + 1.92771i 0.116528 + 0.0672774i 0.557131 0.830425i \(-0.311902\pi\)
−0.440603 + 0.897702i \(0.645235\pi\)
\(822\) 0 0
\(823\) 20.9364 + 36.2628i 0.729796 + 1.26404i 0.956969 + 0.290189i \(0.0937181\pi\)
−0.227174 + 0.973854i \(0.572949\pi\)
\(824\) −76.4845 44.1583i −2.66446 1.53833i
\(825\) 0 0
\(826\) 7.71578i 0.268466i
\(827\) 33.2317i 1.15558i 0.816185 + 0.577790i \(0.196085\pi\)
−0.816185 + 0.577790i \(0.803915\pi\)
\(828\) 0 0
\(829\) −23.8687 41.3417i −0.828993 1.43586i −0.898829 0.438299i \(-0.855581\pi\)
0.0698363 0.997558i \(-0.477752\pi\)
\(830\) −53.4469 30.8576i −1.85517 1.07108i
\(831\) 0 0
\(832\) 18.1282 46.9251i 0.628481 1.62683i
\(833\) −25.3321 + 43.8765i −0.877706 + 1.52023i
\(834\) 0 0
\(835\) 34.1449 59.1407i 1.18163 2.04665i
\(836\) −2.02538 + 3.50805i −0.0700491 + 0.121329i
\(837\) 0 0
\(838\) −45.9909 26.5529i −1.58873 0.917254i
\(839\) 15.8799i 0.548234i 0.961696 + 0.274117i \(0.0883855\pi\)
−0.961696 + 0.274117i \(0.911615\pi\)
\(840\) 0 0
\(841\) 8.14089 + 14.1004i 0.280720 + 0.486222i
\(842\) −47.1332 −1.62432
\(843\) 0 0
\(844\) 43.2992 + 74.9965i 1.49042 + 2.58148i
\(845\) −11.1289 34.7568i −0.382846 1.19567i
\(846\) 0 0
\(847\) 1.93850 1.11920i 0.0666078 0.0384560i
\(848\) 26.3133 45.5760i 0.903602 1.56509i
\(849\) 0 0
\(850\) 48.3527 + 27.9165i 1.65848 + 0.957527i
\(851\) −5.24606 + 3.02881i −0.179833 + 0.103826i
\(852\) 0 0
\(853\) 35.9630 20.7633i 1.23135 0.710921i 0.264040 0.964512i \(-0.414945\pi\)
0.967312 + 0.253591i \(0.0816117\pi\)
\(854\) −1.25158 + 2.16781i −0.0428283 + 0.0741809i
\(855\) 0 0
\(856\) 8.29086 4.78673i 0.283376 0.163607i
\(857\) −20.4844 35.4799i −0.699732 1.21197i −0.968559 0.248783i \(-0.919969\pi\)
0.268827 0.963188i \(-0.413364\pi\)
\(858\) 0 0
\(859\) −14.2210 + 24.6315i −0.485215 + 0.840417i −0.999856 0.0169889i \(-0.994592\pi\)
0.514641 + 0.857406i \(0.327925\pi\)
\(860\) 49.3868i 1.68408i
\(861\) 0 0
\(862\) −5.29603 −0.180383
\(863\) 24.5762i 0.836584i −0.908313 0.418292i \(-0.862629\pi\)
0.908313 0.418292i \(-0.137371\pi\)
\(864\) 0 0
\(865\) 25.6403 + 14.8034i 0.871795 + 0.503331i
\(866\) 56.2424 32.4716i 1.91119 1.10343i
\(867\) 0 0
\(868\) −4.81364 −0.163386
\(869\) 4.25744i 0.144424i
\(870\) 0 0
\(871\) −27.6237 10.6716i −0.935993 0.361595i
\(872\) 12.5519 0.425062
\(873\) 0 0
\(874\) 1.88311 + 3.26164i 0.0636970 + 0.110326i
\(875\) 1.55367 0.0525235
\(876\) 0 0
\(877\) 12.6543 7.30596i 0.427305 0.246705i −0.270893 0.962610i \(-0.587319\pi\)
0.698198 + 0.715905i \(0.253986\pi\)
\(878\) 35.2024 20.3241i 1.18802 0.685906i
\(879\) 0 0
\(880\) −49.2020 −1.65860
\(881\) −1.19861 2.07605i −0.0403820 0.0699438i 0.845128 0.534564i \(-0.179524\pi\)
−0.885510 + 0.464620i \(0.846191\pi\)
\(882\) 0 0
\(883\) −5.90861 −0.198840 −0.0994202 0.995046i \(-0.531699\pi\)
−0.0994202 + 0.995046i \(0.531699\pi\)
\(884\) 47.7719 123.658i 1.60674 4.15908i
\(885\) 0 0
\(886\) 25.0971i 0.843153i
\(887\) 27.2603 0.915312 0.457656 0.889129i \(-0.348689\pi\)
0.457656 + 0.889129i \(0.348689\pi\)
\(888\) 0 0
\(889\) −2.54384 + 1.46869i −0.0853178 + 0.0492582i
\(890\) −8.82292 5.09391i −0.295745 0.170748i
\(891\) 0 0
\(892\) 47.4578i 1.58900i
\(893\) 4.24025 0.141895
\(894\) 0 0
\(895\) 19.9015i 0.665233i
\(896\) −1.24155 + 2.15042i −0.0414772 + 0.0718406i
\(897\) 0 0
\(898\) −21.6281 37.4610i −0.721739 1.25009i
\(899\) 11.3156 6.53308i 0.377397 0.217890i
\(900\) 0 0
\(901\) 17.1045 29.6259i 0.569834 0.986982i
\(902\) 26.5739 15.3424i 0.884813 0.510847i
\(903\) 0 0
\(904\) −31.9542 + 18.4488i −1.06278 + 0.613597i
\(905\) 38.2464 + 22.0816i 1.27135 + 0.734017i
\(906\) 0 0
\(907\) −22.1251 + 38.3217i −0.734651 + 1.27245i 0.220226 + 0.975449i \(0.429321\pi\)
−0.954876 + 0.297004i \(0.904013\pi\)
\(908\) 79.9741 46.1730i 2.65403 1.53231i
\(909\) 0 0
\(910\) 1.08171 + 6.92557i 0.0358584 + 0.229580i
\(911\) 6.61845 + 11.4635i 0.219279 + 0.379802i 0.954588 0.297930i \(-0.0962962\pi\)
−0.735309 + 0.677732i \(0.762963\pi\)
\(912\) 0 0
\(913\) 12.9236 0.427708
\(914\) 2.86553 + 4.96325i 0.0947834 + 0.164170i
\(915\) 0 0
\(916\) 65.9135i 2.17784i
\(917\) 0.873163 + 0.504121i 0.0288344 + 0.0166475i
\(918\) 0 0
\(919\) −21.5036 + 37.2452i −0.709337 + 1.22861i 0.255767 + 0.966739i \(0.417672\pi\)
−0.965103 + 0.261869i \(0.915661\pi\)
\(920\) −31.0099 + 53.7107i −1.02237 + 1.77079i
\(921\) 0 0
\(922\) −4.06468 + 7.04023i −0.133863 + 0.231858i
\(923\) −17.5164 + 14.1226i −0.576561 + 0.464850i
\(924\) 0 0
\(925\) 5.49699 + 3.17369i 0.180740 + 0.104350i
\(926\) −21.1538 36.6394i −0.695156 1.20404i
\(927\) 0 0
\(928\) 49.0121i 1.60890i
\(929\) 6.38535i 0.209497i −0.994499 0.104748i \(-0.966596\pi\)
0.994499 0.104748i \(-0.0334037\pi\)
\(930\) 0 0
\(931\) 3.10126 + 1.79052i 0.101640 + 0.0586818i
\(932\) −12.1784 21.0937i −0.398918 0.690947i
\(933\) 0 0
\(934\) 7.24252 + 4.18147i 0.236983 + 0.136822i
\(935\) −31.9830 −1.04596
\(936\) 0 0
\(937\) 58.7846 1.92041 0.960204 0.279298i \(-0.0901018\pi\)
0.960204 + 0.279298i \(0.0901018\pi\)
\(938\) 4.92577 + 2.84389i 0.160832 + 0.0928564i
\(939\) 0 0
\(940\) 57.9550 + 100.381i 1.89028 + 3.27407i
\(941\) 46.2325 + 26.6923i 1.50714 + 0.870145i 0.999966 + 0.00829925i \(0.00264176\pi\)
0.507170 + 0.861846i \(0.330692\pi\)
\(942\) 0 0
\(943\) 20.4134i 0.664752i
\(944\) 125.278i 4.07744i
\(945\) 0 0
\(946\) 7.22687 + 12.5173i 0.234966 + 0.406973i
\(947\) −3.24038 1.87083i −0.105298 0.0607940i 0.446426 0.894821i \(-0.352697\pi\)
−0.551724 + 0.834027i \(0.686030\pi\)
\(948\) 0 0
\(949\) −12.6467 4.88570i −0.410530 0.158597i
\(950\) 1.97318 3.41765i 0.0640184 0.110883i
\(951\) 0 0
\(952\) −7.66922 + 13.2835i −0.248561 + 0.430520i
\(953\) −11.2711 + 19.5221i −0.365107 + 0.632384i −0.988793 0.149291i \(-0.952301\pi\)
0.623686 + 0.781675i \(0.285634\pi\)
\(954\) 0 0
\(955\) −19.7458 11.4003i −0.638960 0.368904i
\(956\) 79.3762i 2.56721i
\(957\) 0 0
\(958\) −13.1736 22.8173i −0.425619 0.737194i
\(959\) −0.582669 −0.0188154
\(960\) 0 0
\(961\) −8.78819 15.2216i −0.283490 0.491019i
\(962\) 7.59023 19.6474i 0.244719 0.633458i
\(963\) 0 0
\(964\) 70.9518 40.9640i 2.28520 1.31936i
\(965\) −10.8193 + 18.7395i −0.348285 + 0.603247i
\(966\) 0 0
\(967\) 1.37859 + 0.795929i 0.0443325 + 0.0255954i 0.522002 0.852944i \(-0.325185\pi\)
−0.477670 + 0.878539i \(0.658519\pi\)
\(968\) −59.6371 + 34.4315i −1.91681 + 1.10667i
\(969\) 0 0
\(970\) −87.3006 + 50.4030i −2.80305 + 1.61834i
\(971\) 2.45081 4.24492i 0.0786501 0.136226i −0.824018 0.566564i \(-0.808272\pi\)
0.902668 + 0.430338i \(0.141606\pi\)
\(972\) 0 0
\(973\) 3.67458 2.12152i 0.117802 0.0680128i
\(974\) 30.6544 + 53.0950i 0.982231 + 1.70127i
\(975\) 0 0
\(976\) 20.3214 35.1977i 0.650473 1.12665i
\(977\) 3.86735i 0.123727i −0.998085 0.0618637i \(-0.980296\pi\)
0.998085 0.0618637i \(-0.0197044\pi\)
\(978\) 0 0
\(979\) 2.13340 0.0681838
\(980\) 97.8897i 3.12697i
\(981\) 0 0
\(982\) 68.2114 + 39.3819i 2.17671 + 1.25673i
\(983\) −45.0382 + 26.0028i −1.43650 + 0.829361i −0.997604 0.0691791i \(-0.977962\pi\)
−0.438891 + 0.898540i \(0.644629\pi\)
\(984\) 0 0
\(985\) 11.2467 0.358350
\(986\) 69.1129i 2.20100i
\(987\) 0 0
\(988\) −8.74037 3.37660i −0.278068 0.107424i
\(989\) 9.61549 0.305755
\(990\) 0 0
\(991\) 4.08818 + 7.08094i 0.129865 + 0.224933i 0.923624 0.383299i \(-0.125212\pi\)
−0.793759 + 0.608233i \(0.791879\pi\)
\(992\) 50.3529 1.59871
\(993\) 0 0
\(994\) 3.74264 2.16081i 0.118709 0.0685369i
\(995\) −31.3281 + 18.0873i −0.993167 + 0.573406i
\(996\) 0 0
\(997\) 30.4678 0.964926 0.482463 0.875916i \(-0.339742\pi\)
0.482463 + 0.875916i \(0.339742\pi\)
\(998\) 49.7435 + 86.1583i 1.57460 + 2.72729i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.r.b.10.1 22
3.2 odd 2 117.2.r.b.49.11 yes 22
9.2 odd 6 117.2.l.b.88.1 yes 22
9.7 even 3 351.2.l.b.127.11 22
13.4 even 6 351.2.l.b.199.1 22
39.17 odd 6 117.2.l.b.4.11 22
117.43 even 6 inner 351.2.r.b.316.1 22
117.56 odd 6 117.2.r.b.43.11 yes 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.l.b.4.11 22 39.17 odd 6
117.2.l.b.88.1 yes 22 9.2 odd 6
117.2.r.b.43.11 yes 22 117.56 odd 6
117.2.r.b.49.11 yes 22 3.2 odd 2
351.2.l.b.127.11 22 9.7 even 3
351.2.l.b.199.1 22 13.4 even 6
351.2.r.b.10.1 22 1.1 even 1 trivial
351.2.r.b.316.1 22 117.43 even 6 inner