Properties

Label 351.4.l.a.127.8
Level $351$
Weight $4$
Character 351.127
Analytic conductor $20.710$
Analytic rank $0$
Dimension $80$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [351,4,Mod(127,351)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(351, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 5]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("351.127");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 351.l (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.7096704120\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 127.8
Character \(\chi\) \(=\) 351.127
Dual form 351.4.l.a.199.33

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.97372i q^{2} -7.79044 q^{4} +(-9.30367 + 5.37147i) q^{5} +(14.5854 - 8.42091i) q^{7} -0.832741i q^{8} +(21.3447 + 36.9702i) q^{10} -13.1991i q^{11} +(-35.4813 + 30.6281i) q^{13} +(-33.4623 - 57.9585i) q^{14} -65.6326 q^{16} +(-49.0702 + 84.9920i) q^{17} +(-56.0776 - 32.3764i) q^{19} +(72.4796 - 41.8461i) q^{20} -52.4495 q^{22} +(-49.2889 + 85.3709i) q^{23} +(-4.79452 + 8.30436i) q^{25} +(121.707 + 140.993i) q^{26} +(-113.627 + 65.6026i) q^{28} +304.130 q^{29} +(-86.6932 + 50.0523i) q^{31} +254.143i q^{32} +(337.734 + 194.991i) q^{34} +(-90.4654 + 156.691i) q^{35} +(197.075 - 113.781i) q^{37} +(-128.655 + 222.837i) q^{38} +(4.47305 + 7.74755i) q^{40} +(41.8147 + 24.1417i) q^{41} +(85.5052 + 148.099i) q^{43} +102.827i q^{44} +(339.240 + 195.860i) q^{46} +(-23.5689 - 13.6075i) q^{47} +(-29.6765 + 51.4011i) q^{49} +(32.9992 + 19.0521i) q^{50} +(276.415 - 238.606i) q^{52} -611.664 q^{53} +(70.8986 + 122.800i) q^{55} +(-7.01244 - 12.1459i) q^{56} -1208.53i q^{58} +819.677i q^{59} +(-18.3327 - 31.7531i) q^{61} +(198.894 + 344.494i) q^{62} +484.834 q^{64} +(165.588 - 475.540i) q^{65} +(-93.3172 - 53.8767i) q^{67} +(382.278 - 662.125i) q^{68} +(622.645 + 359.484i) q^{70} +(93.2300 + 53.8263i) q^{71} -553.128i q^{73} +(-452.136 - 783.122i) q^{74} +(436.869 + 252.226i) q^{76} +(-111.148 - 192.515i) q^{77} +(-395.090 + 684.315i) q^{79} +(610.624 - 352.544i) q^{80} +(95.9325 - 166.160i) q^{82} +(-14.9734 - 8.64491i) q^{83} -1054.32i q^{85} +(588.505 - 339.774i) q^{86} -10.9914 q^{88} +(43.2247 - 24.9558i) q^{89} +(-259.594 + 745.509i) q^{91} +(383.982 - 665.077i) q^{92} +(-54.0725 + 93.6563i) q^{94} +695.636 q^{95} +(-1209.65 + 698.390i) q^{97} +(204.254 + 117.926i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 306 q^{4} - 3 q^{7} - 10 q^{10} - 13 q^{13} - 126 q^{14} + 1102 q^{16} + 138 q^{17} - 96 q^{19} + 387 q^{20} + 62 q^{22} + 327 q^{23} + 798 q^{25} - 510 q^{26} + 18 q^{28} + 402 q^{29} + 180 q^{31}+ \cdots + 6339 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.97372i 1.40492i −0.711722 0.702461i \(-0.752085\pi\)
0.711722 0.702461i \(-0.247915\pi\)
\(3\) 0 0
\(4\) −7.79044 −0.973805
\(5\) −9.30367 + 5.37147i −0.832145 + 0.480439i −0.854587 0.519309i \(-0.826189\pi\)
0.0224414 + 0.999748i \(0.492856\pi\)
\(6\) 0 0
\(7\) 14.5854 8.42091i 0.787540 0.454687i −0.0515557 0.998670i \(-0.516418\pi\)
0.839096 + 0.543984i \(0.183085\pi\)
\(8\) 0.832741i 0.0368023i
\(9\) 0 0
\(10\) 21.3447 + 36.9702i 0.674980 + 1.16910i
\(11\) 13.1991i 0.361789i −0.983503 0.180894i \(-0.942101\pi\)
0.983503 0.180894i \(-0.0578992\pi\)
\(12\) 0 0
\(13\) −35.4813 + 30.6281i −0.756979 + 0.653439i
\(14\) −33.4623 57.9585i −0.638799 1.10643i
\(15\) 0 0
\(16\) −65.6326 −1.02551
\(17\) −49.0702 + 84.9920i −0.700074 + 1.21256i 0.268366 + 0.963317i \(0.413516\pi\)
−0.968440 + 0.249247i \(0.919817\pi\)
\(18\) 0 0
\(19\) −56.0776 32.3764i −0.677110 0.390929i 0.121655 0.992572i \(-0.461180\pi\)
−0.798765 + 0.601643i \(0.794513\pi\)
\(20\) 72.4796 41.8461i 0.810347 0.467854i
\(21\) 0 0
\(22\) −52.4495 −0.508285
\(23\) −49.2889 + 85.3709i −0.446846 + 0.773959i −0.998179 0.0603258i \(-0.980786\pi\)
0.551333 + 0.834285i \(0.314119\pi\)
\(24\) 0 0
\(25\) −4.79452 + 8.30436i −0.0383562 + 0.0664349i
\(26\) 121.707 + 140.993i 0.918030 + 1.06350i
\(27\) 0 0
\(28\) −113.627 + 65.6026i −0.766910 + 0.442776i
\(29\) 304.130 1.94743 0.973717 0.227762i \(-0.0731407\pi\)
0.973717 + 0.227762i \(0.0731407\pi\)
\(30\) 0 0
\(31\) −86.6932 + 50.0523i −0.502276 + 0.289989i −0.729653 0.683818i \(-0.760318\pi\)
0.227377 + 0.973807i \(0.426985\pi\)
\(32\) 254.143i 1.40396i
\(33\) 0 0
\(34\) 337.734 + 194.991i 1.70356 + 0.983550i
\(35\) −90.4654 + 156.691i −0.436899 + 0.756731i
\(36\) 0 0
\(37\) 197.075 113.781i 0.875648 0.505556i 0.00642714 0.999979i \(-0.497954\pi\)
0.869221 + 0.494424i \(0.164621\pi\)
\(38\) −128.655 + 222.837i −0.549225 + 0.951286i
\(39\) 0 0
\(40\) 4.47305 + 7.74755i 0.0176813 + 0.0306249i
\(41\) 41.8147 + 24.1417i 0.159277 + 0.0919587i 0.577520 0.816377i \(-0.304021\pi\)
−0.418243 + 0.908335i \(0.637354\pi\)
\(42\) 0 0
\(43\) 85.5052 + 148.099i 0.303242 + 0.525231i 0.976868 0.213841i \(-0.0685974\pi\)
−0.673626 + 0.739072i \(0.735264\pi\)
\(44\) 102.827i 0.352312i
\(45\) 0 0
\(46\) 339.240 + 195.860i 1.08735 + 0.627783i
\(47\) −23.5689 13.6075i −0.0731465 0.0422311i 0.462981 0.886368i \(-0.346780\pi\)
−0.536127 + 0.844137i \(0.680113\pi\)
\(48\) 0 0
\(49\) −29.6765 + 51.4011i −0.0865203 + 0.149858i
\(50\) 32.9992 + 19.0521i 0.0933358 + 0.0538874i
\(51\) 0 0
\(52\) 276.415 238.606i 0.737150 0.636322i
\(53\) −611.664 −1.58525 −0.792627 0.609707i \(-0.791287\pi\)
−0.792627 + 0.609707i \(0.791287\pi\)
\(54\) 0 0
\(55\) 70.8986 + 122.800i 0.173818 + 0.301061i
\(56\) −7.01244 12.1459i −0.0167335 0.0289833i
\(57\) 0 0
\(58\) 1208.53i 2.73599i
\(59\) 819.677i 1.80869i 0.426800 + 0.904346i \(0.359641\pi\)
−0.426800 + 0.904346i \(0.640359\pi\)
\(60\) 0 0
\(61\) −18.3327 31.7531i −0.0384796 0.0666486i 0.846144 0.532954i \(-0.178918\pi\)
−0.884624 + 0.466305i \(0.845585\pi\)
\(62\) 198.894 + 344.494i 0.407412 + 0.705658i
\(63\) 0 0
\(64\) 484.834 0.946941
\(65\) 165.588 475.540i 0.315979 0.907439i
\(66\) 0 0
\(67\) −93.3172 53.8767i −0.170157 0.0982401i 0.412503 0.910956i \(-0.364655\pi\)
−0.582660 + 0.812716i \(0.697988\pi\)
\(68\) 382.278 662.125i 0.681736 1.18080i
\(69\) 0 0
\(70\) 622.645 + 359.484i 1.06315 + 0.613808i
\(71\) 93.2300 + 53.8263i 0.155836 + 0.0899720i 0.575890 0.817527i \(-0.304656\pi\)
−0.420054 + 0.907499i \(0.637989\pi\)
\(72\) 0 0
\(73\) 553.128i 0.886832i −0.896316 0.443416i \(-0.853766\pi\)
0.896316 0.443416i \(-0.146234\pi\)
\(74\) −452.136 783.122i −0.710266 1.23022i
\(75\) 0 0
\(76\) 436.869 + 252.226i 0.659373 + 0.380689i
\(77\) −111.148 192.515i −0.164500 0.284923i
\(78\) 0 0
\(79\) −395.090 + 684.315i −0.562672 + 0.974576i 0.434591 + 0.900628i \(0.356893\pi\)
−0.997262 + 0.0739476i \(0.976440\pi\)
\(80\) 610.624 352.544i 0.853373 0.492695i
\(81\) 0 0
\(82\) 95.9325 166.160i 0.129195 0.223772i
\(83\) −14.9734 8.64491i −0.0198018 0.0114326i 0.490066 0.871685i \(-0.336973\pi\)
−0.509868 + 0.860253i \(0.670306\pi\)
\(84\) 0 0
\(85\) 1054.32i 1.34537i
\(86\) 588.505 339.774i 0.737909 0.426032i
\(87\) 0 0
\(88\) −10.9914 −0.0133147
\(89\) 43.2247 24.9558i 0.0514810 0.0297226i −0.474039 0.880504i \(-0.657204\pi\)
0.525520 + 0.850782i \(0.323871\pi\)
\(90\) 0 0
\(91\) −259.594 + 745.509i −0.299042 + 0.858798i
\(92\) 383.982 665.077i 0.435140 0.753685i
\(93\) 0 0
\(94\) −54.0725 + 93.6563i −0.0593314 + 0.102765i
\(95\) 695.636 0.751272
\(96\) 0 0
\(97\) −1209.65 + 698.390i −1.26620 + 0.731039i −0.974266 0.225401i \(-0.927631\pi\)
−0.291930 + 0.956440i \(0.594298\pi\)
\(98\) 204.254 + 117.926i 0.210538 + 0.121554i
\(99\) 0 0
\(100\) 37.3514 64.6946i 0.0373514 0.0646946i
\(101\) −1707.30 −1.68200 −0.841001 0.541033i \(-0.818033\pi\)
−0.841001 + 0.541033i \(0.818033\pi\)
\(102\) 0 0
\(103\) 237.262 + 410.949i 0.226972 + 0.393127i 0.956909 0.290387i \(-0.0937842\pi\)
−0.729937 + 0.683514i \(0.760451\pi\)
\(104\) 25.5053 + 29.5467i 0.0240481 + 0.0278586i
\(105\) 0 0
\(106\) 2430.58i 2.22716i
\(107\) 675.268 + 1169.60i 0.610099 + 1.05672i 0.991223 + 0.132199i \(0.0422038\pi\)
−0.381124 + 0.924524i \(0.624463\pi\)
\(108\) 0 0
\(109\) 1212.35i 1.06534i −0.846324 0.532669i \(-0.821189\pi\)
0.846324 0.532669i \(-0.178811\pi\)
\(110\) 487.972 281.731i 0.422967 0.244200i
\(111\) 0 0
\(112\) −957.281 + 552.686i −0.807630 + 0.466285i
\(113\) 469.480 0.390840 0.195420 0.980720i \(-0.437393\pi\)
0.195420 + 0.980720i \(0.437393\pi\)
\(114\) 0 0
\(115\) 1059.02i 0.858729i
\(116\) −2369.31 −1.89642
\(117\) 0 0
\(118\) 3257.17 2.54107
\(119\) 1652.86i 1.27326i
\(120\) 0 0
\(121\) 1156.78 0.869109
\(122\) −126.178 + 72.8488i −0.0936361 + 0.0540608i
\(123\) 0 0
\(124\) 675.378 389.929i 0.489119 0.282393i
\(125\) 1445.88i 1.03459i
\(126\) 0 0
\(127\) −226.697 392.651i −0.158395 0.274347i 0.775895 0.630862i \(-0.217298\pi\)
−0.934290 + 0.356514i \(0.883965\pi\)
\(128\) 106.554i 0.0735794i
\(129\) 0 0
\(130\) −1889.66 658.000i −1.27488 0.443926i
\(131\) −817.565 1416.06i −0.545274 0.944443i −0.998590 0.0530927i \(-0.983092\pi\)
0.453315 0.891350i \(-0.350241\pi\)
\(132\) 0 0
\(133\) −1090.56 −0.711002
\(134\) −214.091 + 370.816i −0.138020 + 0.239057i
\(135\) 0 0
\(136\) 70.7764 + 40.8628i 0.0446252 + 0.0257644i
\(137\) 800.149 461.966i 0.498988 0.288091i −0.229308 0.973354i \(-0.573646\pi\)
0.728295 + 0.685263i \(0.240313\pi\)
\(138\) 0 0
\(139\) −543.317 −0.331536 −0.165768 0.986165i \(-0.553010\pi\)
−0.165768 + 0.986165i \(0.553010\pi\)
\(140\) 704.765 1220.69i 0.425454 0.736908i
\(141\) 0 0
\(142\) 213.891 370.470i 0.126404 0.218937i
\(143\) 404.263 + 468.321i 0.236407 + 0.273867i
\(144\) 0 0
\(145\) −2829.53 + 1633.63i −1.62055 + 0.935624i
\(146\) −2197.98 −1.24593
\(147\) 0 0
\(148\) −1535.30 + 886.408i −0.852710 + 0.492313i
\(149\) 1227.49i 0.674898i 0.941344 + 0.337449i \(0.109564\pi\)
−0.941344 + 0.337449i \(0.890436\pi\)
\(150\) 0 0
\(151\) −2856.94 1649.45i −1.53970 0.888945i −0.998856 0.0478207i \(-0.984772\pi\)
−0.540842 0.841124i \(-0.681894\pi\)
\(152\) −26.9612 + 46.6981i −0.0143871 + 0.0249192i
\(153\) 0 0
\(154\) −764.999 + 441.672i −0.400295 + 0.231110i
\(155\) 537.710 931.340i 0.278644 0.482626i
\(156\) 0 0
\(157\) 765.027 + 1325.07i 0.388891 + 0.673578i 0.992301 0.123853i \(-0.0395251\pi\)
−0.603410 + 0.797431i \(0.706192\pi\)
\(158\) 2719.28 + 1569.97i 1.36920 + 0.790509i
\(159\) 0 0
\(160\) −1365.13 2364.47i −0.674516 1.16830i
\(161\) 1660.23i 0.812699i
\(162\) 0 0
\(163\) −659.353 380.678i −0.316838 0.182926i 0.333145 0.942876i \(-0.391890\pi\)
−0.649982 + 0.759950i \(0.725224\pi\)
\(164\) −325.755 188.075i −0.155105 0.0895498i
\(165\) 0 0
\(166\) −34.3524 + 59.5002i −0.0160618 + 0.0278199i
\(167\) −2885.17 1665.76i −1.33689 0.771857i −0.350549 0.936544i \(-0.614005\pi\)
−0.986346 + 0.164688i \(0.947338\pi\)
\(168\) 0 0
\(169\) 320.841 2173.45i 0.146036 0.989279i
\(170\) −4189.56 −1.89014
\(171\) 0 0
\(172\) −666.123 1153.76i −0.295299 0.511473i
\(173\) −381.934 661.529i −0.167849 0.290723i 0.769814 0.638268i \(-0.220349\pi\)
−0.937663 + 0.347545i \(0.887016\pi\)
\(174\) 0 0
\(175\) 161.497i 0.0697602i
\(176\) 866.290i 0.371018i
\(177\) 0 0
\(178\) −99.1672 171.763i −0.0417579 0.0723267i
\(179\) −624.714 1082.04i −0.260857 0.451817i 0.705613 0.708597i \(-0.250672\pi\)
−0.966470 + 0.256780i \(0.917338\pi\)
\(180\) 0 0
\(181\) −1721.72 −0.707040 −0.353520 0.935427i \(-0.615015\pi\)
−0.353520 + 0.935427i \(0.615015\pi\)
\(182\) 2962.44 + 1031.55i 1.20654 + 0.420131i
\(183\) 0 0
\(184\) 71.0919 + 41.0449i 0.0284835 + 0.0164450i
\(185\) −1222.35 + 2117.17i −0.485778 + 0.841392i
\(186\) 0 0
\(187\) 1121.82 + 647.682i 0.438692 + 0.253279i
\(188\) 183.612 + 106.009i 0.0712304 + 0.0411249i
\(189\) 0 0
\(190\) 2764.26i 1.05548i
\(191\) −2482.13 4299.18i −0.940318 1.62868i −0.764866 0.644190i \(-0.777195\pi\)
−0.175452 0.984488i \(-0.556139\pi\)
\(192\) 0 0
\(193\) −2614.21 1509.31i −0.974999 0.562916i −0.0742425 0.997240i \(-0.523654\pi\)
−0.900757 + 0.434324i \(0.856987\pi\)
\(194\) 2775.21 + 4806.80i 1.02705 + 1.77891i
\(195\) 0 0
\(196\) 231.193 400.437i 0.0842538 0.145932i
\(197\) −480.686 + 277.524i −0.173845 + 0.100369i −0.584398 0.811467i \(-0.698669\pi\)
0.410553 + 0.911837i \(0.365336\pi\)
\(198\) 0 0
\(199\) −2047.37 + 3546.14i −0.729316 + 1.26321i 0.227856 + 0.973695i \(0.426828\pi\)
−0.957173 + 0.289518i \(0.906505\pi\)
\(200\) 6.91538 + 3.99260i 0.00244496 + 0.00141160i
\(201\) 0 0
\(202\) 6784.31i 2.36308i
\(203\) 4435.88 2561.05i 1.53368 0.885472i
\(204\) 0 0
\(205\) −518.707 −0.176722
\(206\) 1633.00 942.811i 0.552312 0.318877i
\(207\) 0 0
\(208\) 2328.73 2010.20i 0.776289 0.670107i
\(209\) −427.339 + 740.174i −0.141434 + 0.244971i
\(210\) 0 0
\(211\) −1251.29 + 2167.29i −0.408257 + 0.707122i −0.994695 0.102873i \(-0.967197\pi\)
0.586438 + 0.809994i \(0.300530\pi\)
\(212\) 4765.13 1.54373
\(213\) 0 0
\(214\) 4647.66 2683.33i 1.48461 0.857142i
\(215\) −1591.02 918.578i −0.504684 0.291379i
\(216\) 0 0
\(217\) −842.972 + 1460.07i −0.263708 + 0.456756i
\(218\) −4817.53 −1.49672
\(219\) 0 0
\(220\) −552.331 956.665i −0.169264 0.293174i
\(221\) −862.071 4518.55i −0.262394 1.37534i
\(222\) 0 0
\(223\) 5961.87i 1.79030i 0.445768 + 0.895149i \(0.352931\pi\)
−0.445768 + 0.895149i \(0.647069\pi\)
\(224\) 2140.12 + 3706.80i 0.638361 + 1.10567i
\(225\) 0 0
\(226\) 1865.58i 0.549100i
\(227\) −73.8361 + 42.6293i −0.0215889 + 0.0124643i −0.510756 0.859726i \(-0.670634\pi\)
0.489167 + 0.872190i \(0.337301\pi\)
\(228\) 0 0
\(229\) 5514.11 3183.57i 1.59119 0.918674i 0.598087 0.801431i \(-0.295928\pi\)
0.993103 0.117243i \(-0.0374056\pi\)
\(230\) −4208.23 −1.20645
\(231\) 0 0
\(232\) 253.262i 0.0716701i
\(233\) −1809.23 −0.508698 −0.254349 0.967112i \(-0.581861\pi\)
−0.254349 + 0.967112i \(0.581861\pi\)
\(234\) 0 0
\(235\) 292.370 0.0811580
\(236\) 6385.64i 1.76131i
\(237\) 0 0
\(238\) 6568.01 1.78883
\(239\) 2866.58 1655.02i 0.775832 0.447927i −0.0591193 0.998251i \(-0.518829\pi\)
0.834951 + 0.550324i \(0.185496\pi\)
\(240\) 0 0
\(241\) 1026.51 592.657i 0.274371 0.158408i −0.356501 0.934295i \(-0.616030\pi\)
0.630873 + 0.775887i \(0.282697\pi\)
\(242\) 4596.73i 1.22103i
\(243\) 0 0
\(244\) 142.819 + 247.370i 0.0374716 + 0.0649027i
\(245\) 637.625i 0.166271i
\(246\) 0 0
\(247\) 2981.33 568.793i 0.768007 0.146524i
\(248\) 41.6806 + 72.1930i 0.0106723 + 0.0184849i
\(249\) 0 0
\(250\) −5745.53 −1.45352
\(251\) 197.379 341.871i 0.0496353 0.0859708i −0.840140 0.542369i \(-0.817527\pi\)
0.889776 + 0.456398i \(0.150861\pi\)
\(252\) 0 0
\(253\) 1126.82 + 650.569i 0.280010 + 0.161664i
\(254\) −1560.28 + 900.830i −0.385437 + 0.222532i
\(255\) 0 0
\(256\) 4302.09 1.05031
\(257\) 3333.35 5773.53i 0.809061 1.40133i −0.104454 0.994530i \(-0.533309\pi\)
0.913515 0.406805i \(-0.133357\pi\)
\(258\) 0 0
\(259\) 1916.29 3319.11i 0.459739 0.796291i
\(260\) −1290.00 + 3704.67i −0.307702 + 0.883668i
\(261\) 0 0
\(262\) −5627.04 + 3248.77i −1.32687 + 0.766068i
\(263\) 4100.57 0.961415 0.480708 0.876881i \(-0.340380\pi\)
0.480708 + 0.876881i \(0.340380\pi\)
\(264\) 0 0
\(265\) 5690.72 3285.54i 1.31916 0.761619i
\(266\) 4333.56i 0.998901i
\(267\) 0 0
\(268\) 726.982 + 419.723i 0.165700 + 0.0956667i
\(269\) −1263.72 + 2188.83i −0.286433 + 0.496116i −0.972956 0.230992i \(-0.925803\pi\)
0.686523 + 0.727108i \(0.259136\pi\)
\(270\) 0 0
\(271\) −292.278 + 168.747i −0.0655152 + 0.0378252i −0.532400 0.846493i \(-0.678710\pi\)
0.466885 + 0.884318i \(0.345376\pi\)
\(272\) 3220.60 5578.25i 0.717933 1.24350i
\(273\) 0 0
\(274\) −1835.72 3179.57i −0.404745 0.701039i
\(275\) 109.610 + 63.2833i 0.0240354 + 0.0138768i
\(276\) 0 0
\(277\) 3626.92 + 6282.01i 0.786716 + 1.36263i 0.927968 + 0.372659i \(0.121554\pi\)
−0.141252 + 0.989974i \(0.545113\pi\)
\(278\) 2158.99i 0.465783i
\(279\) 0 0
\(280\) 130.483 + 75.3343i 0.0278494 + 0.0160789i
\(281\) 544.880 + 314.587i 0.115676 + 0.0667853i 0.556721 0.830699i \(-0.312059\pi\)
−0.441046 + 0.897485i \(0.645392\pi\)
\(282\) 0 0
\(283\) −2742.57 + 4750.27i −0.576074 + 0.997789i 0.419850 + 0.907593i \(0.362083\pi\)
−0.995924 + 0.0901957i \(0.971251\pi\)
\(284\) −726.302 419.331i −0.151754 0.0876152i
\(285\) 0 0
\(286\) 1860.97 1606.43i 0.384761 0.332133i
\(287\) 813.182 0.167250
\(288\) 0 0
\(289\) −2359.26 4086.36i −0.480208 0.831745i
\(290\) 6491.58 + 11243.7i 1.31448 + 2.27674i
\(291\) 0 0
\(292\) 4309.11i 0.863602i
\(293\) 7738.23i 1.54291i 0.636285 + 0.771454i \(0.280470\pi\)
−0.636285 + 0.771454i \(0.719530\pi\)
\(294\) 0 0
\(295\) −4402.87 7626.00i −0.868967 1.50509i
\(296\) −94.7505 164.113i −0.0186056 0.0322259i
\(297\) 0 0
\(298\) 4877.70 0.948179
\(299\) −865.914 4538.69i −0.167482 0.877858i
\(300\) 0 0
\(301\) 2494.26 + 1440.06i 0.477631 + 0.275761i
\(302\) −6554.47 + 11352.7i −1.24890 + 2.16315i
\(303\) 0 0
\(304\) 3680.52 + 2124.95i 0.694382 + 0.400902i
\(305\) 341.122 + 196.947i 0.0640412 + 0.0369742i
\(306\) 0 0
\(307\) 7239.21i 1.34581i 0.739729 + 0.672904i \(0.234953\pi\)
−0.739729 + 0.672904i \(0.765047\pi\)
\(308\) 865.895 + 1499.77i 0.160191 + 0.277460i
\(309\) 0 0
\(310\) −3700.88 2136.71i −0.678052 0.391473i
\(311\) −3437.27 5953.53i −0.626719 1.08551i −0.988206 0.153132i \(-0.951064\pi\)
0.361486 0.932377i \(-0.382269\pi\)
\(312\) 0 0
\(313\) 5164.67 8945.48i 0.932667 1.61543i 0.153924 0.988083i \(-0.450809\pi\)
0.778743 0.627343i \(-0.215858\pi\)
\(314\) 5265.44 3040.00i 0.946325 0.546361i
\(315\) 0 0
\(316\) 3077.92 5331.12i 0.547932 0.949046i
\(317\) 2643.50 + 1526.23i 0.468372 + 0.270415i 0.715558 0.698553i \(-0.246173\pi\)
−0.247186 + 0.968968i \(0.579506\pi\)
\(318\) 0 0
\(319\) 4014.24i 0.704560i
\(320\) −4510.73 + 2604.27i −0.787993 + 0.454948i
\(321\) 0 0
\(322\) 6597.29 1.14178
\(323\) 5503.48 3177.43i 0.948054 0.547359i
\(324\) 0 0
\(325\) −84.2308 441.496i −0.0143763 0.0753532i
\(326\) −1512.71 + 2620.08i −0.256997 + 0.445132i
\(327\) 0 0
\(328\) 20.1038 34.8208i 0.00338429 0.00586177i
\(329\) −458.351 −0.0768077
\(330\) 0 0
\(331\) 269.692 155.707i 0.0447843 0.0258562i −0.477441 0.878664i \(-0.658435\pi\)
0.522225 + 0.852808i \(0.325102\pi\)
\(332\) 116.650 + 67.3476i 0.0192831 + 0.0111331i
\(333\) 0 0
\(334\) −6619.24 + 11464.9i −1.08440 + 1.87823i
\(335\) 1157.59 0.188794
\(336\) 0 0
\(337\) −4866.45 8428.95i −0.786625 1.36247i −0.928023 0.372522i \(-0.878493\pi\)
0.141398 0.989953i \(-0.454840\pi\)
\(338\) −8636.66 1274.93i −1.38986 0.205169i
\(339\) 0 0
\(340\) 8213.59i 1.31013i
\(341\) 660.645 + 1144.27i 0.104915 + 0.181718i
\(342\) 0 0
\(343\) 6776.36i 1.06673i
\(344\) 123.328 71.2037i 0.0193297 0.0111600i
\(345\) 0 0
\(346\) −2628.73 + 1517.70i −0.408444 + 0.235815i
\(347\) 2113.33 0.326944 0.163472 0.986548i \(-0.447731\pi\)
0.163472 + 0.986548i \(0.447731\pi\)
\(348\) 0 0
\(349\) 2324.82i 0.356575i 0.983978 + 0.178287i \(0.0570557\pi\)
−0.983978 + 0.178287i \(0.942944\pi\)
\(350\) 641.744 0.0980076
\(351\) 0 0
\(352\) 3354.46 0.507936
\(353\) 4808.41i 0.725002i 0.931983 + 0.362501i \(0.118077\pi\)
−0.931983 + 0.362501i \(0.881923\pi\)
\(354\) 0 0
\(355\) −1156.51 −0.172904
\(356\) −336.739 + 194.416i −0.0501324 + 0.0289440i
\(357\) 0 0
\(358\) −4299.71 + 2482.44i −0.634768 + 0.366483i
\(359\) 7076.66i 1.04037i 0.854055 + 0.520184i \(0.174136\pi\)
−0.854055 + 0.520184i \(0.825864\pi\)
\(360\) 0 0
\(361\) −1333.03 2308.88i −0.194348 0.336621i
\(362\) 6841.62i 0.993336i
\(363\) 0 0
\(364\) 2022.35 5807.84i 0.291209 0.836301i
\(365\) 2971.11 + 5146.12i 0.426069 + 0.737973i
\(366\) 0 0
\(367\) −10259.0 −1.45917 −0.729587 0.683889i \(-0.760287\pi\)
−0.729587 + 0.683889i \(0.760287\pi\)
\(368\) 3234.96 5603.11i 0.458244 0.793702i
\(369\) 0 0
\(370\) 8413.04 + 4857.27i 1.18209 + 0.682480i
\(371\) −8921.39 + 5150.77i −1.24845 + 0.720794i
\(372\) 0 0
\(373\) 742.285 0.103040 0.0515202 0.998672i \(-0.483593\pi\)
0.0515202 + 0.998672i \(0.483593\pi\)
\(374\) 2573.70 4457.79i 0.355837 0.616328i
\(375\) 0 0
\(376\) −11.3316 + 19.6268i −0.00155420 + 0.00269196i
\(377\) −10790.9 + 9314.93i −1.47417 + 1.27253i
\(378\) 0 0
\(379\) −1383.08 + 798.523i −0.187452 + 0.108225i −0.590789 0.806826i \(-0.701183\pi\)
0.403337 + 0.915051i \(0.367850\pi\)
\(380\) −5419.31 −0.731592
\(381\) 0 0
\(382\) −17083.7 + 9863.29i −2.28816 + 1.32107i
\(383\) 11882.3i 1.58527i −0.609696 0.792635i \(-0.708708\pi\)
0.609696 0.792635i \(-0.291292\pi\)
\(384\) 0 0
\(385\) 2068.18 + 1194.06i 0.273777 + 0.158065i
\(386\) −5997.59 + 10388.1i −0.790853 + 1.36980i
\(387\) 0 0
\(388\) 9423.68 5440.77i 1.23303 0.711889i
\(389\) −21.4339 + 37.1246i −0.00279368 + 0.00483879i −0.867419 0.497579i \(-0.834223\pi\)
0.864625 + 0.502417i \(0.167556\pi\)
\(390\) 0 0
\(391\) −4837.23 8378.33i −0.625650 1.08366i
\(392\) 42.8038 + 24.7128i 0.00551510 + 0.00318415i
\(393\) 0 0
\(394\) 1102.80 + 1910.11i 0.141011 + 0.244239i
\(395\) 8488.86i 1.08132i
\(396\) 0 0
\(397\) 6201.11 + 3580.21i 0.783941 + 0.452609i 0.837825 0.545938i \(-0.183827\pi\)
−0.0538839 + 0.998547i \(0.517160\pi\)
\(398\) 14091.4 + 8135.65i 1.77471 + 1.02463i
\(399\) 0 0
\(400\) 314.677 545.036i 0.0393346 0.0681295i
\(401\) −10742.7 6202.29i −1.33782 0.772388i −0.351332 0.936251i \(-0.614271\pi\)
−0.986483 + 0.163863i \(0.947605\pi\)
\(402\) 0 0
\(403\) 1542.98 4431.17i 0.190722 0.547722i
\(404\) 13300.6 1.63794
\(405\) 0 0
\(406\) −10176.9 17626.9i −1.24402 2.15470i
\(407\) −1501.81 2601.22i −0.182904 0.316800i
\(408\) 0 0
\(409\) 7232.55i 0.874393i 0.899366 + 0.437197i \(0.144029\pi\)
−0.899366 + 0.437197i \(0.855971\pi\)
\(410\) 2061.20i 0.248281i
\(411\) 0 0
\(412\) −1848.37 3201.47i −0.221026 0.382828i
\(413\) 6902.43 + 11955.4i 0.822388 + 1.42442i
\(414\) 0 0
\(415\) 185.744 0.0219706
\(416\) −7783.93 9017.33i −0.917400 1.06277i
\(417\) 0 0
\(418\) 2941.24 + 1698.13i 0.344165 + 0.198704i
\(419\) −2835.58 + 4911.38i −0.330614 + 0.572641i −0.982632 0.185563i \(-0.940589\pi\)
0.652018 + 0.758203i \(0.273923\pi\)
\(420\) 0 0
\(421\) 5489.27 + 3169.23i 0.635465 + 0.366886i 0.782865 0.622191i \(-0.213757\pi\)
−0.147401 + 0.989077i \(0.547091\pi\)
\(422\) 8612.22 + 4972.27i 0.993451 + 0.573569i
\(423\) 0 0
\(424\) 509.358i 0.0583410i
\(425\) −470.536 814.992i −0.0537044 0.0930187i
\(426\) 0 0
\(427\) −534.780 308.755i −0.0606085 0.0349923i
\(428\) −5260.63 9111.69i −0.594118 1.02904i
\(429\) 0 0
\(430\) −3650.17 + 6322.28i −0.409365 + 0.709041i
\(431\) 6644.54 3836.23i 0.742590 0.428734i −0.0804203 0.996761i \(-0.525626\pi\)
0.823010 + 0.568027i \(0.192293\pi\)
\(432\) 0 0
\(433\) 8922.12 15453.6i 0.990230 1.71513i 0.374352 0.927287i \(-0.377865\pi\)
0.615878 0.787842i \(-0.288802\pi\)
\(434\) 5801.91 + 3349.74i 0.641707 + 0.370489i
\(435\) 0 0
\(436\) 9444.72i 1.03743i
\(437\) 5528.01 3191.60i 0.605127 0.349370i
\(438\) 0 0
\(439\) −9700.37 −1.05461 −0.527304 0.849676i \(-0.676797\pi\)
−0.527304 + 0.849676i \(0.676797\pi\)
\(440\) 102.261 59.0402i 0.0110797 0.00639689i
\(441\) 0 0
\(442\) −17955.4 + 3425.63i −1.93225 + 0.368644i
\(443\) 653.632 1132.12i 0.0701016 0.121420i −0.828844 0.559480i \(-0.811001\pi\)
0.898946 + 0.438060i \(0.144334\pi\)
\(444\) 0 0
\(445\) −268.099 + 464.360i −0.0285598 + 0.0494670i
\(446\) 23690.8 2.51523
\(447\) 0 0
\(448\) 7071.52 4082.74i 0.745754 0.430561i
\(449\) 874.196 + 504.717i 0.0918839 + 0.0530492i 0.545238 0.838281i \(-0.316439\pi\)
−0.453354 + 0.891331i \(0.649773\pi\)
\(450\) 0 0
\(451\) 318.649 551.916i 0.0332696 0.0576247i
\(452\) −3657.45 −0.380602
\(453\) 0 0
\(454\) 169.397 + 293.404i 0.0175114 + 0.0303307i
\(455\) −1589.31 8330.37i −0.163754 0.858316i
\(456\) 0 0
\(457\) 958.840i 0.0981459i 0.998795 + 0.0490729i \(0.0156267\pi\)
−0.998795 + 0.0490729i \(0.984373\pi\)
\(458\) −12650.6 21911.5i −1.29067 2.23550i
\(459\) 0 0
\(460\) 8250.20i 0.836234i
\(461\) 1114.50 643.458i 0.112598 0.0650083i −0.442644 0.896698i \(-0.645959\pi\)
0.555241 + 0.831689i \(0.312626\pi\)
\(462\) 0 0
\(463\) 13747.3 7937.03i 1.37990 0.796685i 0.387752 0.921764i \(-0.373252\pi\)
0.992147 + 0.125078i \(0.0399182\pi\)
\(464\) −19960.9 −1.99711
\(465\) 0 0
\(466\) 7189.38i 0.714681i
\(467\) −14009.8 −1.38822 −0.694108 0.719871i \(-0.744201\pi\)
−0.694108 + 0.719871i \(0.744201\pi\)
\(468\) 0 0
\(469\) −1814.76 −0.178674
\(470\) 1161.80i 0.114021i
\(471\) 0 0
\(472\) 682.579 0.0665641
\(473\) 1954.78 1128.59i 0.190023 0.109710i
\(474\) 0 0
\(475\) 537.731 310.459i 0.0519427 0.0299891i
\(476\) 12876.5i 1.23990i
\(477\) 0 0
\(478\) −6576.59 11391.0i −0.629302 1.08998i
\(479\) 6339.79i 0.604744i 0.953190 + 0.302372i \(0.0977785\pi\)
−0.953190 + 0.302372i \(0.902222\pi\)
\(480\) 0 0
\(481\) −3507.57 + 10073.2i −0.332498 + 0.954878i
\(482\) −2355.05 4079.07i −0.222551 0.385470i
\(483\) 0 0
\(484\) −9011.85 −0.846342
\(485\) 7502.77 12995.2i 0.702440 1.21666i
\(486\) 0 0
\(487\) 17214.5 + 9938.82i 1.60178 + 0.924786i 0.991132 + 0.132882i \(0.0424231\pi\)
0.610645 + 0.791904i \(0.290910\pi\)
\(488\) −26.4421 + 15.2664i −0.00245282 + 0.00141614i
\(489\) 0 0
\(490\) −2533.74 −0.233598
\(491\) −7865.62 + 13623.7i −0.722954 + 1.25219i 0.236856 + 0.971545i \(0.423883\pi\)
−0.959811 + 0.280649i \(0.909450\pi\)
\(492\) 0 0
\(493\) −14923.7 + 25848.7i −1.36335 + 2.36139i
\(494\) −2260.22 11847.0i −0.205855 1.07899i
\(495\) 0 0
\(496\) 5689.90 3285.06i 0.515088 0.297386i
\(497\) 1813.07 0.163636
\(498\) 0 0
\(499\) 5543.66 3200.63i 0.497331 0.287134i −0.230280 0.973125i \(-0.573964\pi\)
0.727611 + 0.685990i \(0.240631\pi\)
\(500\) 11264.1i 1.00749i
\(501\) 0 0
\(502\) −1358.50 784.329i −0.120782 0.0697337i
\(503\) 7906.80 13695.0i 0.700889 1.21397i −0.267266 0.963623i \(-0.586120\pi\)
0.968155 0.250352i \(-0.0805464\pi\)
\(504\) 0 0
\(505\) 15884.1 9170.69i 1.39967 0.808100i
\(506\) 2585.18 4477.66i 0.227125 0.393392i
\(507\) 0 0
\(508\) 1766.07 + 3058.92i 0.154245 + 0.267161i
\(509\) 12705.4 + 7335.46i 1.10640 + 0.638779i 0.937894 0.346922i \(-0.112773\pi\)
0.168504 + 0.985701i \(0.446106\pi\)
\(510\) 0 0
\(511\) −4657.84 8067.62i −0.403231 0.698416i
\(512\) 16242.9i 1.40203i
\(513\) 0 0
\(514\) −22942.4 13245.8i −1.96877 1.13667i
\(515\) −4414.81 2548.89i −0.377747 0.218092i
\(516\) 0 0
\(517\) −179.607 + 311.089i −0.0152787 + 0.0264636i
\(518\) −13189.2 7614.79i −1.11873 0.645897i
\(519\) 0 0
\(520\) −396.002 137.892i −0.0333958 0.0116288i
\(521\) −4671.22 −0.392802 −0.196401 0.980524i \(-0.562925\pi\)
−0.196401 + 0.980524i \(0.562925\pi\)
\(522\) 0 0
\(523\) 2987.41 + 5174.35i 0.249771 + 0.432617i 0.963462 0.267844i \(-0.0863112\pi\)
−0.713691 + 0.700461i \(0.752978\pi\)
\(524\) 6369.19 + 11031.8i 0.530991 + 0.919703i
\(525\) 0 0
\(526\) 16294.5i 1.35071i
\(527\) 9824.30i 0.812056i
\(528\) 0 0
\(529\) 1224.70 + 2121.25i 0.100658 + 0.174344i
\(530\) −13055.8 22613.3i −1.07001 1.85332i
\(531\) 0 0
\(532\) 8495.91 0.692377
\(533\) −2223.05 + 424.125i −0.180659 + 0.0344670i
\(534\) 0 0
\(535\) −12564.9 7254.37i −1.01538 0.586231i
\(536\) −44.8653 + 77.7091i −0.00361546 + 0.00626216i
\(537\) 0 0
\(538\) 8697.78 + 5021.67i 0.697004 + 0.402415i
\(539\) 678.448 + 391.702i 0.0542168 + 0.0313021i
\(540\) 0 0
\(541\) 744.548i 0.0591694i 0.999562 + 0.0295847i \(0.00941847\pi\)
−0.999562 + 0.0295847i \(0.990582\pi\)
\(542\) 670.552 + 1161.43i 0.0531415 + 0.0920437i
\(543\) 0 0
\(544\) −21600.2 12470.9i −1.70239 0.982875i
\(545\) 6512.10 + 11279.3i 0.511830 + 0.886516i
\(546\) 0 0
\(547\) 11128.6 19275.3i 0.869882 1.50668i 0.00776623 0.999970i \(-0.497528\pi\)
0.862116 0.506711i \(-0.169139\pi\)
\(548\) −6233.51 + 3598.92i −0.485917 + 0.280544i
\(549\) 0 0
\(550\) 251.470 435.559i 0.0194959 0.0337678i
\(551\) −17054.9 9846.65i −1.31863 0.761309i
\(552\) 0 0
\(553\) 13308.1i 1.02336i
\(554\) 24962.9 14412.3i 1.91439 1.10527i
\(555\) 0 0
\(556\) 4232.68 0.322852
\(557\) 2730.61 1576.52i 0.207719 0.119927i −0.392532 0.919739i \(-0.628401\pi\)
0.600251 + 0.799812i \(0.295067\pi\)
\(558\) 0 0
\(559\) −7569.84 2635.89i −0.572755 0.199439i
\(560\) 5937.48 10284.0i 0.448043 0.776034i
\(561\) 0 0
\(562\) 1250.08 2165.20i 0.0938281 0.162515i
\(563\) −3181.58 −0.238166 −0.119083 0.992884i \(-0.537995\pi\)
−0.119083 + 0.992884i \(0.537995\pi\)
\(564\) 0 0
\(565\) −4367.89 + 2521.80i −0.325236 + 0.187775i
\(566\) 18876.2 + 10898.2i 1.40182 + 0.809339i
\(567\) 0 0
\(568\) 44.8234 77.6364i 0.00331118 0.00573513i
\(569\) 7985.60 0.588355 0.294177 0.955751i \(-0.404954\pi\)
0.294177 + 0.955751i \(0.404954\pi\)
\(570\) 0 0
\(571\) −742.326 1285.75i −0.0544052 0.0942326i 0.837540 0.546376i \(-0.183993\pi\)
−0.891945 + 0.452143i \(0.850660\pi\)
\(572\) −3149.39 3648.42i −0.230214 0.266693i
\(573\) 0 0
\(574\) 3231.36i 0.234972i
\(575\) −472.634 818.626i −0.0342786 0.0593723i
\(576\) 0 0
\(577\) 2749.63i 0.198386i −0.995068 0.0991930i \(-0.968374\pi\)
0.995068 0.0991930i \(-0.0316261\pi\)
\(578\) −16238.1 + 9375.05i −1.16854 + 0.674655i
\(579\) 0 0
\(580\) 22043.3 12726.7i 1.57810 0.911115i
\(581\) −291.192 −0.0207929
\(582\) 0 0
\(583\) 8073.41i 0.573527i
\(584\) −460.613 −0.0326375
\(585\) 0 0
\(586\) 30749.5 2.16767
\(587\) 23260.7i 1.63555i 0.575536 + 0.817777i \(0.304794\pi\)
−0.575536 + 0.817777i \(0.695206\pi\)
\(588\) 0 0
\(589\) 6482.06 0.453461
\(590\) −30303.6 + 17495.8i −2.11454 + 1.22083i
\(591\) 0 0
\(592\) −12934.6 + 7467.77i −0.897985 + 0.518452i
\(593\) 16160.4i 1.11910i 0.828796 + 0.559551i \(0.189027\pi\)
−0.828796 + 0.559551i \(0.810973\pi\)
\(594\) 0 0
\(595\) −8878.31 15377.7i −0.611723 1.05954i
\(596\) 9562.68i 0.657219i
\(597\) 0 0
\(598\) −18035.5 + 3440.90i −1.23332 + 0.235299i
\(599\) 10780.2 + 18671.9i 0.735340 + 1.27365i 0.954574 + 0.297974i \(0.0963107\pi\)
−0.219234 + 0.975672i \(0.570356\pi\)
\(600\) 0 0
\(601\) −2699.28 −0.183205 −0.0916024 0.995796i \(-0.529199\pi\)
−0.0916024 + 0.995796i \(0.529199\pi\)
\(602\) 5722.41 9911.51i 0.387422 0.671035i
\(603\) 0 0
\(604\) 22256.8 + 12850.0i 1.49937 + 0.865659i
\(605\) −10762.3 + 6213.64i −0.723225 + 0.417554i
\(606\) 0 0
\(607\) −9180.67 −0.613891 −0.306945 0.951727i \(-0.599307\pi\)
−0.306945 + 0.951727i \(0.599307\pi\)
\(608\) 8228.26 14251.8i 0.548848 0.950633i
\(609\) 0 0
\(610\) 782.611 1355.52i 0.0519459 0.0899729i
\(611\) 1253.03 239.059i 0.0829658 0.0158286i
\(612\) 0 0
\(613\) −15016.1 + 8669.55i −0.989388 + 0.571223i −0.905091 0.425218i \(-0.860198\pi\)
−0.0842964 + 0.996441i \(0.526864\pi\)
\(614\) 28766.6 1.89076
\(615\) 0 0
\(616\) −160.315 + 92.5579i −0.0104858 + 0.00605400i
\(617\) 24030.4i 1.56796i 0.620789 + 0.783978i \(0.286812\pi\)
−0.620789 + 0.783978i \(0.713188\pi\)
\(618\) 0 0
\(619\) −4252.29 2455.06i −0.276113 0.159414i 0.355550 0.934657i \(-0.384294\pi\)
−0.631662 + 0.775244i \(0.717627\pi\)
\(620\) −4188.99 + 7255.55i −0.271345 + 0.469984i
\(621\) 0 0
\(622\) −23657.6 + 13658.7i −1.52506 + 0.880492i
\(623\) 420.301 727.982i 0.0270289 0.0468154i
\(624\) 0 0
\(625\) 7167.21 + 12414.0i 0.458701 + 0.794494i
\(626\) −35546.8 20523.0i −2.26955 1.31032i
\(627\) 0 0
\(628\) −5959.90 10322.8i −0.378703 0.655934i
\(629\) 22333.1i 1.41571i
\(630\) 0 0
\(631\) −5594.69 3230.10i −0.352965 0.203785i 0.313025 0.949745i \(-0.398658\pi\)
−0.665991 + 0.745960i \(0.731991\pi\)
\(632\) 569.858 + 329.007i 0.0358666 + 0.0207076i
\(633\) 0 0
\(634\) 6064.80 10504.5i 0.379911 0.658026i
\(635\) 4218.23 + 2435.39i 0.263615 + 0.152198i
\(636\) 0 0
\(637\) −521.360 2732.71i −0.0324286 0.169975i
\(638\) −15951.5 −0.989851
\(639\) 0 0
\(640\) −572.354 991.346i −0.0353504 0.0612287i
\(641\) −2364.30 4095.09i −0.145685 0.252334i 0.783943 0.620833i \(-0.213205\pi\)
−0.929628 + 0.368498i \(0.879872\pi\)
\(642\) 0 0
\(643\) 4789.29i 0.293734i 0.989156 + 0.146867i \(0.0469190\pi\)
−0.989156 + 0.146867i \(0.953081\pi\)
\(644\) 12933.9i 0.791410i
\(645\) 0 0
\(646\) −12626.2 21869.3i −0.768997 1.33194i
\(647\) 11606.9 + 20103.8i 0.705278 + 1.22158i 0.966591 + 0.256323i \(0.0825110\pi\)
−0.261313 + 0.965254i \(0.584156\pi\)
\(648\) 0 0
\(649\) 10819.0 0.654365
\(650\) −1754.38 + 334.709i −0.105865 + 0.0201975i
\(651\) 0 0
\(652\) 5136.65 + 2965.65i 0.308538 + 0.178134i
\(653\) 3728.90 6458.65i 0.223466 0.387054i −0.732392 0.680883i \(-0.761596\pi\)
0.955858 + 0.293829i \(0.0949296\pi\)
\(654\) 0 0
\(655\) 15212.7 + 8783.05i 0.907495 + 0.523942i
\(656\) −2744.41 1584.48i −0.163340 0.0943045i
\(657\) 0 0
\(658\) 1821.36i 0.107909i
\(659\) −3138.19 5435.50i −0.185503 0.321300i 0.758243 0.651972i \(-0.226058\pi\)
−0.943746 + 0.330672i \(0.892725\pi\)
\(660\) 0 0
\(661\) 19166.5 + 11065.8i 1.12782 + 0.651149i 0.943387 0.331695i \(-0.107620\pi\)
0.184437 + 0.982844i \(0.440954\pi\)
\(662\) −618.734 1071.68i −0.0363260 0.0629184i
\(663\) 0 0
\(664\) −7.19897 + 12.4690i −0.000420745 + 0.000728751i
\(665\) 10146.2 5857.89i 0.591657 0.341593i
\(666\) 0 0
\(667\) −14990.3 + 25963.9i −0.870202 + 1.50723i
\(668\) 22476.8 + 12977.0i 1.30187 + 0.751638i
\(669\) 0 0
\(670\) 4599.93i 0.265240i
\(671\) −419.112 + 241.974i −0.0241127 + 0.0139215i
\(672\) 0 0
\(673\) 3435.45 0.196771 0.0983855 0.995148i \(-0.468632\pi\)
0.0983855 + 0.995148i \(0.468632\pi\)
\(674\) −33494.3 + 19337.9i −1.91417 + 1.10515i
\(675\) 0 0
\(676\) −2499.49 + 16932.1i −0.142210 + 0.963365i
\(677\) −9949.28 + 17232.7i −0.564818 + 0.978294i 0.432248 + 0.901755i \(0.357720\pi\)
−0.997067 + 0.0765395i \(0.975613\pi\)
\(678\) 0 0
\(679\) −11762.2 + 20372.7i −0.664787 + 1.15145i
\(680\) −877.973 −0.0495128
\(681\) 0 0
\(682\) 4547.01 2625.22i 0.255299 0.147397i
\(683\) 24354.1 + 14060.9i 1.36440 + 0.787736i 0.990206 0.139615i \(-0.0445865\pi\)
0.374193 + 0.927351i \(0.377920\pi\)
\(684\) 0 0
\(685\) −4962.88 + 8595.96i −0.276820 + 0.479467i
\(686\) 26927.3 1.49867
\(687\) 0 0
\(688\) −5611.93 9720.15i −0.310978 0.538630i
\(689\) 21702.6 18734.1i 1.20001 1.03587i
\(690\) 0 0
\(691\) 9235.73i 0.508457i −0.967144 0.254229i \(-0.918178\pi\)
0.967144 0.254229i \(-0.0818215\pi\)
\(692\) 2975.43 + 5153.60i 0.163452 + 0.283108i
\(693\) 0 0
\(694\) 8397.78i 0.459330i
\(695\) 5054.84 2918.41i 0.275886 0.159283i
\(696\) 0 0
\(697\) −4103.71 + 2369.28i −0.223012 + 0.128756i
\(698\) 9238.17 0.500960
\(699\) 0 0
\(700\) 1258.13i 0.0679328i
\(701\) −6671.95 −0.359481 −0.179741 0.983714i \(-0.557526\pi\)
−0.179741 + 0.983714i \(0.557526\pi\)
\(702\) 0 0
\(703\) −14735.4 −0.790547
\(704\) 6399.37i 0.342593i
\(705\) 0 0
\(706\) 19107.3 1.01857
\(707\) −24901.7 + 14377.0i −1.32464 + 0.764784i
\(708\) 0 0
\(709\) 25327.2 14622.7i 1.34158 0.774564i 0.354545 0.935039i \(-0.384636\pi\)
0.987040 + 0.160475i \(0.0513025\pi\)
\(710\) 4595.63i 0.242917i
\(711\) 0 0
\(712\) −20.7817 35.9950i −0.00109386 0.00189462i
\(713\) 9868.10i 0.518322i
\(714\) 0 0
\(715\) −6276.70 2185.61i −0.328301 0.114318i
\(716\) 4866.80 + 8429.54i 0.254023 + 0.439982i
\(717\) 0 0
\(718\) 28120.6 1.46163
\(719\) −1136.47 + 1968.42i −0.0589473 + 0.102100i −0.893993 0.448081i \(-0.852108\pi\)
0.835046 + 0.550180i \(0.185441\pi\)
\(720\) 0 0
\(721\) 6921.14 + 3995.92i 0.357499 + 0.206402i
\(722\) −9174.85 + 5297.10i −0.472926 + 0.273044i
\(723\) 0 0
\(724\) 13412.9 0.688519
\(725\) −1458.16 + 2525.61i −0.0746961 + 0.129377i
\(726\) 0 0
\(727\) −11663.3 + 20201.4i −0.595004 + 1.03058i 0.398542 + 0.917150i \(0.369516\pi\)
−0.993546 + 0.113428i \(0.963817\pi\)
\(728\) 620.816 + 216.174i 0.0316057 + 0.0110054i
\(729\) 0 0
\(730\) 20449.2 11806.4i 1.03679 0.598594i
\(731\) −16783.0 −0.849169
\(732\) 0 0
\(733\) −15695.3 + 9061.68i −0.790885 + 0.456618i −0.840274 0.542162i \(-0.817606\pi\)
0.0493889 + 0.998780i \(0.484273\pi\)
\(734\) 40766.5i 2.05002i
\(735\) 0 0
\(736\) −21696.5 12526.5i −1.08661 0.627352i
\(737\) −711.124 + 1231.70i −0.0355422 + 0.0615608i
\(738\) 0 0
\(739\) −4511.88 + 2604.94i −0.224590 + 0.129667i −0.608074 0.793880i \(-0.708058\pi\)
0.383484 + 0.923548i \(0.374724\pi\)
\(740\) 9522.63 16493.7i 0.473053 0.819351i
\(741\) 0 0
\(742\) 20467.7 + 35451.1i 1.01266 + 1.75398i
\(743\) −24499.2 14144.6i −1.20968 0.698407i −0.246988 0.969019i \(-0.579441\pi\)
−0.962689 + 0.270612i \(0.912774\pi\)
\(744\) 0 0
\(745\) −6593.43 11420.2i −0.324248 0.561613i
\(746\) 2949.63i 0.144764i
\(747\) 0 0
\(748\) −8739.45 5045.72i −0.427200 0.246644i
\(749\) 19698.2 + 11372.7i 0.960956 + 0.554808i
\(750\) 0 0
\(751\) 442.421 766.295i 0.0214969 0.0372337i −0.855077 0.518501i \(-0.826490\pi\)
0.876574 + 0.481268i \(0.159823\pi\)
\(752\) 1546.89 + 893.098i 0.0750124 + 0.0433084i
\(753\) 0 0
\(754\) 37014.9 + 42880.1i 1.78780 + 2.07109i
\(755\) 35440.0 1.70834
\(756\) 0 0
\(757\) 11514.6 + 19943.9i 0.552847 + 0.957559i 0.998068 + 0.0621380i \(0.0197919\pi\)
−0.445221 + 0.895421i \(0.646875\pi\)
\(758\) 3173.11 + 5495.98i 0.152048 + 0.263355i
\(759\) 0 0
\(760\) 579.285i 0.0276485i
\(761\) 9076.63i 0.432362i −0.976353 0.216181i \(-0.930640\pi\)
0.976353 0.216181i \(-0.0693602\pi\)
\(762\) 0 0
\(763\) −10209.1 17682.6i −0.484395 0.838997i
\(764\) 19336.9 + 33492.5i 0.915686 + 1.58601i
\(765\) 0 0
\(766\) −47217.0 −2.22718
\(767\) −25105.1 29083.2i −1.18187 1.36914i
\(768\) 0 0
\(769\) −13198.7 7620.25i −0.618928 0.357338i 0.157523 0.987515i \(-0.449649\pi\)
−0.776452 + 0.630177i \(0.782982\pi\)
\(770\) 4744.86 8218.35i 0.222069 0.384635i
\(771\) 0 0
\(772\) 20365.8 + 11758.2i 0.949459 + 0.548170i
\(773\) −7248.35 4184.84i −0.337264 0.194719i 0.321797 0.946809i \(-0.395713\pi\)
−0.659061 + 0.752089i \(0.729046\pi\)
\(774\) 0 0
\(775\) 959.908i 0.0444915i
\(776\) 581.578 + 1007.32i 0.0269039 + 0.0465990i
\(777\) 0 0
\(778\) 147.523 + 85.1722i 0.00679813 + 0.00392490i
\(779\) −1563.25 2707.62i −0.0718987 0.124532i
\(780\) 0 0
\(781\) 710.459 1230.55i 0.0325509 0.0563797i
\(782\) −33293.1 + 19221.8i −1.52245 + 0.878990i
\(783\) 0 0
\(784\) 1947.74 3373.59i 0.0887273 0.153680i
\(785\) −14235.1 8218.65i −0.647227 0.373677i
\(786\) 0 0
\(787\) 837.374i 0.0379278i −0.999820 0.0189639i \(-0.993963\pi\)
0.999820 0.0189639i \(-0.00603676\pi\)
\(788\) 3744.75 2162.03i 0.169291 0.0977402i
\(789\) 0 0
\(790\) −33732.3 −1.51917
\(791\) 6847.58 3953.45i 0.307803 0.177710i
\(792\) 0 0
\(793\) 1623.00 + 565.146i 0.0726790 + 0.0253076i
\(794\) 14226.8 24641.5i 0.635880 1.10138i
\(795\) 0 0
\(796\) 15949.9 27626.0i 0.710211 1.23012i
\(797\) 38951.1 1.73114 0.865570 0.500788i \(-0.166956\pi\)
0.865570 + 0.500788i \(0.166956\pi\)
\(798\) 0 0
\(799\) 2313.06 1335.45i 0.102416 0.0591299i
\(800\) −2110.50 1218.50i −0.0932717 0.0538505i
\(801\) 0 0
\(802\) −24646.2 + 42688.4i −1.08514 + 1.87953i
\(803\) −7300.79 −0.320846
\(804\) 0 0
\(805\) −8917.89 15446.2i −0.390452 0.676284i
\(806\) −17608.2 6131.35i −0.769507 0.267950i
\(807\) 0 0
\(808\) 1421.74i 0.0619016i
\(809\) −11894.2 20601.3i −0.516906 0.895308i −0.999807 0.0196331i \(-0.993750\pi\)
0.482901 0.875675i \(-0.339583\pi\)
\(810\) 0 0
\(811\) 35866.7i 1.55296i −0.630143 0.776479i \(-0.717004\pi\)
0.630143 0.776479i \(-0.282996\pi\)
\(812\) −34557.4 + 19951.7i −1.49351 + 0.862277i
\(813\) 0 0
\(814\) −10336.5 + 5967.78i −0.445079 + 0.256966i
\(815\) 8179.20 0.351540
\(816\) 0 0
\(817\) 11073.4i 0.474186i
\(818\) 28740.1 1.22845
\(819\) 0 0
\(820\) 4040.95 0.172093
\(821\) 218.313i 0.00928035i 0.999989 + 0.00464017i \(0.00147702\pi\)
−0.999989 + 0.00464017i \(0.998523\pi\)
\(822\) 0 0
\(823\) 16796.3 0.711399 0.355700 0.934600i \(-0.384243\pi\)
0.355700 + 0.934600i \(0.384243\pi\)
\(824\) 342.214 197.578i 0.0144680 0.00835308i
\(825\) 0 0
\(826\) 47507.2 27428.3i 2.00120 1.15539i
\(827\) 5954.17i 0.250359i −0.992134 0.125180i \(-0.960049\pi\)
0.992134 0.125180i \(-0.0399507\pi\)
\(828\) 0 0
\(829\) −10443.7 18089.0i −0.437544 0.757848i 0.559956 0.828523i \(-0.310818\pi\)
−0.997499 + 0.0706747i \(0.977485\pi\)
\(830\) 738.093i 0.0308670i
\(831\) 0 0
\(832\) −17202.5 + 14849.5i −0.716815 + 0.618768i
\(833\) −2912.46 5044.52i −0.121141 0.209823i
\(834\) 0 0
\(835\) 35790.3 1.48332
\(836\) 3329.16 5766.28i 0.137729 0.238554i
\(837\) 0 0
\(838\) 19516.4 + 11267.8i 0.804515 + 0.464487i
\(839\) 30794.2 17779.0i 1.26714 0.731586i 0.292697 0.956205i \(-0.405447\pi\)
0.974447 + 0.224619i \(0.0721138\pi\)
\(840\) 0 0
\(841\) 68106.2 2.79250
\(842\) 12593.6 21812.8i 0.515446 0.892778i
\(843\) 0 0
\(844\) 9748.08 16884.2i 0.397563 0.688599i
\(845\) 8689.62 + 21944.4i 0.353766 + 0.893385i
\(846\) 0 0
\(847\) 16872.2 9741.18i 0.684458 0.395172i
\(848\) 40145.1 1.62569
\(849\) 0 0
\(850\) −3238.55 + 1869.78i −0.130684 + 0.0754504i
\(851\) 22432.7i 0.903622i
\(852\) 0 0
\(853\) 4359.17 + 2516.77i 0.174977 + 0.101023i 0.584930 0.811084i \(-0.301122\pi\)
−0.409954 + 0.912106i \(0.634455\pi\)
\(854\) −1226.91 + 2125.06i −0.0491615 + 0.0851501i
\(855\) 0 0
\(856\) 973.973 562.324i 0.0388899 0.0224531i
\(857\) −21165.7 + 36660.1i −0.843649 + 1.46124i 0.0431411 + 0.999069i \(0.486263\pi\)
−0.886790 + 0.462173i \(0.847070\pi\)
\(858\) 0 0
\(859\) 5920.82 + 10255.2i 0.235176 + 0.407336i 0.959324 0.282308i \(-0.0911002\pi\)
−0.724148 + 0.689644i \(0.757767\pi\)
\(860\) 12394.8 + 7156.13i 0.491463 + 0.283746i
\(861\) 0 0
\(862\) −15244.1 26403.5i −0.602338 1.04328i
\(863\) 3264.28i 0.128757i 0.997926 + 0.0643785i \(0.0205065\pi\)
−0.997926 + 0.0643785i \(0.979494\pi\)
\(864\) 0 0
\(865\) 7106.78 + 4103.10i 0.279350 + 0.161283i
\(866\) −61408.1 35454.0i −2.40962 1.39120i
\(867\) 0 0
\(868\) 6567.12 11374.6i 0.256800 0.444791i
\(869\) 9032.34 + 5214.82i 0.352591 + 0.203568i
\(870\) 0 0
\(871\) 4961.15 946.513i 0.192999 0.0368213i
\(872\) −1009.57 −0.0392069
\(873\) 0 0
\(874\) −12682.5 21966.8i −0.490838 0.850156i
\(875\) −12175.7 21088.9i −0.470414 0.814781i
\(876\) 0 0
\(877\) 17140.5i 0.659968i −0.943987 0.329984i \(-0.892957\pi\)
0.943987 0.329984i \(-0.107043\pi\)
\(878\) 38546.5i 1.48164i
\(879\) 0 0
\(880\) −4653.26 8059.68i −0.178251 0.308741i
\(881\) −16988.8 29425.4i −0.649678 1.12527i −0.983200 0.182533i \(-0.941571\pi\)
0.333522 0.942742i \(-0.391763\pi\)
\(882\) 0 0
\(883\) −8053.03 −0.306915 −0.153458 0.988155i \(-0.549041\pi\)
−0.153458 + 0.988155i \(0.549041\pi\)
\(884\) 6715.91 + 35201.5i 0.255521 + 1.33931i
\(885\) 0 0
\(886\) −4498.74 2597.35i −0.170585 0.0984873i
\(887\) 16356.1 28329.7i 0.619149 1.07240i −0.370492 0.928836i \(-0.620811\pi\)
0.989641 0.143563i \(-0.0458558\pi\)
\(888\) 0 0
\(889\) −6612.96 3817.99i −0.249484 0.144040i
\(890\) 1845.24 + 1065.35i 0.0694972 + 0.0401242i
\(891\) 0 0
\(892\) 46445.6i 1.74340i
\(893\) 881.127 + 1526.16i 0.0330188 + 0.0571902i
\(894\) 0 0
\(895\) 11624.3 + 6711.27i 0.434141 + 0.250652i
\(896\) 897.285 + 1554.14i 0.0334555 + 0.0579467i
\(897\) 0 0
\(898\) 2005.60 3473.81i 0.0745299 0.129090i
\(899\) −26366.0 + 15222.4i −0.978149 + 0.564735i
\(900\) 0 0
\(901\) 30014.4 51986.5i 1.10980 1.92222i
\(902\) −2193.16 1266.22i −0.0809581 0.0467412i
\(903\) 0 0
\(904\) 390.955i 0.0143838i
\(905\) 16018.3 9248.16i 0.588360 0.339690i
\(906\) 0 0
\(907\) 36380.8 1.33187 0.665935 0.746010i \(-0.268033\pi\)
0.665935 + 0.746010i \(0.268033\pi\)
\(908\) 575.216 332.101i 0.0210234 0.0121378i
\(909\) 0 0
\(910\) −33102.5 + 6315.46i −1.20587 + 0.230061i
\(911\) −2145.59 + 3716.27i −0.0780314 + 0.135154i −0.902400 0.430898i \(-0.858197\pi\)
0.824369 + 0.566053i \(0.191530\pi\)
\(912\) 0 0
\(913\) −114.105 + 197.636i −0.00413617 + 0.00716406i
\(914\) 3810.16 0.137887
\(915\) 0 0
\(916\) −42957.3 + 24801.4i −1.54951 + 0.894609i
\(917\) −23849.1 13769.3i −0.858851 0.495858i
\(918\) 0 0
\(919\) −1282.45 + 2221.27i −0.0460329 + 0.0797313i −0.888124 0.459604i \(-0.847991\pi\)
0.842091 + 0.539336i \(0.181325\pi\)
\(920\) −881.887 −0.0316032
\(921\) 0 0
\(922\) −2556.92 4428.72i −0.0913316 0.158191i
\(923\) −4956.52 + 945.628i −0.176756 + 0.0337224i
\(924\) 0 0
\(925\) 2182.11i 0.0775648i
\(926\) −31539.5 54628.1i −1.11928 1.93865i
\(927\) 0 0
\(928\) 77292.7i 2.73411i
\(929\) −6908.90 + 3988.86i −0.243998 + 0.140872i −0.617013 0.786953i \(-0.711657\pi\)
0.373015 + 0.927825i \(0.378324\pi\)
\(930\) 0 0
\(931\) 3328.37 1921.63i 0.117167 0.0676467i
\(932\) 14094.7 0.495373
\(933\) 0 0
\(934\) 55671.1i 1.95034i
\(935\) −13916.0 −0.486741
\(936\) 0 0
\(937\) −22558.1 −0.786490 −0.393245 0.919434i \(-0.628648\pi\)
−0.393245 + 0.919434i \(0.628648\pi\)
\(938\) 7211.36i 0.251023i
\(939\) 0 0
\(940\) −2277.69 −0.0790320
\(941\) −4724.10 + 2727.46i −0.163657 + 0.0944874i −0.579592 0.814907i \(-0.696788\pi\)
0.415935 + 0.909395i \(0.363455\pi\)
\(942\) 0 0
\(943\) −4122.00 + 2379.84i −0.142345 + 0.0821827i
\(944\) 53797.5i 1.85483i
\(945\) 0 0
\(946\) −4484.71 7767.74i −0.154134 0.266967i
\(947\) 3424.86i 0.117522i −0.998272 0.0587609i \(-0.981285\pi\)
0.998272 0.0587609i \(-0.0187149\pi\)
\(948\) 0 0
\(949\) 16941.3 + 19625.7i 0.579491 + 0.671314i
\(950\) −1233.68 2136.79i −0.0421324 0.0729754i
\(951\) 0 0
\(952\) 1376.41 0.0468588
\(953\) −16363.6 + 28342.7i −0.556212 + 0.963388i 0.441596 + 0.897214i \(0.354413\pi\)
−0.997808 + 0.0661741i \(0.978921\pi\)
\(954\) 0 0
\(955\) 46185.8 + 26665.4i 1.56496 + 0.903531i
\(956\) −22331.9 + 12893.3i −0.755509 + 0.436193i
\(957\) 0 0
\(958\) 25192.5 0.849618
\(959\) 7780.35 13476.0i 0.261982 0.453766i
\(960\) 0 0
\(961\) −9885.03 + 17121.4i −0.331813 + 0.574716i
\(962\) 40027.9 + 13938.1i 1.34153 + 0.467134i
\(963\) 0 0
\(964\) −7996.98 + 4617.06i −0.267184 + 0.154259i
\(965\) 32429.0 1.08179
\(966\) 0 0
\(967\) −49213.4 + 28413.4i −1.63660 + 0.944893i −0.654612 + 0.755965i \(0.727168\pi\)
−0.981991 + 0.188928i \(0.939499\pi\)
\(968\) 963.302i 0.0319852i
\(969\) 0 0
\(970\) −51639.2 29813.9i −1.70931 0.986873i
\(971\) −20615.6 + 35707.3i −0.681346 + 1.18013i 0.293224 + 0.956044i \(0.405272\pi\)
−0.974570 + 0.224083i \(0.928061\pi\)
\(972\) 0 0
\(973\) −7924.52 + 4575.23i −0.261098 + 0.150745i
\(974\) 39494.1 68405.7i 1.29925 2.25037i
\(975\) 0 0
\(976\) 1203.22 + 2084.04i 0.0394612 + 0.0683488i
\(977\) −21854.4 12617.7i −0.715644 0.413177i 0.0975031 0.995235i \(-0.468914\pi\)
−0.813147 + 0.582058i \(0.802248\pi\)
\(978\) 0 0
\(979\) −329.394 570.526i −0.0107533 0.0186252i
\(980\) 4967.38i 0.161915i
\(981\) 0 0
\(982\) 54136.6 + 31255.8i 1.75923 + 1.01569i
\(983\) −11991.4 6923.25i −0.389081 0.224636i 0.292681 0.956210i \(-0.405453\pi\)
−0.681762 + 0.731574i \(0.738786\pi\)
\(984\) 0 0
\(985\) 2981.43 5163.99i 0.0964428 0.167044i
\(986\) 102715. + 59302.7i 3.31757 + 1.91540i
\(987\) 0 0
\(988\) −23225.9 + 4431.15i −0.747888 + 0.142686i
\(989\) −16857.8 −0.542010
\(990\) 0 0
\(991\) −2076.06 3595.85i −0.0665473 0.115263i 0.830832 0.556523i \(-0.187865\pi\)
−0.897379 + 0.441260i \(0.854532\pi\)
\(992\) −12720.5 22032.5i −0.407132 0.705174i
\(993\) 0 0
\(994\) 7204.62i 0.229896i
\(995\) 43989.5i 1.40157i
\(996\) 0 0
\(997\) 18813.1 + 32585.3i 0.597610 + 1.03509i 0.993173 + 0.116652i \(0.0372162\pi\)
−0.395563 + 0.918439i \(0.629450\pi\)
\(998\) −12718.4 22028.9i −0.403401 0.698711i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.4.l.a.127.8 80
3.2 odd 2 117.4.l.a.88.33 yes 80
9.4 even 3 351.4.r.a.10.33 80
9.5 odd 6 117.4.r.a.49.8 yes 80
13.4 even 6 351.4.r.a.316.33 80
39.17 odd 6 117.4.r.a.43.8 yes 80
117.4 even 6 inner 351.4.l.a.199.33 80
117.95 odd 6 117.4.l.a.4.8 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.4.l.a.4.8 80 117.95 odd 6
117.4.l.a.88.33 yes 80 3.2 odd 2
117.4.r.a.43.8 yes 80 39.17 odd 6
117.4.r.a.49.8 yes 80 9.5 odd 6
351.4.l.a.127.8 80 1.1 even 1 trivial
351.4.l.a.199.33 80 117.4 even 6 inner
351.4.r.a.10.33 80 9.4 even 3
351.4.r.a.316.33 80 13.4 even 6