Properties

Label 351.4.r.a.10.34
Level $351$
Weight $4$
Character 351.10
Analytic conductor $20.710$
Analytic rank $0$
Dimension $80$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [351,4,Mod(10,351)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(351, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 5]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("351.10");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 351.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.7096704120\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 10.34
Character \(\chi\) \(=\) 351.10
Dual form 351.4.r.a.316.34

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.59109 + 2.07331i) q^{2} +(4.59727 + 7.96270i) q^{4} +(-4.17848 - 2.41245i) q^{5} -15.5822i q^{7} +4.95329i q^{8} +(-10.0035 - 17.3266i) q^{10} +(-39.1432 - 22.5993i) q^{11} +(21.5929 - 41.6022i) q^{13} +(32.3068 - 55.9571i) q^{14} +(26.5084 - 45.9139i) q^{16} +(1.85014 - 3.20453i) q^{17} +(-10.2746 - 5.93207i) q^{19} -44.3627i q^{20} +(-93.7110 - 162.312i) q^{22} +134.490 q^{23} +(-50.8602 - 88.0924i) q^{25} +(163.797 - 104.628i) q^{26} +(124.077 - 71.6356i) q^{28} +(-99.7201 + 172.720i) q^{29} +(-37.0698 - 21.4022i) q^{31} +(224.705 - 129.734i) q^{32} +(13.2880 - 7.67183i) q^{34} +(-37.5913 + 65.1100i) q^{35} +(-139.181 + 80.3560i) q^{37} +(-24.5981 - 42.6052i) q^{38} +(11.9496 - 20.6973i) q^{40} -369.833i q^{41} +210.696 q^{43} -415.580i q^{44} +(482.967 + 278.841i) q^{46} +(-160.177 + 92.4781i) q^{47} +100.195 q^{49} -421.797i q^{50} +(430.535 - 19.3187i) q^{52} +437.724 q^{53} +(109.039 + 188.862i) q^{55} +77.1833 q^{56} +(-716.207 + 413.502i) q^{58} +(-401.536 + 231.827i) q^{59} +495.381 q^{61} +(-88.7471 - 153.715i) q^{62} +651.781 q^{64} +(-190.589 + 121.742i) q^{65} -233.027i q^{67} +34.0223 q^{68} +(-269.987 + 155.877i) q^{70} +(-824.189 - 475.846i) q^{71} +885.664i q^{73} -666.413 q^{74} -109.085i q^{76} +(-352.147 + 609.937i) q^{77} +(-221.888 - 384.322i) q^{79} +(-221.530 + 127.900i) q^{80} +(766.781 - 1328.10i) q^{82} +(604.028 - 348.736i) q^{83} +(-15.4615 + 8.92672i) q^{85} +(756.628 + 436.839i) q^{86} +(111.941 - 193.888i) q^{88} +(-322.550 + 186.224i) q^{89} +(-648.255 - 336.466i) q^{91} +(618.289 + 1070.91i) q^{92} -766.944 q^{94} +(28.6216 + 49.5741i) q^{95} +135.651i q^{97} +(359.807 + 207.735i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 3 q^{2} + 153 q^{4} - 10 q^{10} + 3 q^{11} - 13 q^{13} - 126 q^{14} - 551 q^{16} + 138 q^{17} - 96 q^{19} - 31 q^{22} - 654 q^{23} + 798 q^{25} - 510 q^{26} + 18 q^{28} - 201 q^{29} - 180 q^{31}+ \cdots + 6339 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.59109 + 2.07331i 1.26964 + 0.733027i 0.974920 0.222556i \(-0.0714400\pi\)
0.294721 + 0.955583i \(0.404773\pi\)
\(3\) 0 0
\(4\) 4.59727 + 7.96270i 0.574658 + 0.995338i
\(5\) −4.17848 2.41245i −0.373735 0.215776i 0.301354 0.953512i \(-0.402561\pi\)
−0.675089 + 0.737736i \(0.735895\pi\)
\(6\) 0 0
\(7\) 15.5822i 0.841361i −0.907209 0.420680i \(-0.861791\pi\)
0.907209 0.420680i \(-0.138209\pi\)
\(8\) 4.95329i 0.218907i
\(9\) 0 0
\(10\) −10.0035 17.3266i −0.316339 0.547916i
\(11\) −39.1432 22.5993i −1.07292 0.619450i −0.143941 0.989586i \(-0.545978\pi\)
−0.928977 + 0.370136i \(0.879311\pi\)
\(12\) 0 0
\(13\) 21.5929 41.6022i 0.460677 0.887568i
\(14\) 32.3068 55.9571i 0.616740 1.06823i
\(15\) 0 0
\(16\) 26.5084 45.9139i 0.414194 0.717405i
\(17\) 1.85014 3.20453i 0.0263955 0.0457184i −0.852526 0.522685i \(-0.824930\pi\)
0.878921 + 0.476967i \(0.158264\pi\)
\(18\) 0 0
\(19\) −10.2746 5.93207i −0.124061 0.0716269i 0.436685 0.899614i \(-0.356152\pi\)
−0.560746 + 0.827988i \(0.689486\pi\)
\(20\) 44.3627i 0.495990i
\(21\) 0 0
\(22\) −93.7110 162.312i −0.908148 1.57296i
\(23\) 134.490 1.21927 0.609635 0.792682i \(-0.291316\pi\)
0.609635 + 0.792682i \(0.291316\pi\)
\(24\) 0 0
\(25\) −50.8602 88.0924i −0.406881 0.704739i
\(26\) 163.797 104.628i 1.23551 0.789204i
\(27\) 0 0
\(28\) 124.077 71.6356i 0.837438 0.483495i
\(29\) −99.7201 + 172.720i −0.638536 + 1.10598i 0.347218 + 0.937785i \(0.387126\pi\)
−0.985754 + 0.168193i \(0.946207\pi\)
\(30\) 0 0
\(31\) −37.0698 21.4022i −0.214772 0.123999i 0.388755 0.921341i \(-0.372905\pi\)
−0.603527 + 0.797342i \(0.706238\pi\)
\(32\) 224.705 129.734i 1.24133 0.716684i
\(33\) 0 0
\(34\) 13.2880 7.67183i 0.0670257 0.0386973i
\(35\) −37.5913 + 65.1100i −0.181545 + 0.314446i
\(36\) 0 0
\(37\) −139.181 + 80.3560i −0.618410 + 0.357039i −0.776250 0.630426i \(-0.782880\pi\)
0.157840 + 0.987465i \(0.449547\pi\)
\(38\) −24.5981 42.6052i −0.105009 0.181881i
\(39\) 0 0
\(40\) 11.9496 20.6973i 0.0472348 0.0818131i
\(41\) 369.833i 1.40874i −0.709834 0.704369i \(-0.751230\pi\)
0.709834 0.704369i \(-0.248770\pi\)
\(42\) 0 0
\(43\) 210.696 0.747229 0.373614 0.927584i \(-0.378118\pi\)
0.373614 + 0.927584i \(0.378118\pi\)
\(44\) 415.580i 1.42389i
\(45\) 0 0
\(46\) 482.967 + 278.841i 1.54803 + 0.893758i
\(47\) −160.177 + 92.4781i −0.497110 + 0.287007i −0.727519 0.686087i \(-0.759327\pi\)
0.230409 + 0.973094i \(0.425994\pi\)
\(48\) 0 0
\(49\) 100.195 0.292112
\(50\) 421.797i 1.19302i
\(51\) 0 0
\(52\) 430.535 19.3187i 1.14816 0.0515196i
\(53\) 437.724 1.13445 0.567227 0.823561i \(-0.308016\pi\)
0.567227 + 0.823561i \(0.308016\pi\)
\(54\) 0 0
\(55\) 109.039 + 188.862i 0.267325 + 0.463020i
\(56\) 77.1833 0.184179
\(57\) 0 0
\(58\) −716.207 + 413.502i −1.62142 + 0.936129i
\(59\) −401.536 + 231.827i −0.886026 + 0.511547i −0.872641 0.488363i \(-0.837594\pi\)
−0.0133856 + 0.999910i \(0.504261\pi\)
\(60\) 0 0
\(61\) 495.381 1.03979 0.519894 0.854231i \(-0.325971\pi\)
0.519894 + 0.854231i \(0.325971\pi\)
\(62\) −88.7471 153.715i −0.181789 0.314867i
\(63\) 0 0
\(64\) 651.781 1.27301
\(65\) −190.589 + 121.742i −0.363687 + 0.232312i
\(66\) 0 0
\(67\) 233.027i 0.424907i −0.977171 0.212453i \(-0.931855\pi\)
0.977171 0.212453i \(-0.0681453\pi\)
\(68\) 34.0223 0.0606737
\(69\) 0 0
\(70\) −269.987 + 155.877i −0.460995 + 0.266156i
\(71\) −824.189 475.846i −1.37765 0.795388i −0.385775 0.922593i \(-0.626066\pi\)
−0.991876 + 0.127205i \(0.959399\pi\)
\(72\) 0 0
\(73\) 885.664i 1.41999i 0.704208 + 0.709994i \(0.251302\pi\)
−0.704208 + 0.709994i \(0.748698\pi\)
\(74\) −666.413 −1.04688
\(75\) 0 0
\(76\) 109.085i 0.164644i
\(77\) −352.147 + 609.937i −0.521181 + 0.902712i
\(78\) 0 0
\(79\) −221.888 384.322i −0.316005 0.547336i 0.663646 0.748047i \(-0.269008\pi\)
−0.979651 + 0.200711i \(0.935675\pi\)
\(80\) −221.530 + 127.900i −0.309597 + 0.178746i
\(81\) 0 0
\(82\) 766.781 1328.10i 1.03264 1.78859i
\(83\) 604.028 348.736i 0.798803 0.461189i −0.0442492 0.999021i \(-0.514090\pi\)
0.843053 + 0.537831i \(0.180756\pi\)
\(84\) 0 0
\(85\) −15.4615 + 8.92672i −0.0197299 + 0.0113910i
\(86\) 756.628 + 436.839i 0.948712 + 0.547739i
\(87\) 0 0
\(88\) 111.941 193.888i 0.135602 0.234869i
\(89\) −322.550 + 186.224i −0.384160 + 0.221795i −0.679626 0.733558i \(-0.737858\pi\)
0.295467 + 0.955353i \(0.404525\pi\)
\(90\) 0 0
\(91\) −648.255 336.466i −0.746765 0.387595i
\(92\) 618.289 + 1070.91i 0.700664 + 1.21358i
\(93\) 0 0
\(94\) −766.944 −0.841535
\(95\) 28.6216 + 49.5741i 0.0309107 + 0.0535389i
\(96\) 0 0
\(97\) 135.651i 0.141993i 0.997477 + 0.0709965i \(0.0226179\pi\)
−0.997477 + 0.0709965i \(0.977382\pi\)
\(98\) 359.807 + 207.735i 0.370878 + 0.214126i
\(99\) 0 0
\(100\) 467.636 809.969i 0.467636 0.809969i
\(101\) 383.501 664.244i 0.377820 0.654403i −0.612925 0.790141i \(-0.710007\pi\)
0.990745 + 0.135738i \(0.0433405\pi\)
\(102\) 0 0
\(103\) −190.422 + 329.821i −0.182163 + 0.315516i −0.942617 0.333876i \(-0.891643\pi\)
0.760454 + 0.649392i \(0.224977\pi\)
\(104\) 206.068 + 106.956i 0.194295 + 0.100845i
\(105\) 0 0
\(106\) 1571.91 + 907.540i 1.44035 + 0.831586i
\(107\) 249.465 + 432.086i 0.225389 + 0.390386i 0.956436 0.291941i \(-0.0943012\pi\)
−0.731047 + 0.682327i \(0.760968\pi\)
\(108\) 0 0
\(109\) 1867.86i 1.64136i 0.571388 + 0.820680i \(0.306405\pi\)
−0.571388 + 0.820680i \(0.693595\pi\)
\(110\) 904.292i 0.783826i
\(111\) 0 0
\(112\) −715.440 413.060i −0.603596 0.348486i
\(113\) −904.664 1566.92i −0.753129 1.30446i −0.946299 0.323293i \(-0.895210\pi\)
0.193170 0.981165i \(-0.438123\pi\)
\(114\) 0 0
\(115\) −561.966 324.451i −0.455684 0.263089i
\(116\) −1833.76 −1.46776
\(117\) 0 0
\(118\) −1922.60 −1.49991
\(119\) −49.9337 28.8292i −0.0384657 0.0222082i
\(120\) 0 0
\(121\) 355.958 + 616.537i 0.267436 + 0.463214i
\(122\) 1778.96 + 1027.08i 1.32016 + 0.762193i
\(123\) 0 0
\(124\) 393.567i 0.285027i
\(125\) 1093.90i 0.782733i
\(126\) 0 0
\(127\) 920.407 + 1594.19i 0.643094 + 1.11387i 0.984738 + 0.174042i \(0.0556829\pi\)
−0.341644 + 0.939829i \(0.610984\pi\)
\(128\) 542.958 + 313.477i 0.374931 + 0.216466i
\(129\) 0 0
\(130\) −936.832 + 42.0369i −0.632043 + 0.0283606i
\(131\) 1036.68 1795.58i 0.691414 1.19756i −0.279961 0.960011i \(-0.590322\pi\)
0.971375 0.237552i \(-0.0763452\pi\)
\(132\) 0 0
\(133\) −92.4348 + 160.102i −0.0602640 + 0.104380i
\(134\) 483.138 836.819i 0.311468 0.539479i
\(135\) 0 0
\(136\) 15.8730 + 9.16427i 0.0100081 + 0.00577816i
\(137\) 1009.61i 0.629609i 0.949157 + 0.314804i \(0.101939\pi\)
−0.949157 + 0.314804i \(0.898061\pi\)
\(138\) 0 0
\(139\) 938.027 + 1624.71i 0.572391 + 0.991411i 0.996320 + 0.0857152i \(0.0273175\pi\)
−0.423928 + 0.905696i \(0.639349\pi\)
\(140\) −691.269 −0.417306
\(141\) 0 0
\(142\) −1973.16 3417.61i −1.16608 2.01971i
\(143\) −1785.40 + 1140.46i −1.04407 + 0.666922i
\(144\) 0 0
\(145\) 833.357 481.139i 0.477287 0.275562i
\(146\) −1836.26 + 3180.50i −1.04089 + 1.80287i
\(147\) 0 0
\(148\) −1279.70 738.836i −0.710749 0.410351i
\(149\) 1970.39 1137.61i 1.08336 0.625479i 0.151561 0.988448i \(-0.451570\pi\)
0.931801 + 0.362969i \(0.118237\pi\)
\(150\) 0 0
\(151\) 124.588 71.9311i 0.0671447 0.0387660i −0.466052 0.884757i \(-0.654324\pi\)
0.533197 + 0.845991i \(0.320991\pi\)
\(152\) 29.3833 50.8933i 0.0156796 0.0271579i
\(153\) 0 0
\(154\) −2529.18 + 1460.22i −1.32342 + 0.764080i
\(155\) 103.264 + 178.858i 0.0535118 + 0.0926852i
\(156\) 0 0
\(157\) 1894.28 3280.98i 0.962928 1.66784i 0.247846 0.968799i \(-0.420277\pi\)
0.715082 0.699041i \(-0.246389\pi\)
\(158\) 1840.18i 0.926560i
\(159\) 0 0
\(160\) −1251.90 −0.618573
\(161\) 2095.66i 1.02585i
\(162\) 0 0
\(163\) −1676.30 967.813i −0.805510 0.465061i 0.0398843 0.999204i \(-0.487301\pi\)
−0.845394 + 0.534143i \(0.820634\pi\)
\(164\) 2944.87 1700.22i 1.40217 0.809543i
\(165\) 0 0
\(166\) 2892.16 1.35226
\(167\) 2197.30i 1.01816i 0.860720 + 0.509079i \(0.170014\pi\)
−0.860720 + 0.509079i \(0.829986\pi\)
\(168\) 0 0
\(169\) −1264.49 1796.63i −0.575554 0.817764i
\(170\) −74.0316 −0.0333998
\(171\) 0 0
\(172\) 968.626 + 1677.71i 0.429401 + 0.743745i
\(173\) 2935.23 1.28995 0.644976 0.764203i \(-0.276868\pi\)
0.644976 + 0.764203i \(0.276868\pi\)
\(174\) 0 0
\(175\) −1372.68 + 792.514i −0.592940 + 0.342334i
\(176\) −2075.25 + 1198.14i −0.888793 + 0.513145i
\(177\) 0 0
\(178\) −1544.41 −0.650326
\(179\) −668.032 1157.07i −0.278945 0.483146i 0.692178 0.721727i \(-0.256651\pi\)
−0.971123 + 0.238581i \(0.923318\pi\)
\(180\) 0 0
\(181\) −4103.79 −1.68526 −0.842630 0.538493i \(-0.818994\pi\)
−0.842630 + 0.538493i \(0.818994\pi\)
\(182\) −1630.34 2552.31i −0.664005 1.03951i
\(183\) 0 0
\(184\) 666.171i 0.266906i
\(185\) 775.419 0.308162
\(186\) 0 0
\(187\) −144.840 + 83.6236i −0.0566405 + 0.0327014i
\(188\) −1472.75 850.293i −0.571337 0.329862i
\(189\) 0 0
\(190\) 237.367i 0.0906336i
\(191\) −1791.70 −0.678758 −0.339379 0.940650i \(-0.610217\pi\)
−0.339379 + 0.940650i \(0.610217\pi\)
\(192\) 0 0
\(193\) 2660.41i 0.992231i 0.868256 + 0.496116i \(0.165241\pi\)
−0.868256 + 0.496116i \(0.834759\pi\)
\(194\) −281.248 + 487.136i −0.104085 + 0.180280i
\(195\) 0 0
\(196\) 460.621 + 797.819i 0.167865 + 0.290750i
\(197\) 384.908 222.227i 0.139206 0.0803705i −0.428780 0.903409i \(-0.641056\pi\)
0.567985 + 0.823039i \(0.307723\pi\)
\(198\) 0 0
\(199\) 713.480 1235.78i 0.254157 0.440213i −0.710509 0.703688i \(-0.751535\pi\)
0.964666 + 0.263475i \(0.0848686\pi\)
\(200\) 436.348 251.925i 0.154272 0.0890691i
\(201\) 0 0
\(202\) 2754.37 1590.24i 0.959391 0.553905i
\(203\) 2691.36 + 1553.86i 0.930526 + 0.537239i
\(204\) 0 0
\(205\) −892.204 + 1545.34i −0.303972 + 0.526495i
\(206\) −1367.64 + 789.609i −0.462564 + 0.267062i
\(207\) 0 0
\(208\) −1337.73 2094.22i −0.445936 0.698117i
\(209\) 268.121 + 464.400i 0.0887385 + 0.153700i
\(210\) 0 0
\(211\) 4491.04 1.46529 0.732645 0.680611i \(-0.238286\pi\)
0.732645 + 0.680611i \(0.238286\pi\)
\(212\) 2012.34 + 3485.47i 0.651924 + 1.12916i
\(213\) 0 0
\(214\) 2068.88i 0.660866i
\(215\) −880.390 508.293i −0.279266 0.161234i
\(216\) 0 0
\(217\) −333.494 + 577.629i −0.104327 + 0.180701i
\(218\) −3872.65 + 6707.63i −1.20316 + 2.08394i
\(219\) 0 0
\(220\) −1002.57 + 1736.50i −0.307241 + 0.532157i
\(221\) −93.3658 146.165i −0.0284184 0.0444892i
\(222\) 0 0
\(223\) 5100.14 + 2944.57i 1.53153 + 0.884228i 0.999292 + 0.0376324i \(0.0119816\pi\)
0.532236 + 0.846596i \(0.321352\pi\)
\(224\) −2021.54 3501.41i −0.602990 1.04441i
\(225\) 0 0
\(226\) 7502.61i 2.20826i
\(227\) 441.941i 0.129219i −0.997911 0.0646094i \(-0.979420\pi\)
0.997911 0.0646094i \(-0.0205801\pi\)
\(228\) 0 0
\(229\) −827.880 477.977i −0.238899 0.137928i 0.375772 0.926712i \(-0.377378\pi\)
−0.614671 + 0.788784i \(0.710711\pi\)
\(230\) −1345.38 2330.27i −0.385703 0.668057i
\(231\) 0 0
\(232\) −855.534 493.943i −0.242106 0.139780i
\(233\) 3455.74 0.971643 0.485822 0.874058i \(-0.338520\pi\)
0.485822 + 0.874058i \(0.338520\pi\)
\(234\) 0 0
\(235\) 892.394 0.247717
\(236\) −3691.94 2131.54i −1.01832 0.587930i
\(237\) 0 0
\(238\) −119.544 207.057i −0.0325584 0.0563928i
\(239\) 1556.43 + 898.605i 0.421243 + 0.243205i 0.695609 0.718421i \(-0.255135\pi\)
−0.274366 + 0.961625i \(0.588468\pi\)
\(240\) 0 0
\(241\) 5699.63i 1.52343i 0.647915 + 0.761713i \(0.275641\pi\)
−0.647915 + 0.761713i \(0.724359\pi\)
\(242\) 2952.05i 0.784153i
\(243\) 0 0
\(244\) 2277.40 + 3944.57i 0.597523 + 1.03494i
\(245\) −418.661 241.714i −0.109173 0.0630308i
\(246\) 0 0
\(247\) −468.647 + 299.358i −0.120726 + 0.0771161i
\(248\) 106.012 183.617i 0.0271441 0.0470150i
\(249\) 0 0
\(250\) −2268.00 + 3928.30i −0.573765 + 0.993790i
\(251\) 1524.95 2641.30i 0.383483 0.664212i −0.608075 0.793880i \(-0.708058\pi\)
0.991557 + 0.129668i \(0.0413912\pi\)
\(252\) 0 0
\(253\) −5264.38 3039.39i −1.30818 0.755277i
\(254\) 7633.18i 1.88562i
\(255\) 0 0
\(256\) −1307.25 2264.22i −0.319153 0.552789i
\(257\) 3374.76 0.819112 0.409556 0.912285i \(-0.365684\pi\)
0.409556 + 0.912285i \(0.365684\pi\)
\(258\) 0 0
\(259\) 1252.12 + 2168.74i 0.300399 + 0.520306i
\(260\) −1845.59 957.920i −0.440225 0.228491i
\(261\) 0 0
\(262\) 7445.62 4298.73i 1.75569 1.01365i
\(263\) −2359.38 + 4086.57i −0.553178 + 0.958133i 0.444865 + 0.895598i \(0.353252\pi\)
−0.998043 + 0.0625348i \(0.980082\pi\)
\(264\) 0 0
\(265\) −1829.02 1055.99i −0.423985 0.244788i
\(266\) −663.883 + 383.293i −0.153027 + 0.0883504i
\(267\) 0 0
\(268\) 1855.52 1071.29i 0.422925 0.244176i
\(269\) 318.110 550.982i 0.0721022 0.124885i −0.827720 0.561141i \(-0.810363\pi\)
0.899822 + 0.436256i \(0.143696\pi\)
\(270\) 0 0
\(271\) 1685.24 972.975i 0.377753 0.218096i −0.299087 0.954226i \(-0.596682\pi\)
0.676840 + 0.736130i \(0.263349\pi\)
\(272\) −98.0883 169.894i −0.0218657 0.0378726i
\(273\) 0 0
\(274\) −2093.23 + 3625.58i −0.461520 + 0.799377i
\(275\) 4597.62i 1.00817i
\(276\) 0 0
\(277\) 3079.00 0.667867 0.333933 0.942597i \(-0.391624\pi\)
0.333933 + 0.942597i \(0.391624\pi\)
\(278\) 7779.30i 1.67831i
\(279\) 0 0
\(280\) −322.509 186.201i −0.0688343 0.0397415i
\(281\) 8038.59 4641.08i 1.70655 0.985280i 0.767803 0.640686i \(-0.221350\pi\)
0.938752 0.344594i \(-0.111983\pi\)
\(282\) 0 0
\(283\) 3854.14 0.809557 0.404779 0.914415i \(-0.367349\pi\)
0.404779 + 0.914415i \(0.367349\pi\)
\(284\) 8750.36i 1.82830i
\(285\) 0 0
\(286\) −8776.04 + 393.793i −1.81447 + 0.0814177i
\(287\) −5762.82 −1.18526
\(288\) 0 0
\(289\) 2449.65 + 4242.93i 0.498607 + 0.863612i
\(290\) 3990.21 0.807977
\(291\) 0 0
\(292\) −7052.28 + 4071.63i −1.41337 + 0.816008i
\(293\) −6838.83 + 3948.40i −1.36358 + 0.787263i −0.990098 0.140375i \(-0.955169\pi\)
−0.373481 + 0.927638i \(0.621836\pi\)
\(294\) 0 0
\(295\) 2237.08 0.441519
\(296\) −398.027 689.403i −0.0781582 0.135374i
\(297\) 0 0
\(298\) 9434.47 1.83397
\(299\) 2904.04 5595.10i 0.561689 1.08218i
\(300\) 0 0
\(301\) 3283.11i 0.628689i
\(302\) 596.543 0.113666
\(303\) 0 0
\(304\) −544.729 + 314.499i −0.102771 + 0.0593348i
\(305\) −2069.94 1195.08i −0.388605 0.224361i
\(306\) 0 0
\(307\) 407.325i 0.0757241i −0.999283 0.0378620i \(-0.987945\pi\)
0.999283 0.0378620i \(-0.0120547\pi\)
\(308\) −6475.66 −1.19800
\(309\) 0 0
\(310\) 856.392i 0.156902i
\(311\) 3581.74 6203.75i 0.653060 1.13113i −0.329317 0.944220i \(-0.606818\pi\)
0.982376 0.186913i \(-0.0598483\pi\)
\(312\) 0 0
\(313\) 3990.28 + 6911.36i 0.720587 + 1.24809i 0.960765 + 0.277364i \(0.0894609\pi\)
−0.240178 + 0.970729i \(0.577206\pi\)
\(314\) 13605.0 7854.86i 2.44515 1.41171i
\(315\) 0 0
\(316\) 2040.16 3533.66i 0.363189 0.629063i
\(317\) 1490.33 860.444i 0.264055 0.152452i −0.362128 0.932128i \(-0.617950\pi\)
0.626183 + 0.779676i \(0.284616\pi\)
\(318\) 0 0
\(319\) 7806.72 4507.21i 1.37020 0.791083i
\(320\) −2723.45 1572.39i −0.475768 0.274685i
\(321\) 0 0
\(322\) 4344.96 7525.70i 0.751973 1.30246i
\(323\) −38.0190 + 21.9503i −0.00654933 + 0.00378126i
\(324\) 0 0
\(325\) −4763.06 + 213.725i −0.812945 + 0.0364779i
\(326\) −4013.16 6951.00i −0.681805 1.18092i
\(327\) 0 0
\(328\) 1831.89 0.308382
\(329\) 1441.01 + 2495.91i 0.241476 + 0.418249i
\(330\) 0 0
\(331\) 8642.27i 1.43511i −0.696501 0.717556i \(-0.745261\pi\)
0.696501 0.717556i \(-0.254739\pi\)
\(332\) 5553.76 + 3206.46i 0.918078 + 0.530053i
\(333\) 0 0
\(334\) −4555.70 + 7890.70i −0.746337 + 1.29269i
\(335\) −562.165 + 973.698i −0.0916846 + 0.158802i
\(336\) 0 0
\(337\) 4315.56 7474.77i 0.697577 1.20824i −0.271727 0.962374i \(-0.587595\pi\)
0.969304 0.245864i \(-0.0790718\pi\)
\(338\) −815.926 9073.53i −0.131303 1.46016i
\(339\) 0 0
\(340\) −142.162 82.0770i −0.0226759 0.0130919i
\(341\) 967.352 + 1675.50i 0.153622 + 0.266081i
\(342\) 0 0
\(343\) 6905.95i 1.08713i
\(344\) 1043.64i 0.163573i
\(345\) 0 0
\(346\) 10540.7 + 6085.66i 1.63777 + 0.945570i
\(347\) −5717.41 9902.84i −0.884514 1.53202i −0.846270 0.532755i \(-0.821157\pi\)
−0.0382445 0.999268i \(-0.512177\pi\)
\(348\) 0 0
\(349\) −4032.59 2328.21i −0.618508 0.357096i 0.157780 0.987474i \(-0.449566\pi\)
−0.776288 + 0.630378i \(0.782900\pi\)
\(350\) −6572.53 −1.00376
\(351\) 0 0
\(352\) −11727.6 −1.77580
\(353\) 7582.18 + 4377.57i 1.14323 + 0.660042i 0.947227 0.320563i \(-0.103872\pi\)
0.195998 + 0.980604i \(0.437205\pi\)
\(354\) 0 0
\(355\) 2295.91 + 3976.63i 0.343251 + 0.594528i
\(356\) −2965.69 1712.24i −0.441521 0.254912i
\(357\) 0 0
\(358\) 5540.16i 0.817896i
\(359\) 9826.13i 1.44458i −0.691591 0.722289i \(-0.743090\pi\)
0.691591 0.722289i \(-0.256910\pi\)
\(360\) 0 0
\(361\) −3359.12 5818.17i −0.489739 0.848253i
\(362\) −14737.0 8508.44i −2.13967 1.23534i
\(363\) 0 0
\(364\) −301.028 6708.68i −0.0433465 0.966018i
\(365\) 2136.62 3700.73i 0.306399 0.530699i
\(366\) 0 0
\(367\) −3902.90 + 6760.02i −0.555122 + 0.961499i 0.442772 + 0.896634i \(0.353995\pi\)
−0.997894 + 0.0648650i \(0.979338\pi\)
\(368\) 3565.13 6174.98i 0.505014 0.874710i
\(369\) 0 0
\(370\) 2784.60 + 1607.69i 0.391255 + 0.225891i
\(371\) 6820.72i 0.954485i
\(372\) 0 0
\(373\) −1005.60 1741.75i −0.139592 0.241781i 0.787750 0.615995i \(-0.211246\pi\)
−0.927342 + 0.374214i \(0.877913\pi\)
\(374\) −693.512 −0.0958842
\(375\) 0 0
\(376\) −458.071 793.402i −0.0628277 0.108821i
\(377\) 5032.30 + 7878.11i 0.687471 + 1.07624i
\(378\) 0 0
\(379\) 8431.71 4868.05i 1.14276 0.659775i 0.195651 0.980674i \(-0.437318\pi\)
0.947114 + 0.320898i \(0.103985\pi\)
\(380\) −263.163 + 455.811i −0.0355262 + 0.0615332i
\(381\) 0 0
\(382\) −6434.15 3714.76i −0.861779 0.497548i
\(383\) 1112.25 642.160i 0.148390 0.0856733i −0.423966 0.905678i \(-0.639363\pi\)
0.572357 + 0.820005i \(0.306029\pi\)
\(384\) 0 0
\(385\) 2942.88 1699.08i 0.389567 0.224917i
\(386\) −5515.87 + 9553.77i −0.727333 + 1.25978i
\(387\) 0 0
\(388\) −1080.15 + 623.626i −0.141331 + 0.0815974i
\(389\) 2696.83 + 4671.05i 0.351503 + 0.608822i 0.986513 0.163682i \(-0.0523373\pi\)
−0.635010 + 0.772504i \(0.719004\pi\)
\(390\) 0 0
\(391\) 248.826 430.979i 0.0321833 0.0557431i
\(392\) 496.293i 0.0639453i
\(393\) 0 0
\(394\) 1842.98 0.235655
\(395\) 2141.17i 0.272745i
\(396\) 0 0
\(397\) 8683.28 + 5013.29i 1.09774 + 0.633778i 0.935625 0.352994i \(-0.114837\pi\)
0.162111 + 0.986773i \(0.448170\pi\)
\(398\) 5124.34 2958.54i 0.645376 0.372608i
\(399\) 0 0
\(400\) −5392.89 −0.674111
\(401\) 3025.48i 0.376771i 0.982095 + 0.188386i \(0.0603254\pi\)
−0.982095 + 0.188386i \(0.939675\pi\)
\(402\) 0 0
\(403\) −1690.83 + 1080.05i −0.208998 + 0.133501i
\(404\) 7052.23 0.868470
\(405\) 0 0
\(406\) 6443.28 + 11160.1i 0.787622 + 1.36420i
\(407\) 7263.96 0.884671
\(408\) 0 0
\(409\) −10432.3 + 6023.11i −1.26124 + 0.728175i −0.973314 0.229479i \(-0.926298\pi\)
−0.287922 + 0.957654i \(0.592964\pi\)
\(410\) −6407.96 + 3699.64i −0.771870 + 0.445639i
\(411\) 0 0
\(412\) −3501.68 −0.418727
\(413\) 3612.38 + 6256.82i 0.430396 + 0.745468i
\(414\) 0 0
\(415\) −3365.23 −0.398054
\(416\) −545.168 12149.6i −0.0642525 1.43193i
\(417\) 0 0
\(418\) 2223.60i 0.260191i
\(419\) −555.751 −0.0647977 −0.0323989 0.999475i \(-0.510315\pi\)
−0.0323989 + 0.999475i \(0.510315\pi\)
\(420\) 0 0
\(421\) 3191.54 1842.64i 0.369469 0.213313i −0.303758 0.952749i \(-0.598241\pi\)
0.673226 + 0.739437i \(0.264908\pi\)
\(422\) 16127.7 + 9311.34i 1.86039 + 1.07410i
\(423\) 0 0
\(424\) 2168.18i 0.248340i
\(425\) −376.393 −0.0429594
\(426\) 0 0
\(427\) 7719.14i 0.874837i
\(428\) −2293.71 + 3972.83i −0.259044 + 0.448677i
\(429\) 0 0
\(430\) −2107.70 3650.65i −0.236378 0.409419i
\(431\) −9362.89 + 5405.67i −1.04639 + 0.604134i −0.921637 0.388053i \(-0.873148\pi\)
−0.124754 + 0.992188i \(0.539814\pi\)
\(432\) 0 0
\(433\) −2665.15 + 4616.18i −0.295795 + 0.512331i −0.975169 0.221460i \(-0.928918\pi\)
0.679375 + 0.733791i \(0.262251\pi\)
\(434\) −2395.21 + 1382.88i −0.264917 + 0.152950i
\(435\) 0 0
\(436\) −14873.2 + 8587.03i −1.63371 + 0.943221i
\(437\) −1381.84 797.807i −0.151264 0.0873325i
\(438\) 0 0
\(439\) 3198.24 5539.51i 0.347707 0.602247i −0.638134 0.769925i \(-0.720294\pi\)
0.985842 + 0.167678i \(0.0536269\pi\)
\(440\) −935.487 + 540.104i −0.101358 + 0.0585192i
\(441\) 0 0
\(442\) −32.2386 718.468i −0.00346931 0.0773168i
\(443\) 3255.46 + 5638.62i 0.349146 + 0.604738i 0.986098 0.166165i \(-0.0531386\pi\)
−0.636952 + 0.770903i \(0.719805\pi\)
\(444\) 0 0
\(445\) 1797.02 0.191432
\(446\) 12210.0 + 21148.4i 1.29633 + 2.24530i
\(447\) 0 0
\(448\) 10156.2i 1.07106i
\(449\) 9428.38 + 5443.48i 0.990986 + 0.572146i 0.905569 0.424199i \(-0.139444\pi\)
0.0854173 + 0.996345i \(0.472778\pi\)
\(450\) 0 0
\(451\) −8357.98 + 14476.4i −0.872643 + 1.51146i
\(452\) 8317.96 14407.1i 0.865584 1.49924i
\(453\) 0 0
\(454\) 916.283 1587.05i 0.0947209 0.164061i
\(455\) 1897.02 + 2969.80i 0.195458 + 0.305992i
\(456\) 0 0
\(457\) −6900.23 3983.85i −0.706300 0.407783i 0.103389 0.994641i \(-0.467031\pi\)
−0.809690 + 0.586858i \(0.800365\pi\)
\(458\) −1981.99 3432.91i −0.202210 0.350239i
\(459\) 0 0
\(460\) 5966.36i 0.604745i
\(461\) 16099.7i 1.62654i 0.581885 + 0.813271i \(0.302315\pi\)
−0.581885 + 0.813271i \(0.697685\pi\)
\(462\) 0 0
\(463\) −14967.4 8641.42i −1.50236 0.867388i −0.999996 0.00273207i \(-0.999130\pi\)
−0.502364 0.864656i \(-0.667536\pi\)
\(464\) 5286.84 + 9157.08i 0.528956 + 0.916178i
\(465\) 0 0
\(466\) 12409.9 + 7164.83i 1.23364 + 0.712241i
\(467\) −3133.28 −0.310473 −0.155237 0.987877i \(-0.549614\pi\)
−0.155237 + 0.987877i \(0.549614\pi\)
\(468\) 0 0
\(469\) −3631.07 −0.357500
\(470\) 3204.66 + 1850.21i 0.314511 + 0.181583i
\(471\) 0 0
\(472\) −1148.31 1988.93i −0.111981 0.193957i
\(473\) −8247.31 4761.59i −0.801716 0.462871i
\(474\) 0 0
\(475\) 1206.82i 0.116575i
\(476\) 530.143i 0.0510484i
\(477\) 0 0
\(478\) 3726.18 + 6453.94i 0.356552 + 0.617565i
\(479\) −9386.93 5419.55i −0.895407 0.516964i −0.0196998 0.999806i \(-0.506271\pi\)
−0.875707 + 0.482842i \(0.839604\pi\)
\(480\) 0 0
\(481\) 337.673 + 7525.35i 0.0320094 + 0.713360i
\(482\) −11817.1 + 20467.9i −1.11671 + 1.93420i
\(483\) 0 0
\(484\) −3272.87 + 5668.77i −0.307369 + 0.532379i
\(485\) 327.252 566.817i 0.0306387 0.0530677i
\(486\) 0 0
\(487\) −1248.82 721.005i −0.116200 0.0670880i 0.440774 0.897618i \(-0.354704\pi\)
−0.556973 + 0.830530i \(0.688037\pi\)
\(488\) 2453.77i 0.227617i
\(489\) 0 0
\(490\) −1002.30 1736.03i −0.0924066 0.160053i
\(491\) −15805.4 −1.45273 −0.726363 0.687311i \(-0.758791\pi\)
−0.726363 + 0.687311i \(0.758791\pi\)
\(492\) 0 0
\(493\) 368.992 + 639.112i 0.0337090 + 0.0583857i
\(494\) −2303.61 + 103.366i −0.209807 + 0.00941431i
\(495\) 0 0
\(496\) −1965.32 + 1134.68i −0.177914 + 0.102719i
\(497\) −7414.73 + 12842.7i −0.669208 + 1.15910i
\(498\) 0 0
\(499\) 4054.09 + 2340.63i 0.363700 + 0.209982i 0.670702 0.741727i \(-0.265993\pi\)
−0.307003 + 0.951709i \(0.599326\pi\)
\(500\) −8710.42 + 5028.96i −0.779083 + 0.449804i
\(501\) 0 0
\(502\) 10952.5 6323.41i 0.973771 0.562207i
\(503\) −6676.54 + 11564.1i −0.591834 + 1.02509i 0.402152 + 0.915573i \(0.368262\pi\)
−0.993985 + 0.109513i \(0.965071\pi\)
\(504\) 0 0
\(505\) −3204.91 + 1850.36i −0.282409 + 0.163049i
\(506\) −12603.2 21829.4i −1.10728 1.91786i
\(507\) 0 0
\(508\) −8462.72 + 14657.9i −0.739119 + 1.28019i
\(509\) 4598.43i 0.400436i 0.979751 + 0.200218i \(0.0641651\pi\)
−0.979751 + 0.200218i \(0.935835\pi\)
\(510\) 0 0
\(511\) 13800.6 1.19472
\(512\) 15857.0i 1.36872i
\(513\) 0 0
\(514\) 12119.1 + 6996.94i 1.03998 + 0.600431i
\(515\) 1591.35 918.766i 0.136162 0.0786130i
\(516\) 0 0
\(517\) 8359.76 0.711145
\(518\) 10384.2i 0.880802i
\(519\) 0 0
\(520\) −603.026 944.043i −0.0508547 0.0796135i
\(521\) −21107.9 −1.77496 −0.887482 0.460843i \(-0.847547\pi\)
−0.887482 + 0.460843i \(0.847547\pi\)
\(522\) 0 0
\(523\) −551.772 955.697i −0.0461325 0.0799039i 0.842037 0.539420i \(-0.181356\pi\)
−0.888170 + 0.459516i \(0.848023\pi\)
\(524\) 19063.6 1.58931
\(525\) 0 0
\(526\) −16945.5 + 9783.49i −1.40468 + 0.810989i
\(527\) −137.168 + 79.1941i −0.0113380 + 0.00654602i
\(528\) 0 0
\(529\) 5920.69 0.486619
\(530\) −4378.79 7584.29i −0.358873 0.621586i
\(531\) 0 0
\(532\) −1699.79 −0.138525
\(533\) −15385.9 7985.78i −1.25035 0.648973i
\(534\) 0 0
\(535\) 2407.28i 0.194534i
\(536\) 1154.25 0.0930149
\(537\) 0 0
\(538\) 2284.72 1319.08i 0.183088 0.105706i
\(539\) −3921.93 2264.33i −0.313413 0.180949i
\(540\) 0 0
\(541\) 8406.46i 0.668063i −0.942562 0.334031i \(-0.891591\pi\)
0.942562 0.334031i \(-0.108409\pi\)
\(542\) 8069.13 0.639481
\(543\) 0 0
\(544\) 960.100i 0.0756690i
\(545\) 4506.11 7804.81i 0.354166 0.613433i
\(546\) 0 0
\(547\) −6012.48 10413.9i −0.469972 0.814016i 0.529438 0.848349i \(-0.322403\pi\)
−0.999410 + 0.0343326i \(0.989069\pi\)
\(548\) −8039.18 + 4641.42i −0.626673 + 0.361810i
\(549\) 0 0
\(550\) −9532.32 + 16510.5i −0.739017 + 1.28001i
\(551\) 2049.18 1183.09i 0.158435 0.0914727i
\(552\) 0 0
\(553\) −5988.58 + 3457.51i −0.460507 + 0.265874i
\(554\) 11057.0 + 6383.73i 0.847951 + 0.489565i
\(555\) 0 0
\(556\) −8624.72 + 14938.5i −0.657859 + 1.13945i
\(557\) 8287.38 4784.72i 0.630427 0.363977i −0.150491 0.988611i \(-0.548085\pi\)
0.780917 + 0.624635i \(0.214752\pi\)
\(558\) 0 0
\(559\) 4549.54 8765.43i 0.344231 0.663216i
\(560\) 1992.97 + 3451.93i 0.150390 + 0.260483i
\(561\) 0 0
\(562\) 38489.7 2.88895
\(563\) 1435.16 + 2485.77i 0.107433 + 0.186079i 0.914730 0.404067i \(-0.132404\pi\)
−0.807297 + 0.590146i \(0.799070\pi\)
\(564\) 0 0
\(565\) 8729.82i 0.650029i
\(566\) 13840.5 + 7990.84i 1.02785 + 0.593428i
\(567\) 0 0
\(568\) 2357.00 4082.45i 0.174116 0.301577i
\(569\) 3062.25 5303.98i 0.225617 0.390781i −0.730887 0.682498i \(-0.760893\pi\)
0.956505 + 0.291718i \(0.0942267\pi\)
\(570\) 0 0
\(571\) −6559.23 + 11360.9i −0.480727 + 0.832644i −0.999755 0.0221130i \(-0.992961\pi\)
0.519028 + 0.854757i \(0.326294\pi\)
\(572\) −17289.1 8973.59i −1.26380 0.655952i
\(573\) 0 0
\(574\) −20694.8 11948.1i −1.50485 0.868826i
\(575\) −6840.21 11847.6i −0.496098 0.859267i
\(576\) 0 0
\(577\) 19378.4i 1.39815i 0.715049 + 0.699074i \(0.246404\pi\)
−0.715049 + 0.699074i \(0.753596\pi\)
\(578\) 20315.6i 1.46197i
\(579\) 0 0
\(580\) 7662.33 + 4423.85i 0.548554 + 0.316708i
\(581\) −5434.07 9412.09i −0.388027 0.672082i
\(582\) 0 0
\(583\) −17133.9 9892.27i −1.21718 0.702738i
\(584\) −4386.95 −0.310845
\(585\) 0 0
\(586\) −32745.1 −2.30834
\(587\) −2312.61 1335.18i −0.162609 0.0938824i 0.416487 0.909142i \(-0.363261\pi\)
−0.579096 + 0.815259i \(0.696594\pi\)
\(588\) 0 0
\(589\) 253.919 + 439.801i 0.0177633 + 0.0307669i
\(590\) 8033.56 + 4638.18i 0.560570 + 0.323645i
\(591\) 0 0
\(592\) 8520.44i 0.591533i
\(593\) 723.279i 0.0500869i 0.999686 + 0.0250434i \(0.00797241\pi\)
−0.999686 + 0.0250434i \(0.992028\pi\)
\(594\) 0 0
\(595\) 139.098 + 240.925i 0.00958397 + 0.0165999i
\(596\) 18116.9 + 10459.8i 1.24513 + 0.718874i
\(597\) 0 0
\(598\) 22029.1 14071.5i 1.50641 0.962252i
\(599\) 274.189 474.910i 0.0187030 0.0323945i −0.856522 0.516110i \(-0.827380\pi\)
0.875225 + 0.483715i \(0.160713\pi\)
\(600\) 0 0
\(601\) −10132.4 + 17549.9i −0.687705 + 1.19114i 0.284874 + 0.958565i \(0.408048\pi\)
−0.972579 + 0.232575i \(0.925285\pi\)
\(602\) 6806.92 11789.9i 0.460846 0.798209i
\(603\) 0 0
\(604\) 1145.53 + 661.373i 0.0771705 + 0.0445544i
\(605\) 3434.92i 0.230825i
\(606\) 0 0
\(607\) −11258.1 19499.6i −0.752802 1.30389i −0.946459 0.322823i \(-0.895368\pi\)
0.193657 0.981069i \(-0.437965\pi\)
\(608\) −3078.36 −0.205335
\(609\) 0 0
\(610\) −4955.56 8583.28i −0.328926 0.569716i
\(611\) 388.612 + 8660.58i 0.0257309 + 0.573436i
\(612\) 0 0
\(613\) 12284.6 7092.50i 0.809411 0.467314i −0.0373402 0.999303i \(-0.511889\pi\)
0.846751 + 0.531989i \(0.178555\pi\)
\(614\) 844.514 1462.74i 0.0555078 0.0961424i
\(615\) 0 0
\(616\) −3021.20 1744.29i −0.197610 0.114090i
\(617\) 3808.76 2198.99i 0.248517 0.143481i −0.370568 0.928805i \(-0.620837\pi\)
0.619085 + 0.785324i \(0.287504\pi\)
\(618\) 0 0
\(619\) 3542.68 2045.37i 0.230036 0.132811i −0.380553 0.924759i \(-0.624266\pi\)
0.610589 + 0.791948i \(0.290933\pi\)
\(620\) −949.461 + 1644.51i −0.0615020 + 0.106525i
\(621\) 0 0
\(622\) 25724.6 14852.1i 1.65830 0.957421i
\(623\) 2901.79 + 5026.04i 0.186609 + 0.323217i
\(624\) 0 0
\(625\) −3718.54 + 6440.70i −0.237987 + 0.412205i
\(626\) 33092.4i 2.11284i
\(627\) 0 0
\(628\) 34834.0 2.21342
\(629\) 594.678i 0.0376969i
\(630\) 0 0
\(631\) −21280.2 12286.1i −1.34255 0.775122i −0.355370 0.934726i \(-0.615645\pi\)
−0.987181 + 0.159603i \(0.948979\pi\)
\(632\) 1903.66 1099.08i 0.119816 0.0691755i
\(633\) 0 0
\(634\) 7135.89 0.447007
\(635\) 8881.74i 0.555057i
\(636\) 0 0
\(637\) 2163.49 4168.32i 0.134569 0.259270i
\(638\) 37379.5 2.31954
\(639\) 0 0
\(640\) −1512.49 2619.72i −0.0934165 0.161802i
\(641\) −27091.7 −1.66935 −0.834677 0.550739i \(-0.814346\pi\)
−0.834677 + 0.550739i \(0.814346\pi\)
\(642\) 0 0
\(643\) −10565.8 + 6100.14i −0.648013 + 0.374131i −0.787695 0.616066i \(-0.788726\pi\)
0.139681 + 0.990197i \(0.455392\pi\)
\(644\) 16687.1 9634.31i 1.02106 0.589511i
\(645\) 0 0
\(646\) −182.039 −0.0110871
\(647\) 8686.06 + 15044.7i 0.527796 + 0.914170i 0.999475 + 0.0323993i \(0.0103148\pi\)
−0.471679 + 0.881770i \(0.656352\pi\)
\(648\) 0 0
\(649\) 20956.5 1.26751
\(650\) −17547.7 9107.82i −1.05889 0.549597i
\(651\) 0 0
\(652\) 17797.2i 1.06901i
\(653\) 17666.7 1.05873 0.529367 0.848393i \(-0.322429\pi\)
0.529367 + 0.848393i \(0.322429\pi\)
\(654\) 0 0
\(655\) −8663.51 + 5001.88i −0.516811 + 0.298381i
\(656\) −16980.5 9803.69i −1.01064 0.583491i
\(657\) 0 0
\(658\) 11950.7i 0.708034i
\(659\) 3389.99 0.200388 0.100194 0.994968i \(-0.468054\pi\)
0.100194 + 0.994968i \(0.468054\pi\)
\(660\) 0 0
\(661\) 4621.97i 0.271973i 0.990711 + 0.135986i \(0.0434203\pi\)
−0.990711 + 0.135986i \(0.956580\pi\)
\(662\) 17918.1 31035.1i 1.05198 1.82208i
\(663\) 0 0
\(664\) 1727.39 + 2991.93i 0.100957 + 0.174863i
\(665\) 772.475 445.989i 0.0450455 0.0260071i
\(666\) 0 0
\(667\) −13411.4 + 23229.2i −0.778548 + 1.34848i
\(668\) −17496.5 + 10101.6i −1.01341 + 0.585093i
\(669\) 0 0
\(670\) −4037.57 + 2331.09i −0.232813 + 0.134415i
\(671\) −19390.8 11195.3i −1.11561 0.644097i
\(672\) 0 0
\(673\) −7660.42 + 13268.2i −0.438763 + 0.759959i −0.997594 0.0693218i \(-0.977916\pi\)
0.558832 + 0.829281i \(0.311250\pi\)
\(674\) 30995.1 17895.0i 1.77134 1.02269i
\(675\) 0 0
\(676\) 8492.80 18328.3i 0.483204 1.04281i
\(677\) 4939.85 + 8556.07i 0.280434 + 0.485726i 0.971492 0.237074i \(-0.0761883\pi\)
−0.691058 + 0.722800i \(0.742855\pi\)
\(678\) 0 0
\(679\) 2113.75 0.119467
\(680\) −44.2167 76.5855i −0.00249358 0.00431900i
\(681\) 0 0
\(682\) 8022.50i 0.450436i
\(683\) −9566.46 5523.20i −0.535945 0.309428i 0.207489 0.978237i \(-0.433471\pi\)
−0.743434 + 0.668809i \(0.766804\pi\)
\(684\) 0 0
\(685\) 2435.62 4218.62i 0.135854 0.235307i
\(686\) 14318.2 24799.9i 0.796898 1.38027i
\(687\) 0 0
\(688\) 5585.22 9673.88i 0.309498 0.536066i
\(689\) 9451.75 18210.3i 0.522617 1.00691i
\(690\) 0 0
\(691\) −15283.1 8823.71i −0.841385 0.485774i 0.0163498 0.999866i \(-0.494795\pi\)
−0.857735 + 0.514092i \(0.828129\pi\)
\(692\) 13494.0 + 23372.4i 0.741281 + 1.28394i
\(693\) 0 0
\(694\) 47415.9i 2.59349i
\(695\) 9051.77i 0.494033i
\(696\) 0 0
\(697\) −1185.14 684.242i −0.0644053 0.0371844i
\(698\) −9654.24 16721.6i −0.523522 0.906767i
\(699\) 0 0
\(700\) −12621.1 7286.80i −0.681476 0.393450i
\(701\) 10173.6 0.548149 0.274075 0.961708i \(-0.411628\pi\)
0.274075 + 0.961708i \(0.411628\pi\)
\(702\) 0 0
\(703\) 1906.71 0.102294
\(704\) −25512.8 14729.8i −1.36584 0.788565i
\(705\) 0 0
\(706\) 18152.2 + 31440.5i 0.967657 + 1.67603i
\(707\) −10350.4 5975.80i −0.550589 0.317883i
\(708\) 0 0
\(709\) 25991.1i 1.37675i 0.725354 + 0.688376i \(0.241676\pi\)
−0.725354 + 0.688376i \(0.758324\pi\)
\(710\) 19040.6i 1.00645i
\(711\) 0 0
\(712\) −922.423 1597.68i −0.0485523 0.0840951i
\(713\) −4985.53 2878.40i −0.261865 0.151188i
\(714\) 0 0
\(715\) 10211.5 458.206i 0.534112 0.0239663i
\(716\) 6142.24 10638.7i 0.320596 0.555288i
\(717\) 0 0
\(718\) 20372.7 35286.5i 1.05892 1.83409i
\(719\) −4071.16 + 7051.46i −0.211167 + 0.365751i −0.952080 0.305849i \(-0.901060\pi\)
0.740913 + 0.671601i \(0.234393\pi\)
\(720\) 0 0
\(721\) 5139.33 + 2967.20i 0.265463 + 0.153265i
\(722\) 27858.1i 1.43597i
\(723\) 0 0
\(724\) −18866.2 32677.2i −0.968449 1.67740i
\(725\) 20287.1 1.03923
\(726\) 0 0
\(727\) −18580.0 32181.5i −0.947858 1.64174i −0.749925 0.661523i \(-0.769910\pi\)
−0.197933 0.980215i \(-0.563423\pi\)
\(728\) 1666.61 3211.00i 0.0848472 0.163472i
\(729\) 0 0
\(730\) 15345.6 8859.76i 0.778034 0.449198i
\(731\) 389.816 675.182i 0.0197235 0.0341621i
\(732\) 0 0
\(733\) −10221.9 5901.60i −0.515079 0.297381i 0.219840 0.975536i \(-0.429447\pi\)
−0.734919 + 0.678155i \(0.762780\pi\)
\(734\) −28031.3 + 16183.9i −1.40961 + 0.813839i
\(735\) 0 0
\(736\) 30220.7 17447.9i 1.51352 0.873831i
\(737\) −5266.24 + 9121.40i −0.263208 + 0.455890i
\(738\) 0 0
\(739\) −7857.56 + 4536.57i −0.391130 + 0.225819i −0.682650 0.730746i \(-0.739172\pi\)
0.291520 + 0.956565i \(0.405839\pi\)
\(740\) 3564.81 + 6174.43i 0.177088 + 0.306725i
\(741\) 0 0
\(742\) 14141.5 24493.8i 0.699664 1.21185i
\(743\) 26844.1i 1.32546i −0.748859 0.662729i \(-0.769398\pi\)
0.748859 0.662729i \(-0.230602\pi\)
\(744\) 0 0
\(745\) −10977.7 −0.539854
\(746\) 8339.69i 0.409300i
\(747\) 0 0
\(748\) −1331.74 768.880i −0.0650979 0.0375843i
\(749\) 6732.85 3887.21i 0.328455 0.189634i
\(750\) 0 0
\(751\) 6213.29 0.301899 0.150950 0.988541i \(-0.451767\pi\)
0.150950 + 0.988541i \(0.451767\pi\)
\(752\) 9805.78i 0.475505i
\(753\) 0 0
\(754\) 1737.62 + 38724.5i 0.0839263 + 1.87038i
\(755\) −694.120 −0.0334591
\(756\) 0 0
\(757\) −19308.9 33444.0i −0.927073 1.60574i −0.788192 0.615429i \(-0.788983\pi\)
−0.138881 0.990309i \(-0.544351\pi\)
\(758\) 40372.0 1.93453
\(759\) 0 0
\(760\) −245.555 + 141.771i −0.0117200 + 0.00676656i
\(761\) −9743.29 + 5625.29i −0.464118 + 0.267959i −0.713774 0.700376i \(-0.753016\pi\)
0.249656 + 0.968335i \(0.419682\pi\)
\(762\) 0 0
\(763\) 29105.3 1.38098
\(764\) −8236.92 14266.8i −0.390054 0.675593i
\(765\) 0 0
\(766\) 5325.60 0.251203
\(767\) 974.185 + 21710.6i 0.0458615 + 1.02207i
\(768\) 0 0
\(769\) 8776.63i 0.411565i −0.978598 0.205783i \(-0.934026\pi\)
0.978598 0.205783i \(-0.0659739\pi\)
\(770\) 14090.9 0.659480
\(771\) 0 0
\(772\) −21184.1 + 12230.6i −0.987605 + 0.570194i
\(773\) 16628.3 + 9600.38i 0.773712 + 0.446703i 0.834197 0.551466i \(-0.185931\pi\)
−0.0604849 + 0.998169i \(0.519265\pi\)
\(774\) 0 0
\(775\) 4354.09i 0.201811i
\(776\) −671.921 −0.0310832
\(777\) 0 0
\(778\) 22365.5i 1.03065i
\(779\) −2193.88 + 3799.91i −0.100904 + 0.174770i
\(780\) 0 0
\(781\) 21507.6 + 37252.2i 0.985406 + 1.70677i
\(782\) 1787.11 1031.79i 0.0817224 0.0471824i
\(783\) 0 0
\(784\) 2656.00 4600.32i 0.120991 0.209563i
\(785\) −15830.4 + 9139.69i −0.719760 + 0.415553i
\(786\) 0 0
\(787\) 21294.7 12294.5i 0.964517 0.556864i 0.0669566 0.997756i \(-0.478671\pi\)
0.897560 + 0.440892i \(0.145338\pi\)
\(788\) 3539.05 + 2043.27i 0.159992 + 0.0923712i
\(789\) 0 0
\(790\) −4439.33 + 7689.14i −0.199929 + 0.346288i
\(791\) −24416.1 + 14096.7i −1.09752 + 0.633653i
\(792\) 0 0
\(793\) 10696.7 20609.0i 0.479006 0.922883i
\(794\) 20788.3 + 36006.3i 0.929154 + 1.60934i
\(795\) 0 0
\(796\) 13120.2 0.584214
\(797\) −12934.6 22403.3i −0.574863 0.995691i −0.996057 0.0887205i \(-0.971722\pi\)
0.421194 0.906971i \(-0.361611\pi\)
\(798\) 0 0
\(799\) 684.388i 0.0303028i
\(800\) −22857.1 13196.6i −1.01015 0.583211i
\(801\) 0 0
\(802\) −6272.77 + 10864.8i −0.276183 + 0.478364i
\(803\) 20015.4 34667.7i 0.879611 1.52353i
\(804\) 0 0
\(805\) −5055.67 + 8756.68i −0.221353 + 0.383394i
\(806\) −8311.18 + 372.934i −0.363212 + 0.0162978i
\(807\) 0 0
\(808\) 3290.20 + 1899.60i 0.143253 + 0.0827073i
\(809\) −6856.33 11875.5i −0.297967 0.516095i 0.677703 0.735335i \(-0.262975\pi\)
−0.975671 + 0.219241i \(0.929642\pi\)
\(810\) 0 0
\(811\) 13848.1i 0.599595i 0.954003 + 0.299797i \(0.0969190\pi\)
−0.954003 + 0.299797i \(0.903081\pi\)
\(812\) 28574.0i 1.23492i
\(813\) 0 0
\(814\) 26085.5 + 15060.5i 1.12321 + 0.648488i
\(815\) 4669.60 + 8087.98i 0.200698 + 0.347619i
\(816\) 0 0
\(817\) −2164.83 1249.86i −0.0927022 0.0535217i
\(818\) −49951.2 −2.13509
\(819\) 0 0
\(820\) −16406.8 −0.698720
\(821\) −16728.7 9658.29i −0.711125 0.410568i 0.100352 0.994952i \(-0.468003\pi\)
−0.811478 + 0.584384i \(0.801336\pi\)
\(822\) 0 0
\(823\) 6071.20 + 10515.6i 0.257143 + 0.445385i 0.965475 0.260494i \(-0.0838855\pi\)
−0.708332 + 0.705879i \(0.750552\pi\)
\(824\) −1633.70 943.216i −0.0690686 0.0398768i
\(825\) 0 0
\(826\) 29958.4i 1.26197i
\(827\) 42693.9i 1.79518i −0.440835 0.897588i \(-0.645317\pi\)
0.440835 0.897588i \(-0.354683\pi\)
\(828\) 0 0
\(829\) 3307.74 + 5729.18i 0.138580 + 0.240027i 0.926959 0.375162i \(-0.122413\pi\)
−0.788380 + 0.615189i \(0.789080\pi\)
\(830\) −12084.8 6977.18i −0.505386 0.291785i
\(831\) 0 0
\(832\) 14073.8 27115.5i 0.586446 1.12988i
\(833\) 185.374 321.076i 0.00771046 0.0133549i
\(834\) 0 0
\(835\) 5300.88 9181.39i 0.219694 0.380521i
\(836\) −2465.25 + 4269.94i −0.101989 + 0.176650i
\(837\) 0 0
\(838\) −1995.75 1152.25i −0.0822698 0.0474985i
\(839\) 30267.8i 1.24548i 0.782428 + 0.622741i \(0.213981\pi\)
−0.782428 + 0.622741i \(0.786019\pi\)
\(840\) 0 0
\(841\) −7693.69 13325.9i −0.315457 0.546388i
\(842\) 15281.5 0.625457
\(843\) 0 0
\(844\) 20646.5 + 35760.8i 0.842041 + 1.45846i
\(845\) 949.388 + 10557.7i 0.0386508 + 0.429818i
\(846\) 0 0
\(847\) 9607.02 5546.61i 0.389730 0.225011i
\(848\) 11603.4 20097.6i 0.469884 0.813863i
\(849\) 0 0
\(850\) −1351.66 780.381i −0.0545430 0.0314904i
\(851\) −18718.5 + 10807.1i −0.754008 + 0.435327i
\(852\) 0 0
\(853\) −32920.6 + 19006.7i −1.32143 + 0.762928i −0.983957 0.178407i \(-0.942906\pi\)
−0.337474 + 0.941335i \(0.609572\pi\)
\(854\) 16004.2 27720.1i 0.641279 1.11073i
\(855\) 0 0
\(856\) −2140.25 + 1235.67i −0.0854581 + 0.0493392i
\(857\) 21594.2 + 37402.2i 0.860728 + 1.49082i 0.871228 + 0.490879i \(0.163324\pi\)
−0.0105002 + 0.999945i \(0.503342\pi\)
\(858\) 0 0
\(859\) −6630.09 + 11483.6i −0.263348 + 0.456132i −0.967129 0.254285i \(-0.918160\pi\)
0.703782 + 0.710416i \(0.251493\pi\)
\(860\) 9347.04i 0.370618i
\(861\) 0 0
\(862\) −44830.6 −1.77139
\(863\) 18526.0i 0.730746i 0.930861 + 0.365373i \(0.119059\pi\)
−0.930861 + 0.365373i \(0.880941\pi\)
\(864\) 0 0
\(865\) −12264.8 7081.10i −0.482100 0.278340i
\(866\) −19141.6 + 11051.4i −0.751106 + 0.433651i
\(867\) 0 0
\(868\) −6132.65 −0.239811
\(869\) 20058.1i 0.782996i
\(870\) 0 0
\(871\) −9694.43 5031.73i −0.377133 0.195745i
\(872\) −9252.04 −0.359305
\(873\) 0 0
\(874\) −3308.21 5729.99i −0.128034 0.221762i
\(875\) 17045.4 0.658561
\(876\) 0 0
\(877\) −20484.8 + 11826.9i −0.788738 + 0.455378i −0.839518 0.543332i \(-0.817163\pi\)
0.0507799 + 0.998710i \(0.483829\pi\)
\(878\) 22970.3 13261.9i 0.882927 0.509758i
\(879\) 0 0
\(880\) 11561.8 0.442897
\(881\) 8034.27 + 13915.8i 0.307243 + 0.532161i 0.977758 0.209735i \(-0.0672601\pi\)
−0.670515 + 0.741896i \(0.733927\pi\)
\(882\) 0 0
\(883\) 30283.3 1.15415 0.577075 0.816691i \(-0.304194\pi\)
0.577075 + 0.816691i \(0.304194\pi\)
\(884\) 734.640 1415.40i 0.0279509 0.0538520i
\(885\) 0 0
\(886\) 26998.4i 1.02373i
\(887\) 15006.7 0.568067 0.284034 0.958814i \(-0.408327\pi\)
0.284034 + 0.958814i \(0.408327\pi\)
\(888\) 0 0
\(889\) 24841.0 14342.0i 0.937168 0.541074i
\(890\) 6453.27 + 3725.80i 0.243050 + 0.140325i
\(891\) 0 0
\(892\) 54147.9i 2.03252i
\(893\) 2194.35 0.0822295
\(894\) 0 0
\(895\) 6446.37i 0.240758i
\(896\) 4884.66 8460.49i 0.182126 0.315452i
\(897\) 0 0
\(898\) 22572.1 + 39096.0i 0.838798 + 1.45284i
\(899\) 7393.20 4268.47i 0.274279 0.158355i
\(900\) 0 0
\(901\) 809.850 1402.70i 0.0299445 0.0518654i
\(902\) −60028.5 + 34657.4i −2.21589 + 1.27934i
\(903\) 0 0
\(904\) 7761.43 4481.06i 0.285555 0.164865i
\(905\) 17147.6 + 9900.17i 0.629840 + 0.363638i
\(906\) 0 0
\(907\) 7142.03 12370.4i 0.261463 0.452868i −0.705168 0.709041i \(-0.749128\pi\)
0.966631 + 0.256173i \(0.0824616\pi\)
\(908\) 3519.05 2031.72i 0.128616 0.0742567i
\(909\) 0 0
\(910\) 655.028 + 14597.9i 0.0238615 + 0.531776i
\(911\) −7540.95 13061.3i −0.274251 0.475017i 0.695695 0.718338i \(-0.255097\pi\)
−0.969946 + 0.243320i \(0.921763\pi\)
\(912\) 0 0
\(913\) −31524.7 −1.14273
\(914\) −16519.6 28612.7i −0.597832 1.03548i
\(915\) 0 0
\(916\) 8789.54i 0.317047i
\(917\) −27979.2 16153.8i −1.00758 0.581728i
\(918\) 0 0
\(919\) 12553.0 21742.4i 0.450582 0.780431i −0.547840 0.836583i \(-0.684550\pi\)
0.998422 + 0.0561523i \(0.0178832\pi\)
\(920\) 1607.10 2783.58i 0.0575920 0.0997522i
\(921\) 0 0
\(922\) −33379.7 + 57815.3i −1.19230 + 2.06512i
\(923\) −37592.9 + 24013.2i −1.34061 + 0.856343i
\(924\) 0 0
\(925\) 14157.5 + 8173.84i 0.503239 + 0.290545i
\(926\) −35832.8 62064.2i −1.27164 2.20254i
\(927\) 0 0
\(928\) 51748.2i 1.83052i
\(929\) 44786.2i 1.58169i 0.612017 + 0.790844i \(0.290358\pi\)
−0.612017 + 0.790844i \(0.709642\pi\)
\(930\) 0 0
\(931\) −1029.46 594.361i −0.0362399 0.0209231i
\(932\) 15887.0 + 27517.0i 0.558363 + 0.967113i
\(933\) 0 0
\(934\) −11251.9 6496.29i −0.394190 0.227586i
\(935\) 806.951 0.0282247
\(936\) 0 0
\(937\) 50350.7 1.75548 0.877740 0.479138i \(-0.159051\pi\)
0.877740 + 0.479138i \(0.159051\pi\)
\(938\) −13039.5 7528.36i −0.453896 0.262057i
\(939\) 0 0
\(940\) 4102.57 + 7105.87i 0.142352 + 0.246562i
\(941\) 10299.0 + 5946.14i 0.356789 + 0.205992i 0.667671 0.744456i \(-0.267291\pi\)
−0.310882 + 0.950448i \(0.600625\pi\)
\(942\) 0 0
\(943\) 49739.1i 1.71763i
\(944\) 24581.5i 0.847519i
\(945\) 0 0
\(946\) −19744.5 34198.5i −0.678594 1.17536i
\(947\) 6876.57 + 3970.19i 0.235965 + 0.136234i 0.613321 0.789834i \(-0.289833\pi\)
−0.377356 + 0.926068i \(0.623167\pi\)
\(948\) 0 0
\(949\) 36845.6 + 19124.1i 1.26034 + 0.654155i
\(950\) −2502.13 + 4333.81i −0.0854524 + 0.148008i
\(951\) 0 0
\(952\) 142.800 247.336i 0.00486152 0.00842039i
\(953\) −5556.35 + 9623.87i −0.188864 + 0.327123i −0.944872 0.327440i \(-0.893814\pi\)
0.756008 + 0.654563i \(0.227147\pi\)
\(954\) 0 0
\(955\) 7486.59 + 4322.38i 0.253676 + 0.146460i
\(956\) 16524.5i 0.559039i
\(957\) 0 0
\(958\) −22472.9 38924.1i −0.757897 1.31272i
\(959\) 15731.9 0.529728
\(960\) 0 0
\(961\) −13979.4 24213.0i −0.469249 0.812763i
\(962\) −14389.8 + 27724.3i −0.482272 + 0.929175i
\(963\) 0 0
\(964\) −45384.5 + 26202.7i −1.51632 + 0.875450i
\(965\) 6418.11 11116.5i 0.214100 0.370831i
\(966\) 0 0
\(967\) 23614.5 + 13633.8i 0.785307 + 0.453397i 0.838308 0.545197i \(-0.183545\pi\)
−0.0530008 + 0.998594i \(0.516879\pi\)
\(968\) −3053.89 + 1763.16i −0.101401 + 0.0585436i
\(969\) 0 0
\(970\) 2350.38 1356.99i 0.0778002 0.0449179i
\(971\) 2589.60 4485.33i 0.0855863 0.148240i −0.820055 0.572285i \(-0.806057\pi\)
0.905641 + 0.424045i \(0.139390\pi\)
\(972\) 0 0
\(973\) 25316.6 14616.5i 0.834134 0.481588i
\(974\) −2989.74 5178.38i −0.0983547 0.170355i
\(975\) 0 0
\(976\) 13131.8 22744.9i 0.430674 0.745949i
\(977\) 1148.38i 0.0376047i −0.999823 0.0188024i \(-0.994015\pi\)
0.999823 0.0188024i \(-0.00598533\pi\)
\(978\) 0 0
\(979\) 16834.2 0.549563
\(980\) 4444.90i 0.144885i
\(981\) 0 0
\(982\) −56758.6 32769.6i −1.84444 1.06489i
\(983\) 46109.2 26621.2i 1.49609 0.863767i 0.496098 0.868266i \(-0.334766\pi\)
0.999990 + 0.00449948i \(0.00143223\pi\)
\(984\) 0 0
\(985\) −2144.44 −0.0693681
\(986\) 3060.14i 0.0988385i
\(987\) 0 0
\(988\) −4538.19 2355.47i −0.146133 0.0758476i
\(989\) 28336.6 0.911074
\(990\) 0 0
\(991\) −25165.1 43587.2i −0.806656 1.39717i −0.915168 0.403074i \(-0.867942\pi\)
0.108512 0.994095i \(-0.465392\pi\)
\(992\) −11106.4 −0.355471
\(993\) 0 0
\(994\) −53253.9 + 30746.2i −1.69931 + 0.981095i
\(995\) −5962.53 + 3442.47i −0.189975 + 0.109682i
\(996\) 0 0
\(997\) 11360.4 0.360872 0.180436 0.983587i \(-0.442249\pi\)
0.180436 + 0.983587i \(0.442249\pi\)
\(998\) 9705.73 + 16810.8i 0.307845 + 0.533204i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.4.r.a.10.34 80
3.2 odd 2 117.4.r.a.49.7 yes 80
9.2 odd 6 117.4.l.a.88.34 yes 80
9.7 even 3 351.4.l.a.127.7 80
13.4 even 6 351.4.l.a.199.34 80
39.17 odd 6 117.4.l.a.4.7 80
117.43 even 6 inner 351.4.r.a.316.34 80
117.56 odd 6 117.4.r.a.43.7 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.4.l.a.4.7 80 39.17 odd 6
117.4.l.a.88.34 yes 80 9.2 odd 6
117.4.r.a.43.7 yes 80 117.56 odd 6
117.4.r.a.49.7 yes 80 3.2 odd 2
351.4.l.a.127.7 80 9.7 even 3
351.4.l.a.199.34 80 13.4 even 6
351.4.r.a.10.34 80 1.1 even 1 trivial
351.4.r.a.316.34 80 117.43 even 6 inner