Properties

Label 352.2.m.f.289.1
Level $352$
Weight $2$
Character 352.289
Analytic conductor $2.811$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [352,2,Mod(97,352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(352, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("352.97");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 352 = 2^{5} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 352.m (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.81073415115\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} + 11 x^{10} - 11 x^{9} + 39 x^{8} - 43 x^{7} + 99 x^{6} + 36 x^{5} + 431 x^{4} + \cdots + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 289.1
Root \(1.66582 + 1.21029i\) of defining polynomial
Character \(\chi\) \(=\) 352.289
Dual form 352.2.m.f.257.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.945302 - 2.90934i) q^{3} +(-2.43185 - 1.76684i) q^{5} +(0.483582 - 1.48831i) q^{7} +(-5.14361 + 3.73705i) q^{9} +(3.21473 - 0.815786i) q^{11} +(-2.95884 + 2.14973i) q^{13} +(-2.84151 + 8.74528i) q^{15} +(3.62100 + 2.63081i) q^{17} +(-0.848695 - 2.61201i) q^{19} -4.78714 q^{21} -4.77580 q^{23} +(1.24708 + 3.83811i) q^{25} +(8.31014 + 6.03767i) q^{27} +(1.53580 - 4.72671i) q^{29} +(0.394554 - 0.286660i) q^{31} +(-5.41229 - 8.58158i) q^{33} +(-3.80561 + 2.76494i) q^{35} +(-3.28946 + 10.1239i) q^{37} +(9.05128 + 6.57614i) q^{39} +(-3.87558 - 11.9278i) q^{41} -7.45745 q^{43} +19.1113 q^{45} +(-3.10162 - 9.54579i) q^{47} +(3.68190 + 2.67505i) q^{49} +(4.23099 - 13.0216i) q^{51} +(4.26078 - 3.09564i) q^{53} +(-9.25911 - 3.69605i) q^{55} +(-6.79696 + 4.93828i) q^{57} +(2.76079 - 8.49684i) q^{59} +(-1.75109 - 1.27224i) q^{61} +(3.07455 + 9.46248i) q^{63} +10.9937 q^{65} -0.709392 q^{67} +(4.51457 + 13.8944i) q^{69} +(0.654053 + 0.475198i) q^{71} +(-0.163185 + 0.502230i) q^{73} +(9.98751 - 7.25635i) q^{75} +(0.340441 - 5.17903i) q^{77} +(4.70380 - 3.41751i) q^{79} +(3.81598 - 11.7444i) q^{81} +(-5.73701 - 4.16818i) q^{83} +(-4.15750 - 12.7955i) q^{85} -15.2034 q^{87} +7.76282 q^{89} +(1.76862 + 5.44325i) q^{91} +(-1.20696 - 0.876911i) q^{93} +(-2.55112 + 7.85154i) q^{95} +(-2.93665 + 2.13360i) q^{97} +(-13.4867 + 16.2097i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{7} - q^{9} - 11 q^{11} - 2 q^{13} + 4 q^{15} + 12 q^{17} + 5 q^{19} + 24 q^{21} - 12 q^{23} + 13 q^{25} + 3 q^{27} + 16 q^{31} - 7 q^{33} - 28 q^{35} - 4 q^{37} + 46 q^{39} - 4 q^{41} - 22 q^{43}+ \cdots - 65 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/352\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(287\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.945302 2.90934i −0.545770 1.67971i −0.719151 0.694854i \(-0.755469\pi\)
0.173381 0.984855i \(-0.444531\pi\)
\(4\) 0 0
\(5\) −2.43185 1.76684i −1.08756 0.790156i −0.108572 0.994089i \(-0.534628\pi\)
−0.978985 + 0.203933i \(0.934628\pi\)
\(6\) 0 0
\(7\) 0.483582 1.48831i 0.182777 0.562529i −0.817126 0.576459i \(-0.804434\pi\)
0.999903 + 0.0139295i \(0.00443405\pi\)
\(8\) 0 0
\(9\) −5.14361 + 3.73705i −1.71454 + 1.24568i
\(10\) 0 0
\(11\) 3.21473 0.815786i 0.969278 0.245969i
\(12\) 0 0
\(13\) −2.95884 + 2.14973i −0.820635 + 0.596226i −0.916894 0.399130i \(-0.869312\pi\)
0.0962591 + 0.995356i \(0.469312\pi\)
\(14\) 0 0
\(15\) −2.84151 + 8.74528i −0.733676 + 2.25802i
\(16\) 0 0
\(17\) 3.62100 + 2.63081i 0.878222 + 0.638065i 0.932780 0.360445i \(-0.117375\pi\)
−0.0545588 + 0.998511i \(0.517375\pi\)
\(18\) 0 0
\(19\) −0.848695 2.61201i −0.194704 0.599237i −0.999980 0.00633684i \(-0.997983\pi\)
0.805276 0.592900i \(-0.202017\pi\)
\(20\) 0 0
\(21\) −4.78714 −1.04464
\(22\) 0 0
\(23\) −4.77580 −0.995823 −0.497911 0.867228i \(-0.665899\pi\)
−0.497911 + 0.867228i \(0.665899\pi\)
\(24\) 0 0
\(25\) 1.24708 + 3.83811i 0.249416 + 0.767622i
\(26\) 0 0
\(27\) 8.31014 + 6.03767i 1.59929 + 1.16195i
\(28\) 0 0
\(29\) 1.53580 4.72671i 0.285191 0.877728i −0.701150 0.713014i \(-0.747330\pi\)
0.986341 0.164715i \(-0.0526703\pi\)
\(30\) 0 0
\(31\) 0.394554 0.286660i 0.0708640 0.0514857i −0.551789 0.833984i \(-0.686055\pi\)
0.622653 + 0.782498i \(0.286055\pi\)
\(32\) 0 0
\(33\) −5.41229 8.58158i −0.942159 1.49386i
\(34\) 0 0
\(35\) −3.80561 + 2.76494i −0.643266 + 0.467360i
\(36\) 0 0
\(37\) −3.28946 + 10.1239i −0.540784 + 1.66436i 0.190026 + 0.981779i \(0.439143\pi\)
−0.730809 + 0.682581i \(0.760857\pi\)
\(38\) 0 0
\(39\) 9.05128 + 6.57614i 1.44937 + 1.05303i
\(40\) 0 0
\(41\) −3.87558 11.9278i −0.605264 1.86281i −0.494962 0.868914i \(-0.664818\pi\)
−0.110302 0.993898i \(-0.535182\pi\)
\(42\) 0 0
\(43\) −7.45745 −1.13725 −0.568625 0.822597i \(-0.692524\pi\)
−0.568625 + 0.822597i \(0.692524\pi\)
\(44\) 0 0
\(45\) 19.1113 2.84894
\(46\) 0 0
\(47\) −3.10162 9.54579i −0.452417 1.39240i −0.874141 0.485673i \(-0.838575\pi\)
0.421724 0.906724i \(-0.361425\pi\)
\(48\) 0 0
\(49\) 3.68190 + 2.67505i 0.525985 + 0.382150i
\(50\) 0 0
\(51\) 4.23099 13.0216i 0.592456 1.82339i
\(52\) 0 0
\(53\) 4.26078 3.09564i 0.585263 0.425218i −0.255355 0.966847i \(-0.582192\pi\)
0.840618 + 0.541629i \(0.182192\pi\)
\(54\) 0 0
\(55\) −9.25911 3.69605i −1.24850 0.498376i
\(56\) 0 0
\(57\) −6.79696 + 4.93828i −0.900280 + 0.654091i
\(58\) 0 0
\(59\) 2.76079 8.49684i 0.359424 1.10619i −0.593975 0.804483i \(-0.702442\pi\)
0.953399 0.301711i \(-0.0975577\pi\)
\(60\) 0 0
\(61\) −1.75109 1.27224i −0.224204 0.162894i 0.470013 0.882659i \(-0.344249\pi\)
−0.694217 + 0.719766i \(0.744249\pi\)
\(62\) 0 0
\(63\) 3.07455 + 9.46248i 0.387356 + 1.19216i
\(64\) 0 0
\(65\) 10.9937 1.36360
\(66\) 0 0
\(67\) −0.709392 −0.0866661 −0.0433330 0.999061i \(-0.513798\pi\)
−0.0433330 + 0.999061i \(0.513798\pi\)
\(68\) 0 0
\(69\) 4.51457 + 13.8944i 0.543490 + 1.67269i
\(70\) 0 0
\(71\) 0.654053 + 0.475198i 0.0776218 + 0.0563956i 0.625919 0.779888i \(-0.284724\pi\)
−0.548298 + 0.836283i \(0.684724\pi\)
\(72\) 0 0
\(73\) −0.163185 + 0.502230i −0.0190993 + 0.0587816i −0.960152 0.279479i \(-0.909838\pi\)
0.941053 + 0.338260i \(0.109838\pi\)
\(74\) 0 0
\(75\) 9.98751 7.25635i 1.15326 0.837891i
\(76\) 0 0
\(77\) 0.340441 5.17903i 0.0387969 0.590205i
\(78\) 0 0
\(79\) 4.70380 3.41751i 0.529219 0.384500i −0.290846 0.956770i \(-0.593937\pi\)
0.820066 + 0.572269i \(0.193937\pi\)
\(80\) 0 0
\(81\) 3.81598 11.7444i 0.423998 1.30493i
\(82\) 0 0
\(83\) −5.73701 4.16818i −0.629718 0.457517i 0.226584 0.973992i \(-0.427244\pi\)
−0.856303 + 0.516474i \(0.827244\pi\)
\(84\) 0 0
\(85\) −4.15750 12.7955i −0.450944 1.38786i
\(86\) 0 0
\(87\) −15.2034 −1.62998
\(88\) 0 0
\(89\) 7.76282 0.822857 0.411429 0.911442i \(-0.365030\pi\)
0.411429 + 0.911442i \(0.365030\pi\)
\(90\) 0 0
\(91\) 1.76862 + 5.44325i 0.185402 + 0.570608i
\(92\) 0 0
\(93\) −1.20696 0.876911i −0.125156 0.0909315i
\(94\) 0 0
\(95\) −2.55112 + 7.85154i −0.261739 + 0.805551i
\(96\) 0 0
\(97\) −2.93665 + 2.13360i −0.298172 + 0.216634i −0.726805 0.686844i \(-0.758995\pi\)
0.428633 + 0.903479i \(0.358995\pi\)
\(98\) 0 0
\(99\) −13.4867 + 16.2097i −1.35546 + 1.62914i
\(100\) 0 0
\(101\) 0.995345 0.723160i 0.0990405 0.0719571i −0.537163 0.843479i \(-0.680504\pi\)
0.636203 + 0.771521i \(0.280504\pi\)
\(102\) 0 0
\(103\) 0.792654 2.43954i 0.0781025 0.240375i −0.904380 0.426727i \(-0.859667\pi\)
0.982483 + 0.186352i \(0.0596665\pi\)
\(104\) 0 0
\(105\) 11.6416 + 8.45812i 1.13610 + 0.825428i
\(106\) 0 0
\(107\) 4.22154 + 12.9926i 0.408112 + 1.25604i 0.918269 + 0.395957i \(0.129587\pi\)
−0.510157 + 0.860081i \(0.670413\pi\)
\(108\) 0 0
\(109\) 0.935861 0.0896393 0.0448196 0.998995i \(-0.485729\pi\)
0.0448196 + 0.998995i \(0.485729\pi\)
\(110\) 0 0
\(111\) 32.5634 3.09078
\(112\) 0 0
\(113\) −0.992485 3.05455i −0.0933651 0.287348i 0.893459 0.449145i \(-0.148271\pi\)
−0.986824 + 0.161796i \(0.948271\pi\)
\(114\) 0 0
\(115\) 11.6140 + 8.43808i 1.08301 + 0.786855i
\(116\) 0 0
\(117\) 7.18551 22.1147i 0.664300 2.04451i
\(118\) 0 0
\(119\) 5.66652 4.11697i 0.519449 0.377402i
\(120\) 0 0
\(121\) 9.66899 5.24507i 0.878999 0.476824i
\(122\) 0 0
\(123\) −31.0385 + 22.5508i −2.79865 + 2.03334i
\(124\) 0 0
\(125\) −0.895788 + 2.75695i −0.0801217 + 0.246589i
\(126\) 0 0
\(127\) 8.21981 + 5.97204i 0.729391 + 0.529933i 0.889371 0.457187i \(-0.151143\pi\)
−0.159980 + 0.987120i \(0.551143\pi\)
\(128\) 0 0
\(129\) 7.04954 + 21.6963i 0.620677 + 1.91025i
\(130\) 0 0
\(131\) 3.01348 0.263289 0.131644 0.991297i \(-0.457974\pi\)
0.131644 + 0.991297i \(0.457974\pi\)
\(132\) 0 0
\(133\) −4.29791 −0.372676
\(134\) 0 0
\(135\) −9.54140 29.3654i −0.821193 2.52737i
\(136\) 0 0
\(137\) −0.839676 0.610060i −0.0717383 0.0521209i 0.551338 0.834282i \(-0.314117\pi\)
−0.623076 + 0.782161i \(0.714117\pi\)
\(138\) 0 0
\(139\) 0.906933 2.79125i 0.0769250 0.236751i −0.905198 0.424989i \(-0.860278\pi\)
0.982123 + 0.188239i \(0.0602778\pi\)
\(140\) 0 0
\(141\) −24.8400 + 18.0473i −2.09191 + 1.51986i
\(142\) 0 0
\(143\) −7.75817 + 9.32457i −0.648770 + 0.779760i
\(144\) 0 0
\(145\) −12.0862 + 8.78114i −1.00370 + 0.729234i
\(146\) 0 0
\(147\) 4.30214 13.2406i 0.354834 1.09207i
\(148\) 0 0
\(149\) −9.95118 7.22996i −0.815233 0.592301i 0.100110 0.994976i \(-0.468080\pi\)
−0.915343 + 0.402675i \(0.868080\pi\)
\(150\) 0 0
\(151\) −6.23702 19.1956i −0.507561 1.56211i −0.796422 0.604741i \(-0.793276\pi\)
0.288861 0.957371i \(-0.406724\pi\)
\(152\) 0 0
\(153\) −28.4565 −2.30057
\(154\) 0 0
\(155\) −1.46598 −0.117750
\(156\) 0 0
\(157\) −4.08041 12.5582i −0.325652 1.00226i −0.971145 0.238489i \(-0.923348\pi\)
0.645493 0.763766i \(-0.276652\pi\)
\(158\) 0 0
\(159\) −13.0340 9.46974i −1.03366 0.750999i
\(160\) 0 0
\(161\) −2.30949 + 7.10788i −0.182013 + 0.560179i
\(162\) 0 0
\(163\) −2.84035 + 2.06364i −0.222474 + 0.161637i −0.693439 0.720515i \(-0.743906\pi\)
0.470966 + 0.882151i \(0.343906\pi\)
\(164\) 0 0
\(165\) −2.00042 + 30.4318i −0.155733 + 2.36911i
\(166\) 0 0
\(167\) 8.09764 5.88328i 0.626614 0.455262i −0.228612 0.973518i \(-0.573419\pi\)
0.855225 + 0.518256i \(0.173419\pi\)
\(168\) 0 0
\(169\) 0.116211 0.357661i 0.00893933 0.0275124i
\(170\) 0 0
\(171\) 14.1266 + 10.2636i 1.08029 + 0.784875i
\(172\) 0 0
\(173\) −0.775536 2.38686i −0.0589629 0.181469i 0.917237 0.398342i \(-0.130414\pi\)
−0.976200 + 0.216873i \(0.930414\pi\)
\(174\) 0 0
\(175\) 6.31538 0.477398
\(176\) 0 0
\(177\) −27.3300 −2.05425
\(178\) 0 0
\(179\) −5.19007 15.9734i −0.387924 1.19391i −0.934337 0.356392i \(-0.884007\pi\)
0.546412 0.837516i \(-0.315993\pi\)
\(180\) 0 0
\(181\) 4.80422 + 3.49047i 0.357095 + 0.259444i 0.751839 0.659346i \(-0.229167\pi\)
−0.394745 + 0.918791i \(0.629167\pi\)
\(182\) 0 0
\(183\) −2.04607 + 6.29716i −0.151250 + 0.465500i
\(184\) 0 0
\(185\) 25.8868 18.8079i 1.90324 1.38278i
\(186\) 0 0
\(187\) 13.7867 + 5.50339i 1.00818 + 0.402447i
\(188\) 0 0
\(189\) 13.0046 9.44838i 0.945943 0.687268i
\(190\) 0 0
\(191\) −2.14500 + 6.60162i −0.155207 + 0.477677i −0.998182 0.0602757i \(-0.980802\pi\)
0.842975 + 0.537952i \(0.180802\pi\)
\(192\) 0 0
\(193\) −2.96054 2.15096i −0.213104 0.154829i 0.476113 0.879384i \(-0.342045\pi\)
−0.689217 + 0.724555i \(0.742045\pi\)
\(194\) 0 0
\(195\) −10.3924 31.9844i −0.744212 2.29045i
\(196\) 0 0
\(197\) 17.5687 1.25172 0.625859 0.779936i \(-0.284749\pi\)
0.625859 + 0.779936i \(0.284749\pi\)
\(198\) 0 0
\(199\) −7.12699 −0.505219 −0.252609 0.967568i \(-0.581289\pi\)
−0.252609 + 0.967568i \(0.581289\pi\)
\(200\) 0 0
\(201\) 0.670590 + 2.06386i 0.0472998 + 0.145574i
\(202\) 0 0
\(203\) −6.29214 4.57151i −0.441622 0.320857i
\(204\) 0 0
\(205\) −11.6497 + 35.8542i −0.813653 + 2.50417i
\(206\) 0 0
\(207\) 24.5649 17.8474i 1.70738 1.24048i
\(208\) 0 0
\(209\) −4.85917 7.70457i −0.336116 0.532936i
\(210\) 0 0
\(211\) −16.5962 + 12.0578i −1.14253 + 0.830096i −0.987470 0.157810i \(-0.949557\pi\)
−0.155059 + 0.987905i \(0.549557\pi\)
\(212\) 0 0
\(213\) 0.764234 2.35207i 0.0523644 0.161161i
\(214\) 0 0
\(215\) 18.1354 + 13.1761i 1.23682 + 0.898605i
\(216\) 0 0
\(217\) −0.235841 0.725844i −0.0160099 0.0492735i
\(218\) 0 0
\(219\) 1.61542 0.109160
\(220\) 0 0
\(221\) −16.3695 −1.10113
\(222\) 0 0
\(223\) −1.92982 5.93937i −0.129230 0.397730i 0.865418 0.501051i \(-0.167053\pi\)
−0.994648 + 0.103321i \(0.967053\pi\)
\(224\) 0 0
\(225\) −20.7577 15.0814i −1.38385 1.00542i
\(226\) 0 0
\(227\) −4.86911 + 14.9856i −0.323174 + 0.994628i 0.649084 + 0.760717i \(0.275152\pi\)
−0.972258 + 0.233911i \(0.924848\pi\)
\(228\) 0 0
\(229\) 13.5330 9.83230i 0.894286 0.649737i −0.0427060 0.999088i \(-0.513598\pi\)
0.936992 + 0.349351i \(0.113598\pi\)
\(230\) 0 0
\(231\) −15.3894 + 3.90528i −1.01255 + 0.256949i
\(232\) 0 0
\(233\) 9.48338 6.89008i 0.621277 0.451384i −0.232090 0.972694i \(-0.574557\pi\)
0.853367 + 0.521310i \(0.174557\pi\)
\(234\) 0 0
\(235\) −9.32325 + 28.6940i −0.608182 + 1.87179i
\(236\) 0 0
\(237\) −14.3892 10.4544i −0.934681 0.679085i
\(238\) 0 0
\(239\) 7.83369 + 24.1096i 0.506719 + 1.55952i 0.797861 + 0.602841i \(0.205965\pi\)
−0.291142 + 0.956680i \(0.594035\pi\)
\(240\) 0 0
\(241\) 1.25667 0.0809490 0.0404745 0.999181i \(-0.487113\pi\)
0.0404745 + 0.999181i \(0.487113\pi\)
\(242\) 0 0
\(243\) −6.96000 −0.446484
\(244\) 0 0
\(245\) −4.22742 13.0107i −0.270080 0.831221i
\(246\) 0 0
\(247\) 8.12626 + 5.90408i 0.517062 + 0.375667i
\(248\) 0 0
\(249\) −6.70345 + 20.6311i −0.424814 + 1.30744i
\(250\) 0 0
\(251\) 18.6517 13.5513i 1.17729 0.855349i 0.185424 0.982659i \(-0.440634\pi\)
0.991863 + 0.127309i \(0.0406340\pi\)
\(252\) 0 0
\(253\) −15.3529 + 3.89603i −0.965229 + 0.244941i
\(254\) 0 0
\(255\) −33.2963 + 24.1912i −2.08510 + 1.51491i
\(256\) 0 0
\(257\) −1.66741 + 5.13176i −0.104010 + 0.320111i −0.989497 0.144554i \(-0.953825\pi\)
0.885487 + 0.464665i \(0.153825\pi\)
\(258\) 0 0
\(259\) 13.4768 + 9.79149i 0.837409 + 0.608413i
\(260\) 0 0
\(261\) 9.76441 + 30.0518i 0.604402 + 1.86016i
\(262\) 0 0
\(263\) 16.3375 1.00742 0.503708 0.863874i \(-0.331969\pi\)
0.503708 + 0.863874i \(0.331969\pi\)
\(264\) 0 0
\(265\) −15.8311 −0.972495
\(266\) 0 0
\(267\) −7.33821 22.5847i −0.449091 1.38216i
\(268\) 0 0
\(269\) 22.3600 + 16.2455i 1.36331 + 0.990503i 0.998227 + 0.0595289i \(0.0189599\pi\)
0.365084 + 0.930974i \(0.381040\pi\)
\(270\) 0 0
\(271\) 9.23475 28.4216i 0.560971 1.72649i −0.118658 0.992935i \(-0.537859\pi\)
0.679629 0.733556i \(-0.262141\pi\)
\(272\) 0 0
\(273\) 14.1644 10.2910i 0.857268 0.622842i
\(274\) 0 0
\(275\) 7.14010 + 11.3211i 0.430564 + 0.682691i
\(276\) 0 0
\(277\) 19.3993 14.0944i 1.16559 0.846852i 0.175117 0.984548i \(-0.443970\pi\)
0.990475 + 0.137696i \(0.0439696\pi\)
\(278\) 0 0
\(279\) −0.958169 + 2.94894i −0.0573641 + 0.176548i
\(280\) 0 0
\(281\) −9.29029 6.74979i −0.554212 0.402659i 0.275124 0.961409i \(-0.411281\pi\)
−0.829336 + 0.558750i \(0.811281\pi\)
\(282\) 0 0
\(283\) 5.07083 + 15.6064i 0.301430 + 0.927706i 0.980985 + 0.194082i \(0.0621726\pi\)
−0.679556 + 0.733624i \(0.737827\pi\)
\(284\) 0 0
\(285\) 25.2544 1.49594
\(286\) 0 0
\(287\) −19.6265 −1.15852
\(288\) 0 0
\(289\) 0.937189 + 2.88437i 0.0551288 + 0.169669i
\(290\) 0 0
\(291\) 8.98339 + 6.52682i 0.526616 + 0.382609i
\(292\) 0 0
\(293\) 5.19334 15.9835i 0.303398 0.933764i −0.676872 0.736101i \(-0.736665\pi\)
0.980270 0.197663i \(-0.0633352\pi\)
\(294\) 0 0
\(295\) −21.7264 + 15.7852i −1.26496 + 0.919048i
\(296\) 0 0
\(297\) 31.6403 + 12.6302i 1.83596 + 0.732877i
\(298\) 0 0
\(299\) 14.1308 10.2667i 0.817207 0.593736i
\(300\) 0 0
\(301\) −3.60629 + 11.0990i −0.207863 + 0.639737i
\(302\) 0 0
\(303\) −3.04482 2.21219i −0.174920 0.127087i
\(304\) 0 0
\(305\) 2.01054 + 6.18780i 0.115123 + 0.354312i
\(306\) 0 0
\(307\) −12.3071 −0.702403 −0.351201 0.936300i \(-0.614227\pi\)
−0.351201 + 0.936300i \(0.614227\pi\)
\(308\) 0 0
\(309\) −7.84675 −0.446386
\(310\) 0 0
\(311\) 5.12870 + 15.7845i 0.290822 + 0.895057i 0.984593 + 0.174862i \(0.0559479\pi\)
−0.693771 + 0.720195i \(0.744052\pi\)
\(312\) 0 0
\(313\) 18.4719 + 13.4206i 1.04410 + 0.758580i 0.971081 0.238751i \(-0.0767380\pi\)
0.0730148 + 0.997331i \(0.476738\pi\)
\(314\) 0 0
\(315\) 9.24188 28.4436i 0.520721 1.60261i
\(316\) 0 0
\(317\) 3.85676 2.80210i 0.216617 0.157382i −0.474185 0.880425i \(-0.657257\pi\)
0.690803 + 0.723043i \(0.257257\pi\)
\(318\) 0 0
\(319\) 1.08120 16.4480i 0.0605357 0.920911i
\(320\) 0 0
\(321\) 33.8091 24.5638i 1.88704 1.37102i
\(322\) 0 0
\(323\) 3.79859 11.6909i 0.211359 0.650497i
\(324\) 0 0
\(325\) −11.9408 8.67550i −0.662356 0.481230i
\(326\) 0 0
\(327\) −0.884672 2.72274i −0.0489224 0.150568i
\(328\) 0 0
\(329\) −15.7070 −0.865956
\(330\) 0 0
\(331\) 32.4925 1.78595 0.892976 0.450105i \(-0.148613\pi\)
0.892976 + 0.450105i \(0.148613\pi\)
\(332\) 0 0
\(333\) −20.9139 64.3664i −1.14607 3.52726i
\(334\) 0 0
\(335\) 1.72514 + 1.25338i 0.0942542 + 0.0684797i
\(336\) 0 0
\(337\) −2.93504 + 9.03312i −0.159882 + 0.492066i −0.998623 0.0524650i \(-0.983292\pi\)
0.838741 + 0.544531i \(0.183292\pi\)
\(338\) 0 0
\(339\) −7.94854 + 5.77495i −0.431705 + 0.313652i
\(340\) 0 0
\(341\) 1.03453 1.24341i 0.0560230 0.0673343i
\(342\) 0 0
\(343\) 14.6241 10.6250i 0.789625 0.573696i
\(344\) 0 0
\(345\) 13.5705 41.7657i 0.730611 2.24859i
\(346\) 0 0
\(347\) −28.9950 21.0661i −1.55653 1.13089i −0.938783 0.344510i \(-0.888045\pi\)
−0.617749 0.786376i \(-0.711955\pi\)
\(348\) 0 0
\(349\) 8.03407 + 24.7263i 0.430054 + 1.32357i 0.898071 + 0.439851i \(0.144969\pi\)
−0.468017 + 0.883720i \(0.655031\pi\)
\(350\) 0 0
\(351\) −37.5677 −2.00522
\(352\) 0 0
\(353\) −16.3264 −0.868969 −0.434484 0.900679i \(-0.643069\pi\)
−0.434484 + 0.900679i \(0.643069\pi\)
\(354\) 0 0
\(355\) −0.750960 2.31122i −0.0398568 0.122667i
\(356\) 0 0
\(357\) −17.3342 12.5941i −0.917425 0.666548i
\(358\) 0 0
\(359\) 2.38640 7.34459i 0.125949 0.387633i −0.868123 0.496348i \(-0.834674\pi\)
0.994073 + 0.108716i \(0.0346739\pi\)
\(360\) 0 0
\(361\) 9.26899 6.73432i 0.487842 0.354438i
\(362\) 0 0
\(363\) −24.3998 23.1722i −1.28066 1.21623i
\(364\) 0 0
\(365\) 1.28420 0.933028i 0.0672182 0.0488369i
\(366\) 0 0
\(367\) 1.92708 5.93094i 0.100593 0.309592i −0.888078 0.459692i \(-0.847960\pi\)
0.988671 + 0.150100i \(0.0479596\pi\)
\(368\) 0 0
\(369\) 64.5094 + 46.8688i 3.35823 + 2.43989i
\(370\) 0 0
\(371\) −2.54684 7.83836i −0.132225 0.406948i
\(372\) 0 0
\(373\) 4.84081 0.250648 0.125324 0.992116i \(-0.460003\pi\)
0.125324 + 0.992116i \(0.460003\pi\)
\(374\) 0 0
\(375\) 8.86770 0.457926
\(376\) 0 0
\(377\) 5.61694 + 17.2871i 0.289287 + 0.890333i
\(378\) 0 0
\(379\) 11.0664 + 8.04021i 0.568443 + 0.412998i 0.834539 0.550949i \(-0.185734\pi\)
−0.266096 + 0.963946i \(0.585734\pi\)
\(380\) 0 0
\(381\) 9.60450 29.5596i 0.492054 1.51439i
\(382\) 0 0
\(383\) 9.30686 6.76183i 0.475558 0.345513i −0.324045 0.946042i \(-0.605043\pi\)
0.799604 + 0.600528i \(0.205043\pi\)
\(384\) 0 0
\(385\) −9.97843 + 11.9931i −0.508548 + 0.611225i
\(386\) 0 0
\(387\) 38.3582 27.8689i 1.94986 1.41666i
\(388\) 0 0
\(389\) 2.87359 8.84400i 0.145697 0.448408i −0.851403 0.524512i \(-0.824248\pi\)
0.997100 + 0.0761033i \(0.0242479\pi\)
\(390\) 0 0
\(391\) −17.2932 12.5642i −0.874553 0.635400i
\(392\) 0 0
\(393\) −2.84865 8.76723i −0.143695 0.442248i
\(394\) 0 0
\(395\) −17.4772 −0.879371
\(396\) 0 0
\(397\) 38.3379 1.92413 0.962063 0.272828i \(-0.0879589\pi\)
0.962063 + 0.272828i \(0.0879589\pi\)
\(398\) 0 0
\(399\) 4.06282 + 12.5041i 0.203395 + 0.625987i
\(400\) 0 0
\(401\) −14.0065 10.1763i −0.699453 0.508182i 0.180301 0.983611i \(-0.442293\pi\)
−0.879754 + 0.475429i \(0.842293\pi\)
\(402\) 0 0
\(403\) −0.551182 + 1.69637i −0.0274564 + 0.0845020i
\(404\) 0 0
\(405\) −30.0304 + 21.8184i −1.49222 + 1.08416i
\(406\) 0 0
\(407\) −2.31577 + 35.2291i −0.114789 + 1.74624i
\(408\) 0 0
\(409\) −2.17834 + 1.58266i −0.107712 + 0.0782573i −0.640337 0.768094i \(-0.721205\pi\)
0.532625 + 0.846351i \(0.321205\pi\)
\(410\) 0 0
\(411\) −0.981125 + 3.01959i −0.0483953 + 0.148946i
\(412\) 0 0
\(413\) −11.3109 8.21784i −0.556572 0.404374i
\(414\) 0 0
\(415\) 6.58702 + 20.2728i 0.323344 + 0.995152i
\(416\) 0 0
\(417\) −8.97803 −0.439656
\(418\) 0 0
\(419\) −13.3425 −0.651824 −0.325912 0.945400i \(-0.605671\pi\)
−0.325912 + 0.945400i \(0.605671\pi\)
\(420\) 0 0
\(421\) 6.54615 + 20.1470i 0.319040 + 0.981903i 0.974060 + 0.226291i \(0.0726602\pi\)
−0.655020 + 0.755612i \(0.727340\pi\)
\(422\) 0 0
\(423\) 51.6267 + 37.5090i 2.51017 + 1.82375i
\(424\) 0 0
\(425\) −5.58168 + 17.1786i −0.270751 + 0.833286i
\(426\) 0 0
\(427\) −2.74029 + 1.99094i −0.132612 + 0.0963481i
\(428\) 0 0
\(429\) 34.4622 + 13.7566i 1.66385 + 0.664175i
\(430\) 0 0
\(431\) −14.0809 + 10.2304i −0.678253 + 0.492780i −0.872778 0.488118i \(-0.837684\pi\)
0.194524 + 0.980898i \(0.437684\pi\)
\(432\) 0 0
\(433\) 1.27401 3.92101i 0.0612252 0.188432i −0.915766 0.401713i \(-0.868415\pi\)
0.976991 + 0.213281i \(0.0684150\pi\)
\(434\) 0 0
\(435\) 36.9724 + 26.8620i 1.77269 + 1.28794i
\(436\) 0 0
\(437\) 4.05319 + 12.4744i 0.193891 + 0.596734i
\(438\) 0 0
\(439\) −30.8478 −1.47229 −0.736143 0.676826i \(-0.763355\pi\)
−0.736143 + 0.676826i \(0.763355\pi\)
\(440\) 0 0
\(441\) −28.9351 −1.37786
\(442\) 0 0
\(443\) −2.89223 8.90137i −0.137414 0.422917i 0.858544 0.512740i \(-0.171370\pi\)
−0.995958 + 0.0898236i \(0.971370\pi\)
\(444\) 0 0
\(445\) −18.8780 13.7157i −0.894904 0.650186i
\(446\) 0 0
\(447\) −11.6275 + 35.7859i −0.549964 + 1.69261i
\(448\) 0 0
\(449\) 2.98291 2.16721i 0.140772 0.102277i −0.515170 0.857088i \(-0.672271\pi\)
0.655943 + 0.754811i \(0.272271\pi\)
\(450\) 0 0
\(451\) −22.1895 35.1831i −1.04486 1.65671i
\(452\) 0 0
\(453\) −49.9506 + 36.2912i −2.34688 + 1.70511i
\(454\) 0 0
\(455\) 5.31635 16.3621i 0.249234 0.767065i
\(456\) 0 0
\(457\) −26.0090 18.8966i −1.21665 0.883946i −0.220830 0.975312i \(-0.570877\pi\)
−0.995817 + 0.0913659i \(0.970877\pi\)
\(458\) 0 0
\(459\) 14.2070 + 43.7248i 0.663128 + 2.04090i
\(460\) 0 0
\(461\) −3.41140 −0.158885 −0.0794423 0.996839i \(-0.525314\pi\)
−0.0794423 + 0.996839i \(0.525314\pi\)
\(462\) 0 0
\(463\) −3.72640 −0.173181 −0.0865903 0.996244i \(-0.527597\pi\)
−0.0865903 + 0.996244i \(0.527597\pi\)
\(464\) 0 0
\(465\) 1.38579 + 4.26503i 0.0642646 + 0.197786i
\(466\) 0 0
\(467\) −1.56111 1.13421i −0.0722394 0.0524850i 0.551079 0.834453i \(-0.314216\pi\)
−0.623319 + 0.781968i \(0.714216\pi\)
\(468\) 0 0
\(469\) −0.343049 + 1.05580i −0.0158406 + 0.0487522i
\(470\) 0 0
\(471\) −32.6789 + 23.7426i −1.50576 + 1.09400i
\(472\) 0 0
\(473\) −23.9737 + 6.08368i −1.10231 + 0.279728i
\(474\) 0 0
\(475\) 8.96681 6.51477i 0.411426 0.298918i
\(476\) 0 0
\(477\) −10.3472 + 31.8455i −0.473767 + 1.45811i
\(478\) 0 0
\(479\) −22.8844 16.6265i −1.04562 0.759685i −0.0742424 0.997240i \(-0.523654\pi\)
−0.971374 + 0.237555i \(0.923654\pi\)
\(480\) 0 0
\(481\) −12.0306 37.0265i −0.548550 1.68826i
\(482\) 0 0
\(483\) 22.8624 1.04028
\(484\) 0 0
\(485\) 10.9112 0.495453
\(486\) 0 0
\(487\) 3.60225 + 11.0866i 0.163234 + 0.502382i 0.998902 0.0468530i \(-0.0149192\pi\)
−0.835668 + 0.549235i \(0.814919\pi\)
\(488\) 0 0
\(489\) 8.68882 + 6.31279i 0.392922 + 0.285474i
\(490\) 0 0
\(491\) −5.74067 + 17.6680i −0.259073 + 0.797344i 0.733927 + 0.679228i \(0.237685\pi\)
−0.993000 + 0.118116i \(0.962315\pi\)
\(492\) 0 0
\(493\) 17.9962 13.0750i 0.810509 0.588869i
\(494\) 0 0
\(495\) 61.4377 15.5907i 2.76142 0.700751i
\(496\) 0 0
\(497\) 1.02353 0.743639i 0.0459117 0.0333568i
\(498\) 0 0
\(499\) −1.14606 + 3.52720i −0.0513045 + 0.157899i −0.973426 0.229001i \(-0.926454\pi\)
0.922122 + 0.386900i \(0.126454\pi\)
\(500\) 0 0
\(501\) −24.7712 17.9973i −1.10669 0.804060i
\(502\) 0 0
\(503\) −9.60505 29.5613i −0.428268 1.31807i −0.899830 0.436240i \(-0.856310\pi\)
0.471562 0.881833i \(-0.343690\pi\)
\(504\) 0 0
\(505\) −3.69824 −0.164570
\(506\) 0 0
\(507\) −1.15041 −0.0510917
\(508\) 0 0
\(509\) 12.0394 + 37.0535i 0.533637 + 1.64237i 0.746575 + 0.665301i \(0.231697\pi\)
−0.212938 + 0.977066i \(0.568303\pi\)
\(510\) 0 0
\(511\) 0.668563 + 0.485739i 0.0295755 + 0.0214878i
\(512\) 0 0
\(513\) 8.71770 26.8303i 0.384896 1.18459i
\(514\) 0 0
\(515\) −6.23790 + 4.53210i −0.274875 + 0.199708i
\(516\) 0 0
\(517\) −17.7582 28.1569i −0.781004 1.23834i
\(518\) 0 0
\(519\) −6.21106 + 4.51260i −0.272635 + 0.198081i
\(520\) 0 0
\(521\) −3.59202 + 11.0551i −0.157369 + 0.484333i −0.998393 0.0566650i \(-0.981953\pi\)
0.841024 + 0.540998i \(0.181953\pi\)
\(522\) 0 0
\(523\) −14.3623 10.4348i −0.628019 0.456283i 0.227694 0.973733i \(-0.426881\pi\)
−0.855713 + 0.517450i \(0.826881\pi\)
\(524\) 0 0
\(525\) −5.96994 18.3736i −0.260550 0.801889i
\(526\) 0 0
\(527\) 2.18283 0.0950855
\(528\) 0 0
\(529\) −0.191763 −0.00833752
\(530\) 0 0
\(531\) 17.5527 + 54.0217i 0.761723 + 2.34434i
\(532\) 0 0
\(533\) 37.1088 + 26.9611i 1.60736 + 1.16781i
\(534\) 0 0
\(535\) 12.6897 39.0548i 0.548622 1.68848i
\(536\) 0 0
\(537\) −41.5659 + 30.1994i −1.79370 + 1.30320i
\(538\) 0 0
\(539\) 14.0186 + 5.59594i 0.603823 + 0.241034i
\(540\) 0 0
\(541\) 19.6289 14.2613i 0.843914 0.613139i −0.0795476 0.996831i \(-0.525348\pi\)
0.923461 + 0.383692i \(0.125348\pi\)
\(542\) 0 0
\(543\) 5.61352 17.2767i 0.240899 0.741412i
\(544\) 0 0
\(545\) −2.27587 1.65352i −0.0974878 0.0708290i
\(546\) 0 0
\(547\) 2.56209 + 7.88530i 0.109547 + 0.337151i 0.990771 0.135548i \(-0.0432796\pi\)
−0.881224 + 0.472700i \(0.843280\pi\)
\(548\) 0 0
\(549\) 13.7614 0.587320
\(550\) 0 0
\(551\) −13.6497 −0.581495
\(552\) 0 0
\(553\) −2.81165 8.65338i −0.119564 0.367979i
\(554\) 0 0
\(555\) −79.1894 57.5345i −3.36140 2.44220i
\(556\) 0 0
\(557\) −12.9681 + 39.9116i −0.549474 + 1.69111i 0.160633 + 0.987014i \(0.448646\pi\)
−0.710107 + 0.704094i \(0.751354\pi\)
\(558\) 0 0
\(559\) 22.0654 16.0315i 0.933268 0.678059i
\(560\) 0 0
\(561\) 2.97861 45.3126i 0.125757 1.91310i
\(562\) 0 0
\(563\) 27.4232 19.9241i 1.15575 0.839701i 0.166515 0.986039i \(-0.446749\pi\)
0.989235 + 0.146338i \(0.0467486\pi\)
\(564\) 0 0
\(565\) −2.98334 + 9.18178i −0.125510 + 0.386280i
\(566\) 0 0
\(567\) −15.6340 11.3588i −0.656566 0.477023i
\(568\) 0 0
\(569\) −5.34770 16.4585i −0.224187 0.689977i −0.998373 0.0570187i \(-0.981841\pi\)
0.774186 0.632958i \(-0.218159\pi\)
\(570\) 0 0
\(571\) −15.8559 −0.663551 −0.331775 0.943358i \(-0.607648\pi\)
−0.331775 + 0.943358i \(0.607648\pi\)
\(572\) 0 0
\(573\) 21.2340 0.887065
\(574\) 0 0
\(575\) −5.95579 18.3300i −0.248374 0.764416i
\(576\) 0 0
\(577\) 23.3438 + 16.9603i 0.971816 + 0.706066i 0.955865 0.293807i \(-0.0949224\pi\)
0.0159512 + 0.999873i \(0.494922\pi\)
\(578\) 0 0
\(579\) −3.45927 + 10.6465i −0.143762 + 0.442455i
\(580\) 0 0
\(581\) −8.97787 + 6.52280i −0.372465 + 0.270612i
\(582\) 0 0
\(583\) 11.1719 13.4275i 0.462692 0.556111i
\(584\) 0 0
\(585\) −56.5473 + 41.0840i −2.33794 + 1.69862i
\(586\) 0 0
\(587\) −8.44600 + 25.9941i −0.348604 + 1.07289i 0.611022 + 0.791613i \(0.290759\pi\)
−0.959626 + 0.281279i \(0.909241\pi\)
\(588\) 0 0
\(589\) −1.08362 0.787293i −0.0446496 0.0324398i
\(590\) 0 0
\(591\) −16.6077 51.1133i −0.683150 2.10252i
\(592\) 0 0
\(593\) −33.4666 −1.37431 −0.687154 0.726512i \(-0.741140\pi\)
−0.687154 + 0.726512i \(0.741140\pi\)
\(594\) 0 0
\(595\) −21.0542 −0.863137
\(596\) 0 0
\(597\) 6.73716 + 20.7348i 0.275733 + 0.848620i
\(598\) 0 0
\(599\) −13.7397 9.98248i −0.561389 0.407873i 0.270578 0.962698i \(-0.412785\pi\)
−0.831967 + 0.554825i \(0.812785\pi\)
\(600\) 0 0
\(601\) 0.00907725 0.0279369i 0.000370269 0.00113957i −0.950871 0.309587i \(-0.899809\pi\)
0.951241 + 0.308447i \(0.0998093\pi\)
\(602\) 0 0
\(603\) 3.64884 2.65104i 0.148592 0.107959i
\(604\) 0 0
\(605\) −32.7807 4.32836i −1.33273 0.175973i
\(606\) 0 0
\(607\) −21.0371 + 15.2844i −0.853870 + 0.620373i −0.926210 0.377007i \(-0.876953\pi\)
0.0723401 + 0.997380i \(0.476953\pi\)
\(608\) 0 0
\(609\) −7.35210 + 22.6274i −0.297922 + 0.916910i
\(610\) 0 0
\(611\) 29.6980 + 21.5769i 1.20145 + 0.872907i
\(612\) 0 0
\(613\) −9.39248 28.9071i −0.379359 1.16755i −0.940491 0.339820i \(-0.889634\pi\)
0.561132 0.827726i \(-0.310366\pi\)
\(614\) 0 0
\(615\) 115.325 4.65034
\(616\) 0 0
\(617\) 22.3795 0.900966 0.450483 0.892785i \(-0.351252\pi\)
0.450483 + 0.892785i \(0.351252\pi\)
\(618\) 0 0
\(619\) −7.13465 21.9582i −0.286766 0.882575i −0.985864 0.167549i \(-0.946415\pi\)
0.699098 0.715026i \(-0.253585\pi\)
\(620\) 0 0
\(621\) −39.6875 28.8347i −1.59261 1.15710i
\(622\) 0 0
\(623\) 3.75396 11.5535i 0.150399 0.462881i
\(624\) 0 0
\(625\) 23.3740 16.9822i 0.934960 0.679288i
\(626\) 0 0
\(627\) −17.8218 + 21.4201i −0.711735 + 0.855437i
\(628\) 0 0
\(629\) −38.5452 + 28.0047i −1.53690 + 1.11662i
\(630\) 0 0
\(631\) −9.28529 + 28.5772i −0.369641 + 1.13764i 0.577382 + 0.816474i \(0.304074\pi\)
−0.947023 + 0.321165i \(0.895926\pi\)
\(632\) 0 0
\(633\) 50.7688 + 36.8857i 2.01788 + 1.46607i
\(634\) 0 0
\(635\) −9.43769 29.0462i −0.374523 1.15266i
\(636\) 0 0
\(637\) −16.6448 −0.659490
\(638\) 0 0
\(639\) −5.14004 −0.203337
\(640\) 0 0
\(641\) 11.1148 + 34.2078i 0.439007 + 1.35113i 0.888924 + 0.458055i \(0.151454\pi\)
−0.449917 + 0.893070i \(0.648546\pi\)
\(642\) 0 0
\(643\) 14.7433 + 10.7117i 0.581420 + 0.422426i 0.839236 0.543768i \(-0.183003\pi\)
−0.257816 + 0.966194i \(0.583003\pi\)
\(644\) 0 0
\(645\) 21.1904 65.2175i 0.834373 2.56794i
\(646\) 0 0
\(647\) 9.00098 6.53959i 0.353865 0.257098i −0.396624 0.917981i \(-0.629818\pi\)
0.750489 + 0.660883i \(0.229818\pi\)
\(648\) 0 0
\(649\) 1.94359 29.5673i 0.0762927 1.16062i
\(650\) 0 0
\(651\) −1.88879 + 1.37228i −0.0740273 + 0.0537840i
\(652\) 0 0
\(653\) −5.11131 + 15.7310i −0.200021 + 0.615601i 0.799860 + 0.600186i \(0.204907\pi\)
−0.999881 + 0.0154150i \(0.995093\pi\)
\(654\) 0 0
\(655\) −7.32833 5.32434i −0.286341 0.208039i
\(656\) 0 0
\(657\) −1.03750 3.19311i −0.0404769 0.124575i
\(658\) 0 0
\(659\) 26.0957 1.01655 0.508273 0.861196i \(-0.330284\pi\)
0.508273 + 0.861196i \(0.330284\pi\)
\(660\) 0 0
\(661\) 15.3262 0.596121 0.298061 0.954547i \(-0.403660\pi\)
0.298061 + 0.954547i \(0.403660\pi\)
\(662\) 0 0
\(663\) 15.4741 + 47.6244i 0.600965 + 1.84958i
\(664\) 0 0
\(665\) 10.4519 + 7.59373i 0.405306 + 0.294472i
\(666\) 0 0
\(667\) −7.33468 + 22.5738i −0.284000 + 0.874062i
\(668\) 0 0
\(669\) −15.4554 + 11.2290i −0.597540 + 0.434138i
\(670\) 0 0
\(671\) −6.66715 2.66140i −0.257383 0.102742i
\(672\) 0 0
\(673\) −25.8605 + 18.7888i −0.996851 + 0.724254i −0.961411 0.275117i \(-0.911283\pi\)
−0.0354400 + 0.999372i \(0.511283\pi\)
\(674\) 0 0
\(675\) −12.8099 + 39.4247i −0.493052 + 1.51746i
\(676\) 0 0
\(677\) −10.1028 7.34015i −0.388284 0.282105i 0.376468 0.926430i \(-0.377138\pi\)
−0.764752 + 0.644325i \(0.777138\pi\)
\(678\) 0 0
\(679\) 1.75535 + 5.40243i 0.0673643 + 0.207326i
\(680\) 0 0
\(681\) 48.2009 1.84706
\(682\) 0 0
\(683\) 26.0471 0.996665 0.498332 0.866986i \(-0.333946\pi\)
0.498332 + 0.866986i \(0.333946\pi\)
\(684\) 0 0
\(685\) 0.964085 + 2.96715i 0.0368358 + 0.113369i
\(686\) 0 0
\(687\) −41.3983 30.0776i −1.57944 1.14753i
\(688\) 0 0
\(689\) −5.95220 + 18.3190i −0.226761 + 0.697898i
\(690\) 0 0
\(691\) −37.5824 + 27.3052i −1.42970 + 1.03874i −0.439632 + 0.898178i \(0.644891\pi\)
−0.990072 + 0.140562i \(0.955109\pi\)
\(692\) 0 0
\(693\) 17.6032 + 27.9112i 0.668690 + 1.06026i
\(694\) 0 0
\(695\) −7.13723 + 5.18550i −0.270730 + 0.196697i
\(696\) 0 0
\(697\) 17.3463 53.3866i 0.657040 2.02216i
\(698\) 0 0
\(699\) −29.0102 21.0772i −1.09727 0.797212i
\(700\) 0 0
\(701\) −7.80323 24.0159i −0.294724 0.907067i −0.983314 0.181916i \(-0.941770\pi\)
0.688590 0.725151i \(-0.258230\pi\)
\(702\) 0 0
\(703\) 29.2355 1.10264
\(704\) 0 0
\(705\) 92.2939 3.47599
\(706\) 0 0
\(707\) −0.594958 1.83109i −0.0223757 0.0688653i
\(708\) 0 0
\(709\) 4.69638 + 3.41212i 0.176376 + 0.128145i 0.672471 0.740124i \(-0.265233\pi\)
−0.496094 + 0.868269i \(0.665233\pi\)
\(710\) 0 0
\(711\) −11.4231 + 35.1567i −0.428400 + 1.31848i
\(712\) 0 0
\(713\) −1.88431 + 1.36903i −0.0705680 + 0.0512706i
\(714\) 0 0
\(715\) 35.3417 8.96850i 1.32171 0.335403i
\(716\) 0 0
\(717\) 62.7379 45.5817i 2.34299 1.70228i
\(718\) 0 0
\(719\) 9.80299 30.1705i 0.365590 1.12517i −0.584021 0.811738i \(-0.698522\pi\)
0.949611 0.313431i \(-0.101478\pi\)
\(720\) 0 0
\(721\) −3.24748 2.35944i −0.120943 0.0878700i
\(722\) 0 0
\(723\) −1.18793 3.65607i −0.0441796 0.135971i
\(724\) 0 0
\(725\) 20.0569 0.744895
\(726\) 0 0
\(727\) −51.2435 −1.90052 −0.950258 0.311464i \(-0.899181\pi\)
−0.950258 + 0.311464i \(0.899181\pi\)
\(728\) 0 0
\(729\) −4.86865 14.9842i −0.180320 0.554969i
\(730\) 0 0
\(731\) −27.0034 19.6191i −0.998758 0.725640i
\(732\) 0 0
\(733\) 13.5510 41.7056i 0.500517 1.54043i −0.307663 0.951495i \(-0.599547\pi\)
0.808179 0.588936i \(-0.200453\pi\)
\(734\) 0 0
\(735\) −33.8562 + 24.5980i −1.24881 + 0.907311i
\(736\) 0 0
\(737\) −2.28050 + 0.578712i −0.0840035 + 0.0213171i
\(738\) 0 0
\(739\) 25.1036 18.2388i 0.923450 0.670926i −0.0209304 0.999781i \(-0.506663\pi\)
0.944380 + 0.328855i \(0.106663\pi\)
\(740\) 0 0
\(741\) 9.49519 29.2232i 0.348815 1.07354i
\(742\) 0 0
\(743\) 19.2293 + 13.9709i 0.705455 + 0.512543i 0.881704 0.471802i \(-0.156396\pi\)
−0.176249 + 0.984346i \(0.556396\pi\)
\(744\) 0 0
\(745\) 11.4256 + 35.1644i 0.418601 + 1.28832i
\(746\) 0 0
\(747\) 45.0857 1.64960
\(748\) 0 0
\(749\) 21.3785 0.781152
\(750\) 0 0
\(751\) 13.1914 + 40.5989i 0.481360 + 1.48147i 0.837185 + 0.546921i \(0.184200\pi\)
−0.355825 + 0.934553i \(0.615800\pi\)
\(752\) 0 0
\(753\) −57.0568 41.4542i −2.07927 1.51068i
\(754\) 0 0
\(755\) −18.7480 + 57.7006i −0.682311 + 2.09994i
\(756\) 0 0
\(757\) −19.5386 + 14.1956i −0.710143 + 0.515949i −0.883220 0.468959i \(-0.844629\pi\)
0.173077 + 0.984908i \(0.444629\pi\)
\(758\) 0 0
\(759\) 25.8480 + 40.9839i 0.938223 + 1.48762i
\(760\) 0 0
\(761\) −11.0292 + 8.01318i −0.399808 + 0.290477i −0.769463 0.638692i \(-0.779476\pi\)
0.369655 + 0.929169i \(0.379476\pi\)
\(762\) 0 0
\(763\) 0.452566 1.39285i 0.0163840 0.0504247i
\(764\) 0 0
\(765\) 69.2020 + 50.2782i 2.50200 + 1.81781i
\(766\) 0 0
\(767\) 10.0971 + 31.0758i 0.364586 + 1.12208i
\(768\) 0 0
\(769\) 17.6960 0.638135 0.319068 0.947732i \(-0.396630\pi\)
0.319068 + 0.947732i \(0.396630\pi\)
\(770\) 0 0
\(771\) 16.5063 0.594458
\(772\) 0 0
\(773\) −8.52978 26.2520i −0.306795 0.944217i −0.979001 0.203854i \(-0.934653\pi\)
0.672207 0.740364i \(-0.265347\pi\)
\(774\) 0 0
\(775\) 1.59227 + 1.15685i 0.0571962 + 0.0415554i
\(776\) 0 0
\(777\) 15.7471 48.4646i 0.564924 1.73866i
\(778\) 0 0
\(779\) −27.8664 + 20.2462i −0.998419 + 0.725394i
\(780\) 0 0
\(781\) 2.49026 + 0.994064i 0.0891087 + 0.0355704i
\(782\) 0 0
\(783\) 41.3010 30.0070i 1.47598 1.07236i
\(784\) 0 0
\(785\) −12.2654 + 37.7492i −0.437773 + 1.34733i
\(786\) 0 0
\(787\) −16.2622 11.8152i −0.579684 0.421165i 0.258926 0.965897i \(-0.416631\pi\)
−0.838610 + 0.544732i \(0.816631\pi\)
\(788\) 0 0
\(789\) −15.4439 47.5314i −0.549817 1.69216i
\(790\) 0 0
\(791\) −5.02608 −0.178707
\(792\) 0 0
\(793\) 7.91616 0.281111
\(794\) 0 0
\(795\) 14.9651 + 46.0580i 0.530759 + 1.63351i
\(796\) 0 0
\(797\) −10.8947 7.91546i −0.385910 0.280380i 0.377867 0.925860i \(-0.376658\pi\)
−0.763778 + 0.645480i \(0.776658\pi\)
\(798\) 0 0
\(799\) 13.8822 42.7251i 0.491118 1.51150i
\(800\) 0 0
\(801\) −39.9290 + 29.0101i −1.41082 + 1.02502i
\(802\) 0 0
\(803\) −0.114882 + 1.74766i −0.00405409 + 0.0616735i
\(804\) 0 0
\(805\) 18.1748 13.2048i 0.640579 0.465408i
\(806\) 0 0
\(807\) 26.1267 80.4096i 0.919702 2.83055i
\(808\) 0 0
\(809\) −7.03614 5.11205i −0.247377 0.179730i 0.457186 0.889371i \(-0.348857\pi\)
−0.704564 + 0.709641i \(0.748857\pi\)
\(810\) 0 0
\(811\) −3.88841 11.9673i −0.136541 0.420229i 0.859286 0.511496i \(-0.170908\pi\)
−0.995826 + 0.0912667i \(0.970908\pi\)
\(812\) 0 0
\(813\) −91.4178 −3.20616
\(814\) 0 0
\(815\) 10.5534 0.369671
\(816\) 0 0
\(817\) 6.32910 + 19.4790i 0.221427 + 0.681482i
\(818\) 0 0
\(819\) −29.4388 21.3886i −1.02868 0.747377i
\(820\) 0 0
\(821\) −10.6940 + 32.9126i −0.373222 + 1.14866i 0.571448 + 0.820638i \(0.306382\pi\)
−0.944670 + 0.328021i \(0.893618\pi\)
\(822\) 0 0
\(823\) 37.3875 27.1636i 1.30325 0.946864i 0.303265 0.952906i \(-0.401923\pi\)
0.999982 + 0.00604174i \(0.00192316\pi\)
\(824\) 0 0
\(825\) 26.1875 31.4749i 0.911732 1.09581i
\(826\) 0 0
\(827\) −10.1882 + 7.40218i −0.354279 + 0.257399i −0.750662 0.660686i \(-0.770265\pi\)
0.396383 + 0.918085i \(0.370265\pi\)
\(828\) 0 0
\(829\) −9.99844 + 30.7720i −0.347260 + 1.06876i 0.613102 + 0.790003i \(0.289921\pi\)
−0.960363 + 0.278754i \(0.910079\pi\)
\(830\) 0 0
\(831\) −59.3437 43.1157i −2.05861 1.49567i
\(832\) 0 0
\(833\) 6.29458 + 19.3727i 0.218094 + 0.671226i
\(834\) 0 0
\(835\) −30.0871 −1.04121
\(836\) 0 0
\(837\) 5.00956 0.173156
\(838\) 0 0
\(839\) 7.12705 + 21.9348i 0.246053 + 0.757274i 0.995461 + 0.0951658i \(0.0303381\pi\)
−0.749408 + 0.662108i \(0.769662\pi\)
\(840\) 0 0
\(841\) 3.47837 + 2.52719i 0.119944 + 0.0871444i
\(842\) 0 0
\(843\) −10.8553 + 33.4092i −0.373877 + 1.15067i
\(844\) 0 0
\(845\) −0.914540 + 0.664452i −0.0314611 + 0.0228578i
\(846\) 0 0
\(847\) −3.13055 16.9269i −0.107567 0.581615i
\(848\) 0 0
\(849\) 40.6109 29.5056i 1.39376 1.01263i
\(850\) 0 0
\(851\) 15.7098 48.3497i 0.538524 1.65741i
\(852\) 0 0
\(853\) 36.9288 + 26.8303i 1.26442 + 0.918652i 0.998966 0.0454720i \(-0.0144792\pi\)
0.265451 + 0.964124i \(0.414479\pi\)
\(854\) 0 0
\(855\) −16.2196 49.9189i −0.554700 1.70719i
\(856\) 0 0
\(857\) 25.6018 0.874541 0.437271 0.899330i \(-0.355945\pi\)
0.437271 + 0.899330i \(0.355945\pi\)
\(858\) 0 0
\(859\) 3.93870 0.134387 0.0671934 0.997740i \(-0.478596\pi\)
0.0671934 + 0.997740i \(0.478596\pi\)
\(860\) 0 0
\(861\) 18.5530 + 57.1001i 0.632283 + 1.94597i
\(862\) 0 0
\(863\) −21.1595 15.3733i −0.720278 0.523313i 0.166195 0.986093i \(-0.446852\pi\)
−0.886473 + 0.462780i \(0.846852\pi\)
\(864\) 0 0
\(865\) −2.33121 + 7.17473i −0.0792635 + 0.243948i
\(866\) 0 0
\(867\) 7.50569 5.45320i 0.254907 0.185201i
\(868\) 0 0
\(869\) 12.3335 14.8237i 0.418385 0.502859i
\(870\) 0 0
\(871\) 2.09898 1.52500i 0.0711212 0.0516726i
\(872\) 0 0
\(873\) 7.13161 21.9488i 0.241368 0.742856i
\(874\) 0 0
\(875\) 3.67002 + 2.66643i 0.124069 + 0.0901416i
\(876\) 0 0
\(877\) −5.55847 17.1072i −0.187696 0.577669i 0.812288 0.583256i \(-0.198222\pi\)
−0.999984 + 0.00558706i \(0.998222\pi\)
\(878\) 0 0
\(879\) −51.4106 −1.73404
\(880\) 0 0
\(881\) −13.1327 −0.442453 −0.221227 0.975222i \(-0.571006\pi\)
−0.221227 + 0.975222i \(0.571006\pi\)
\(882\) 0 0
\(883\) −7.62752 23.4751i −0.256687 0.790000i −0.993493 0.113896i \(-0.963667\pi\)
0.736806 0.676104i \(-0.236333\pi\)
\(884\) 0 0
\(885\) 66.4624 + 48.2878i 2.23411 + 1.62318i
\(886\) 0 0
\(887\) −7.29062 + 22.4382i −0.244795 + 0.753401i 0.750875 + 0.660444i \(0.229632\pi\)
−0.995670 + 0.0929571i \(0.970368\pi\)
\(888\) 0 0
\(889\) 12.8632 9.34568i 0.431419 0.313444i
\(890\) 0 0
\(891\) 2.68645 40.8681i 0.0899993 1.36913i
\(892\) 0 0
\(893\) −22.3014 + 16.2029i −0.746288 + 0.542210i
\(894\) 0 0
\(895\) −15.6010 + 48.0150i −0.521484 + 1.60496i
\(896\) 0 0
\(897\) −43.2271 31.4063i −1.44331 1.04863i
\(898\) 0 0
\(899\) −0.749004 2.30520i −0.0249807 0.0768826i
\(900\) 0 0
\(901\) 23.5723 0.785307
\(902\) 0 0
\(903\) 35.6999 1.18802
\(904\) 0 0
\(905\) −5.51603 16.9766i −0.183359 0.564321i
\(906\) 0 0
\(907\) 38.5903 + 28.0375i 1.28137 + 0.930970i 0.999593 0.0285104i \(-0.00907639\pi\)
0.281776 + 0.959480i \(0.409076\pi\)
\(908\) 0 0
\(909\) −2.41718 + 7.43932i −0.0801728 + 0.246747i
\(910\) 0 0
\(911\) −0.798318 + 0.580012i −0.0264494 + 0.0192166i −0.600931 0.799301i \(-0.705204\pi\)
0.574482 + 0.818517i \(0.305204\pi\)
\(912\) 0 0
\(913\) −21.8433 8.71940i −0.722907 0.288570i
\(914\) 0 0
\(915\) 16.1018 11.6987i 0.532310 0.386746i
\(916\) 0 0
\(917\) 1.45726 4.48500i 0.0481231 0.148108i
\(918\) 0 0
\(919\) 16.1448 + 11.7299i 0.532569 + 0.386934i 0.821318 0.570471i \(-0.193239\pi\)
−0.288749 + 0.957405i \(0.593239\pi\)
\(920\) 0 0
\(921\) 11.6339 + 35.8055i 0.383350 + 1.17983i
\(922\) 0 0
\(923\) −2.95678 −0.0973238
\(924\) 0 0
\(925\) −42.9589 −1.41248
\(926\) 0 0
\(927\) 5.03958 + 15.5102i 0.165522 + 0.509423i
\(928\) 0 0
\(929\) −21.8609 15.8829i −0.717234 0.521101i 0.168265 0.985742i \(-0.446183\pi\)
−0.885499 + 0.464641i \(0.846183\pi\)
\(930\) 0 0
\(931\) 3.86247 11.8875i 0.126587 0.389596i
\(932\) 0 0
\(933\) 41.0743 29.8423i 1.34471 0.976992i
\(934\) 0 0
\(935\) −23.8036 37.7424i −0.778462 1.23431i
\(936\) 0 0
\(937\) −31.9858 + 23.2391i −1.04493 + 0.759187i −0.971242 0.238094i \(-0.923477\pi\)
−0.0736894 + 0.997281i \(0.523477\pi\)
\(938\) 0 0
\(939\) 21.5837 66.4277i 0.704357 2.16779i
\(940\) 0 0
\(941\) −19.4808 14.1536i −0.635055 0.461395i 0.223092 0.974797i \(-0.428385\pi\)
−0.858148 + 0.513402i \(0.828385\pi\)
\(942\) 0 0
\(943\) 18.5090 + 56.9648i 0.602736 + 1.85503i
\(944\) 0 0
\(945\) −48.3190 −1.57182
\(946\) 0 0
\(947\) 34.6471 1.12588 0.562940 0.826498i \(-0.309670\pi\)
0.562940 + 0.826498i \(0.309670\pi\)
\(948\) 0 0
\(949\) −0.596820 1.83682i −0.0193736 0.0596258i
\(950\) 0 0
\(951\) −11.7981 8.57180i −0.382579 0.277960i
\(952\) 0 0
\(953\) 0.283275 0.871831i 0.00917618 0.0282414i −0.946364 0.323104i \(-0.895274\pi\)
0.955540 + 0.294862i \(0.0952738\pi\)
\(954\) 0 0
\(955\) 16.8803 12.2643i 0.546235 0.396863i
\(956\) 0 0
\(957\) −48.8749 + 12.4027i −1.57990 + 0.400923i
\(958\) 0 0
\(959\) −1.31401 + 0.954686i −0.0424317 + 0.0308284i
\(960\) 0 0
\(961\) −9.50603 + 29.2565i −0.306646 + 0.943760i
\(962\) 0 0
\(963\) −70.2679 51.0526i −2.26435 1.64515i
\(964\) 0 0
\(965\) 3.39919 + 10.4616i 0.109424 + 0.336772i
\(966\) 0 0
\(967\) −40.8240 −1.31281 −0.656406 0.754408i \(-0.727924\pi\)
−0.656406 + 0.754408i \(0.727924\pi\)
\(968\) 0 0
\(969\) −37.6035 −1.20800
\(970\) 0 0
\(971\) 15.2726 + 47.0041i 0.490120 + 1.50843i 0.824426 + 0.565970i \(0.191498\pi\)
−0.334306 + 0.942465i \(0.608502\pi\)
\(972\) 0 0
\(973\) −3.71568 2.69960i −0.119119 0.0865452i
\(974\) 0 0
\(975\) −13.9523 + 42.9408i −0.446832 + 1.37521i
\(976\) 0 0
\(977\) 19.0475 13.8388i 0.609383 0.442743i −0.239814 0.970819i \(-0.577086\pi\)
0.849197 + 0.528076i \(0.177086\pi\)
\(978\) 0 0
\(979\) 24.9554 6.33280i 0.797577 0.202397i
\(980\) 0 0
\(981\) −4.81371 + 3.49736i −0.153690 + 0.111662i
\(982\) 0 0
\(983\) −1.79966 + 5.53878i −0.0574002 + 0.176660i −0.975646 0.219352i \(-0.929606\pi\)
0.918246 + 0.396011i \(0.129606\pi\)
\(984\) 0 0
\(985\) −42.7244 31.0411i −1.36131 0.989052i
\(986\) 0 0
\(987\) 14.8479 + 45.6971i 0.472613 + 1.45455i
\(988\) 0 0
\(989\) 35.6153 1.13250
\(990\) 0 0
\(991\) 14.3008 0.454280 0.227140 0.973862i \(-0.427062\pi\)
0.227140 + 0.973862i \(0.427062\pi\)
\(992\) 0 0
\(993\) −30.7153 94.5318i −0.974719 2.99988i
\(994\) 0 0
\(995\) 17.3318 + 12.5923i 0.549454 + 0.399202i
\(996\) 0 0
\(997\) −8.73706 + 26.8899i −0.276705 + 0.851612i 0.712058 + 0.702121i \(0.247763\pi\)
−0.988763 + 0.149491i \(0.952237\pi\)
\(998\) 0 0
\(999\) −88.4606 + 64.2704i −2.79877 + 2.03343i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 352.2.m.f.289.1 yes 12
4.3 odd 2 352.2.m.e.289.3 yes 12
8.3 odd 2 704.2.m.m.641.1 12
8.5 even 2 704.2.m.n.641.3 12
11.2 odd 10 3872.2.a.bo.1.2 6
11.4 even 5 inner 352.2.m.f.257.1 yes 12
11.9 even 5 3872.2.a.bn.1.2 6
44.15 odd 10 352.2.m.e.257.3 12
44.31 odd 10 3872.2.a.bq.1.5 6
44.35 even 10 3872.2.a.bp.1.5 6
88.13 odd 10 7744.2.a.dw.1.5 6
88.35 even 10 7744.2.a.dt.1.2 6
88.37 even 10 704.2.m.n.257.3 12
88.53 even 10 7744.2.a.dv.1.5 6
88.59 odd 10 704.2.m.m.257.1 12
88.75 odd 10 7744.2.a.du.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
352.2.m.e.257.3 12 44.15 odd 10
352.2.m.e.289.3 yes 12 4.3 odd 2
352.2.m.f.257.1 yes 12 11.4 even 5 inner
352.2.m.f.289.1 yes 12 1.1 even 1 trivial
704.2.m.m.257.1 12 88.59 odd 10
704.2.m.m.641.1 12 8.3 odd 2
704.2.m.n.257.3 12 88.37 even 10
704.2.m.n.641.3 12 8.5 even 2
3872.2.a.bn.1.2 6 11.9 even 5
3872.2.a.bo.1.2 6 11.2 odd 10
3872.2.a.bp.1.5 6 44.35 even 10
3872.2.a.bq.1.5 6 44.31 odd 10
7744.2.a.dt.1.2 6 88.35 even 10
7744.2.a.du.1.2 6 88.75 odd 10
7744.2.a.dv.1.5 6 88.53 even 10
7744.2.a.dw.1.5 6 88.13 odd 10