Properties

Label 7744.2.a.du.1.2
Level $7744$
Weight $2$
Character 7744.1
Self dual yes
Analytic conductor $61.836$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7744,2,Mod(1,7744)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7744, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7744.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7744 = 2^{6} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7744.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.8361513253\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.19898000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 10x^{4} + 7x^{3} + 24x^{2} - 15x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 352)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.05906\) of defining polynomial
Character \(\chi\) \(=\) 7744.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.05906 q^{3} -3.00593 q^{5} -1.56490 q^{7} +6.35786 q^{9} -3.65733 q^{13} +9.19533 q^{15} -4.47580 q^{17} -2.74643 q^{19} +4.78714 q^{21} +4.77580 q^{23} +4.03563 q^{25} -10.2719 q^{27} -4.96996 q^{29} +0.487696 q^{31} +4.70400 q^{35} +10.6449 q^{37} +11.1880 q^{39} -12.5417 q^{41} -7.45745 q^{43} -19.1113 q^{45} +10.0370 q^{47} -4.55107 q^{49} +13.6918 q^{51} +5.26661 q^{53} +8.40151 q^{57} +8.93411 q^{59} -2.16446 q^{61} -9.94944 q^{63} +10.9937 q^{65} -0.709392 q^{67} -14.6095 q^{69} +0.808454 q^{71} -0.528076 q^{73} -12.3452 q^{75} +5.81422 q^{79} +12.3488 q^{81} +7.09133 q^{83} +13.4540 q^{85} +15.2034 q^{87} +7.76282 q^{89} +5.72337 q^{91} -1.49189 q^{93} +8.25559 q^{95} +3.62990 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 5 q^{3} + 2 q^{7} + 7 q^{9} - 4 q^{13} + 8 q^{15} - 9 q^{17} - 5 q^{19} - 12 q^{21} + 6 q^{23} + 4 q^{25} - 26 q^{27} - 10 q^{29} + 12 q^{31} + 26 q^{35} + 12 q^{37} + 2 q^{39} - 17 q^{41} - 11 q^{43}+ \cdots - 21 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.05906 −1.76615 −0.883075 0.469232i \(-0.844531\pi\)
−0.883075 + 0.469232i \(0.844531\pi\)
\(4\) 0 0
\(5\) −3.00593 −1.34429 −0.672147 0.740418i \(-0.734628\pi\)
−0.672147 + 0.740418i \(0.734628\pi\)
\(6\) 0 0
\(7\) −1.56490 −0.591478 −0.295739 0.955269i \(-0.595566\pi\)
−0.295739 + 0.955269i \(0.595566\pi\)
\(8\) 0 0
\(9\) 6.35786 2.11929
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −3.65733 −1.01436 −0.507181 0.861840i \(-0.669312\pi\)
−0.507181 + 0.861840i \(0.669312\pi\)
\(14\) 0 0
\(15\) 9.19533 2.37422
\(16\) 0 0
\(17\) −4.47580 −1.08554 −0.542771 0.839881i \(-0.682625\pi\)
−0.542771 + 0.839881i \(0.682625\pi\)
\(18\) 0 0
\(19\) −2.74643 −0.630075 −0.315037 0.949079i \(-0.602017\pi\)
−0.315037 + 0.949079i \(0.602017\pi\)
\(20\) 0 0
\(21\) 4.78714 1.04464
\(22\) 0 0
\(23\) 4.77580 0.995823 0.497911 0.867228i \(-0.334101\pi\)
0.497911 + 0.867228i \(0.334101\pi\)
\(24\) 0 0
\(25\) 4.03563 0.807126
\(26\) 0 0
\(27\) −10.2719 −1.97683
\(28\) 0 0
\(29\) −4.96996 −0.922898 −0.461449 0.887167i \(-0.652670\pi\)
−0.461449 + 0.887167i \(0.652670\pi\)
\(30\) 0 0
\(31\) 0.487696 0.0875927 0.0437964 0.999040i \(-0.486055\pi\)
0.0437964 + 0.999040i \(0.486055\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.70400 0.795121
\(36\) 0 0
\(37\) 10.6449 1.75001 0.875006 0.484112i \(-0.160857\pi\)
0.875006 + 0.484112i \(0.160857\pi\)
\(38\) 0 0
\(39\) 11.1880 1.79151
\(40\) 0 0
\(41\) −12.5417 −1.95868 −0.979338 0.202228i \(-0.935182\pi\)
−0.979338 + 0.202228i \(0.935182\pi\)
\(42\) 0 0
\(43\) −7.45745 −1.13725 −0.568625 0.822597i \(-0.692524\pi\)
−0.568625 + 0.822597i \(0.692524\pi\)
\(44\) 0 0
\(45\) −19.1113 −2.84894
\(46\) 0 0
\(47\) 10.0370 1.46405 0.732026 0.681276i \(-0.238575\pi\)
0.732026 + 0.681276i \(0.238575\pi\)
\(48\) 0 0
\(49\) −4.55107 −0.650153
\(50\) 0 0
\(51\) 13.6918 1.91723
\(52\) 0 0
\(53\) 5.26661 0.723424 0.361712 0.932290i \(-0.382192\pi\)
0.361712 + 0.932290i \(0.382192\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 8.40151 1.11281
\(58\) 0 0
\(59\) 8.93411 1.16312 0.581561 0.813503i \(-0.302442\pi\)
0.581561 + 0.813503i \(0.302442\pi\)
\(60\) 0 0
\(61\) −2.16446 −0.277131 −0.138566 0.990353i \(-0.544249\pi\)
−0.138566 + 0.990353i \(0.544249\pi\)
\(62\) 0 0
\(63\) −9.94944 −1.25351
\(64\) 0 0
\(65\) 10.9937 1.36360
\(66\) 0 0
\(67\) −0.709392 −0.0866661 −0.0433330 0.999061i \(-0.513798\pi\)
−0.0433330 + 0.999061i \(0.513798\pi\)
\(68\) 0 0
\(69\) −14.6095 −1.75877
\(70\) 0 0
\(71\) 0.808454 0.0959459 0.0479729 0.998849i \(-0.484724\pi\)
0.0479729 + 0.998849i \(0.484724\pi\)
\(72\) 0 0
\(73\) −0.528076 −0.0618066 −0.0309033 0.999522i \(-0.509838\pi\)
−0.0309033 + 0.999522i \(0.509838\pi\)
\(74\) 0 0
\(75\) −12.3452 −1.42551
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 5.81422 0.654151 0.327076 0.944998i \(-0.393937\pi\)
0.327076 + 0.944998i \(0.393937\pi\)
\(80\) 0 0
\(81\) 12.3488 1.37209
\(82\) 0 0
\(83\) 7.09133 0.778375 0.389187 0.921159i \(-0.372756\pi\)
0.389187 + 0.921159i \(0.372756\pi\)
\(84\) 0 0
\(85\) 13.4540 1.45929
\(86\) 0 0
\(87\) 15.2034 1.62998
\(88\) 0 0
\(89\) 7.76282 0.822857 0.411429 0.911442i \(-0.365030\pi\)
0.411429 + 0.911442i \(0.365030\pi\)
\(90\) 0 0
\(91\) 5.72337 0.599973
\(92\) 0 0
\(93\) −1.49189 −0.154702
\(94\) 0 0
\(95\) 8.25559 0.847006
\(96\) 0 0
\(97\) 3.62990 0.368560 0.184280 0.982874i \(-0.441005\pi\)
0.184280 + 0.982874i \(0.441005\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.23031 0.122421 0.0612104 0.998125i \(-0.480504\pi\)
0.0612104 + 0.998125i \(0.480504\pi\)
\(102\) 0 0
\(103\) −2.56508 −0.252745 −0.126373 0.991983i \(-0.540333\pi\)
−0.126373 + 0.991983i \(0.540333\pi\)
\(104\) 0 0
\(105\) −14.3898 −1.40430
\(106\) 0 0
\(107\) 13.6612 1.32068 0.660338 0.750968i \(-0.270413\pi\)
0.660338 + 0.750968i \(0.270413\pi\)
\(108\) 0 0
\(109\) −0.935861 −0.0896393 −0.0448196 0.998995i \(-0.514271\pi\)
−0.0448196 + 0.998995i \(0.514271\pi\)
\(110\) 0 0
\(111\) −32.5634 −3.09078
\(112\) 0 0
\(113\) −3.21175 −0.302136 −0.151068 0.988523i \(-0.548271\pi\)
−0.151068 + 0.988523i \(0.548271\pi\)
\(114\) 0 0
\(115\) −14.3557 −1.33868
\(116\) 0 0
\(117\) −23.2528 −2.14972
\(118\) 0 0
\(119\) 7.00421 0.642074
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 38.3657 3.45932
\(124\) 0 0
\(125\) 2.89883 0.259279
\(126\) 0 0
\(127\) 10.1602 0.901576 0.450788 0.892631i \(-0.351143\pi\)
0.450788 + 0.892631i \(0.351143\pi\)
\(128\) 0 0
\(129\) 22.8128 2.00855
\(130\) 0 0
\(131\) 3.01348 0.263289 0.131644 0.991297i \(-0.457974\pi\)
0.131644 + 0.991297i \(0.457974\pi\)
\(132\) 0 0
\(133\) 4.29791 0.372676
\(134\) 0 0
\(135\) 30.8766 2.65744
\(136\) 0 0
\(137\) 1.03790 0.0886735 0.0443367 0.999017i \(-0.485883\pi\)
0.0443367 + 0.999017i \(0.485883\pi\)
\(138\) 0 0
\(139\) 2.93490 0.248935 0.124467 0.992224i \(-0.460278\pi\)
0.124467 + 0.992224i \(0.460278\pi\)
\(140\) 0 0
\(141\) −30.7039 −2.58574
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 14.9394 1.24065
\(146\) 0 0
\(147\) 13.9220 1.14827
\(148\) 0 0
\(149\) −12.3003 −1.00768 −0.503842 0.863796i \(-0.668080\pi\)
−0.503842 + 0.863796i \(0.668080\pi\)
\(150\) 0 0
\(151\) 20.1834 1.64250 0.821251 0.570567i \(-0.193276\pi\)
0.821251 + 0.570567i \(0.193276\pi\)
\(152\) 0 0
\(153\) −28.4565 −2.30057
\(154\) 0 0
\(155\) −1.46598 −0.117750
\(156\) 0 0
\(157\) 13.2045 1.05383 0.526917 0.849917i \(-0.323348\pi\)
0.526917 + 0.849917i \(0.323348\pi\)
\(158\) 0 0
\(159\) −16.1109 −1.27768
\(160\) 0 0
\(161\) −7.47367 −0.589008
\(162\) 0 0
\(163\) 3.51087 0.274993 0.137496 0.990502i \(-0.456094\pi\)
0.137496 + 0.990502i \(0.456094\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.0092 0.774537 0.387269 0.921967i \(-0.373419\pi\)
0.387269 + 0.921967i \(0.373419\pi\)
\(168\) 0 0
\(169\) 0.376067 0.0289283
\(170\) 0 0
\(171\) −17.4614 −1.33531
\(172\) 0 0
\(173\) 2.50969 0.190808 0.0954040 0.995439i \(-0.469586\pi\)
0.0954040 + 0.995439i \(0.469586\pi\)
\(174\) 0 0
\(175\) −6.31538 −0.477398
\(176\) 0 0
\(177\) −27.3300 −2.05425
\(178\) 0 0
\(179\) −16.7954 −1.25535 −0.627675 0.778476i \(-0.715993\pi\)
−0.627675 + 0.778476i \(0.715993\pi\)
\(180\) 0 0
\(181\) 5.93834 0.441393 0.220697 0.975342i \(-0.429167\pi\)
0.220697 + 0.975342i \(0.429167\pi\)
\(182\) 0 0
\(183\) 6.62123 0.489455
\(184\) 0 0
\(185\) −31.9979 −2.35253
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 16.0745 1.16925
\(190\) 0 0
\(191\) 6.94136 0.502259 0.251130 0.967953i \(-0.419198\pi\)
0.251130 + 0.967953i \(0.419198\pi\)
\(192\) 0 0
\(193\) 3.65943 0.263412 0.131706 0.991289i \(-0.457955\pi\)
0.131706 + 0.991289i \(0.457955\pi\)
\(194\) 0 0
\(195\) −33.6304 −2.40832
\(196\) 0 0
\(197\) −17.5687 −1.25172 −0.625859 0.779936i \(-0.715251\pi\)
−0.625859 + 0.779936i \(0.715251\pi\)
\(198\) 0 0
\(199\) 7.12699 0.505219 0.252609 0.967568i \(-0.418711\pi\)
0.252609 + 0.967568i \(0.418711\pi\)
\(200\) 0 0
\(201\) 2.17007 0.153065
\(202\) 0 0
\(203\) 7.77751 0.545874
\(204\) 0 0
\(205\) 37.6994 2.63304
\(206\) 0 0
\(207\) 30.3638 2.11043
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 20.5140 1.41224 0.706121 0.708091i \(-0.250443\pi\)
0.706121 + 0.708091i \(0.250443\pi\)
\(212\) 0 0
\(213\) −2.47311 −0.169455
\(214\) 0 0
\(215\) 22.4166 1.52880
\(216\) 0 0
\(217\) −0.763197 −0.0518092
\(218\) 0 0
\(219\) 1.61542 0.109160
\(220\) 0 0
\(221\) 16.3695 1.10113
\(222\) 0 0
\(223\) 6.24503 0.418198 0.209099 0.977894i \(-0.432947\pi\)
0.209099 + 0.977894i \(0.432947\pi\)
\(224\) 0 0
\(225\) 25.6580 1.71053
\(226\) 0 0
\(227\) −15.7568 −1.04581 −0.522907 0.852390i \(-0.675152\pi\)
−0.522907 + 0.852390i \(0.675152\pi\)
\(228\) 0 0
\(229\) 16.7277 1.10540 0.552699 0.833381i \(-0.313598\pi\)
0.552699 + 0.833381i \(0.313598\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −11.7221 −0.767940 −0.383970 0.923345i \(-0.625443\pi\)
−0.383970 + 0.923345i \(0.625443\pi\)
\(234\) 0 0
\(235\) −30.1707 −1.96812
\(236\) 0 0
\(237\) −17.7861 −1.15533
\(238\) 0 0
\(239\) −25.3503 −1.63978 −0.819889 0.572523i \(-0.805965\pi\)
−0.819889 + 0.572523i \(0.805965\pi\)
\(240\) 0 0
\(241\) 1.25667 0.0809490 0.0404745 0.999181i \(-0.487113\pi\)
0.0404745 + 0.999181i \(0.487113\pi\)
\(242\) 0 0
\(243\) −6.96000 −0.446484
\(244\) 0 0
\(245\) 13.6802 0.873997
\(246\) 0 0
\(247\) 10.0446 0.639123
\(248\) 0 0
\(249\) −21.6928 −1.37473
\(250\) 0 0
\(251\) −23.0548 −1.45521 −0.727604 0.685998i \(-0.759366\pi\)
−0.727604 + 0.685998i \(0.759366\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −41.1565 −2.57732
\(256\) 0 0
\(257\) −5.39585 −0.336584 −0.168292 0.985737i \(-0.553825\pi\)
−0.168292 + 0.985737i \(0.553825\pi\)
\(258\) 0 0
\(259\) −16.6583 −1.03509
\(260\) 0 0
\(261\) −31.5983 −1.95589
\(262\) 0 0
\(263\) −16.3375 −1.00742 −0.503708 0.863874i \(-0.668031\pi\)
−0.503708 + 0.863874i \(0.668031\pi\)
\(264\) 0 0
\(265\) −15.8311 −0.972495
\(266\) 0 0
\(267\) −23.7469 −1.45329
\(268\) 0 0
\(269\) 27.6384 1.68514 0.842572 0.538583i \(-0.181040\pi\)
0.842572 + 0.538583i \(0.181040\pi\)
\(270\) 0 0
\(271\) −29.8843 −1.81534 −0.907670 0.419684i \(-0.862141\pi\)
−0.907670 + 0.419684i \(0.862141\pi\)
\(272\) 0 0
\(273\) −17.5082 −1.05964
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 23.9789 1.44075 0.720375 0.693584i \(-0.243970\pi\)
0.720375 + 0.693584i \(0.243970\pi\)
\(278\) 0 0
\(279\) 3.10070 0.185634
\(280\) 0 0
\(281\) 11.4834 0.685044 0.342522 0.939510i \(-0.388719\pi\)
0.342522 + 0.939510i \(0.388719\pi\)
\(282\) 0 0
\(283\) 16.4096 0.975447 0.487724 0.872998i \(-0.337827\pi\)
0.487724 + 0.872998i \(0.337827\pi\)
\(284\) 0 0
\(285\) −25.2544 −1.49594
\(286\) 0 0
\(287\) 19.6265 1.15852
\(288\) 0 0
\(289\) 3.03281 0.178400
\(290\) 0 0
\(291\) −11.1041 −0.650933
\(292\) 0 0
\(293\) −16.8060 −0.981818 −0.490909 0.871211i \(-0.663335\pi\)
−0.490909 + 0.871211i \(0.663335\pi\)
\(294\) 0 0
\(295\) −26.8553 −1.56358
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −17.4667 −1.01012
\(300\) 0 0
\(301\) 11.6702 0.672659
\(302\) 0 0
\(303\) −3.76361 −0.216213
\(304\) 0 0
\(305\) 6.50623 0.372546
\(306\) 0 0
\(307\) −12.3071 −0.702403 −0.351201 0.936300i \(-0.614227\pi\)
−0.351201 + 0.936300i \(0.614227\pi\)
\(308\) 0 0
\(309\) 7.84675 0.446386
\(310\) 0 0
\(311\) −16.5968 −0.941119 −0.470559 0.882368i \(-0.655948\pi\)
−0.470559 + 0.882368i \(0.655948\pi\)
\(312\) 0 0
\(313\) −22.8326 −1.29057 −0.645287 0.763941i \(-0.723262\pi\)
−0.645287 + 0.763941i \(0.723262\pi\)
\(314\) 0 0
\(315\) 29.9074 1.68509
\(316\) 0 0
\(317\) 4.76722 0.267754 0.133877 0.990998i \(-0.457257\pi\)
0.133877 + 0.990998i \(0.457257\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −41.7904 −2.33251
\(322\) 0 0
\(323\) 12.2925 0.683973
\(324\) 0 0
\(325\) −14.7596 −0.818717
\(326\) 0 0
\(327\) 2.86286 0.158316
\(328\) 0 0
\(329\) −15.7070 −0.865956
\(330\) 0 0
\(331\) 32.4925 1.78595 0.892976 0.450105i \(-0.148613\pi\)
0.892976 + 0.450105i \(0.148613\pi\)
\(332\) 0 0
\(333\) 67.6788 3.70878
\(334\) 0 0
\(335\) 2.13239 0.116505
\(336\) 0 0
\(337\) −9.49799 −0.517388 −0.258694 0.965959i \(-0.583292\pi\)
−0.258694 + 0.965959i \(0.583292\pi\)
\(338\) 0 0
\(339\) 9.82493 0.533617
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 18.0763 0.976030
\(344\) 0 0
\(345\) 43.9150 2.36431
\(346\) 0 0
\(347\) 35.8397 1.92398 0.961989 0.273088i \(-0.0880450\pi\)
0.961989 + 0.273088i \(0.0880450\pi\)
\(348\) 0 0
\(349\) −25.9988 −1.39168 −0.695842 0.718195i \(-0.744969\pi\)
−0.695842 + 0.718195i \(0.744969\pi\)
\(350\) 0 0
\(351\) 37.5677 2.00522
\(352\) 0 0
\(353\) −16.3264 −0.868969 −0.434484 0.900679i \(-0.643069\pi\)
−0.434484 + 0.900679i \(0.643069\pi\)
\(354\) 0 0
\(355\) −2.43016 −0.128979
\(356\) 0 0
\(357\) −21.4263 −1.13400
\(358\) 0 0
\(359\) −7.72256 −0.407581 −0.203791 0.979015i \(-0.565326\pi\)
−0.203791 + 0.979015i \(0.565326\pi\)
\(360\) 0 0
\(361\) −11.4571 −0.603006
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.58736 0.0830863
\(366\) 0 0
\(367\) −6.23615 −0.325525 −0.162762 0.986665i \(-0.552040\pi\)
−0.162762 + 0.986665i \(0.552040\pi\)
\(368\) 0 0
\(369\) −79.7380 −4.15100
\(370\) 0 0
\(371\) −8.24174 −0.427890
\(372\) 0 0
\(373\) −4.84081 −0.250648 −0.125324 0.992116i \(-0.539997\pi\)
−0.125324 + 0.992116i \(0.539997\pi\)
\(374\) 0 0
\(375\) −8.86770 −0.457926
\(376\) 0 0
\(377\) 18.1768 0.936152
\(378\) 0 0
\(379\) −13.6788 −0.702634 −0.351317 0.936257i \(-0.614266\pi\)
−0.351317 + 0.936257i \(0.614266\pi\)
\(380\) 0 0
\(381\) −31.0808 −1.59232
\(382\) 0 0
\(383\) 11.5039 0.587823 0.293911 0.955833i \(-0.405043\pi\)
0.293911 + 0.955833i \(0.405043\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −47.4134 −2.41016
\(388\) 0 0
\(389\) −9.29913 −0.471485 −0.235742 0.971816i \(-0.575752\pi\)
−0.235742 + 0.971816i \(0.575752\pi\)
\(390\) 0 0
\(391\) −21.3755 −1.08101
\(392\) 0 0
\(393\) −9.21841 −0.465007
\(394\) 0 0
\(395\) −17.4772 −0.879371
\(396\) 0 0
\(397\) −38.3379 −1.92413 −0.962063 0.272828i \(-0.912041\pi\)
−0.962063 + 0.272828i \(0.912041\pi\)
\(398\) 0 0
\(399\) −13.1476 −0.658201
\(400\) 0 0
\(401\) 17.3130 0.864571 0.432285 0.901737i \(-0.357707\pi\)
0.432285 + 0.901737i \(0.357707\pi\)
\(402\) 0 0
\(403\) −1.78366 −0.0888506
\(404\) 0 0
\(405\) −37.1196 −1.84449
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 2.69257 0.133139 0.0665696 0.997782i \(-0.478795\pi\)
0.0665696 + 0.997782i \(0.478795\pi\)
\(410\) 0 0
\(411\) −3.17499 −0.156611
\(412\) 0 0
\(413\) −13.9810 −0.687961
\(414\) 0 0
\(415\) −21.3161 −1.04636
\(416\) 0 0
\(417\) −8.97803 −0.439656
\(418\) 0 0
\(419\) −13.3425 −0.651824 −0.325912 0.945400i \(-0.605671\pi\)
−0.325912 + 0.945400i \(0.605671\pi\)
\(420\) 0 0
\(421\) −21.1838 −1.03243 −0.516217 0.856458i \(-0.672660\pi\)
−0.516217 + 0.856458i \(0.672660\pi\)
\(422\) 0 0
\(423\) 63.8141 3.10275
\(424\) 0 0
\(425\) −18.0627 −0.876169
\(426\) 0 0
\(427\) 3.38718 0.163917
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −17.4050 −0.838367 −0.419184 0.907901i \(-0.637684\pi\)
−0.419184 + 0.907901i \(0.637684\pi\)
\(432\) 0 0
\(433\) 4.12280 0.198129 0.0990645 0.995081i \(-0.468415\pi\)
0.0990645 + 0.995081i \(0.468415\pi\)
\(434\) 0 0
\(435\) −45.7004 −2.19117
\(436\) 0 0
\(437\) −13.1164 −0.627443
\(438\) 0 0
\(439\) 30.8478 1.47229 0.736143 0.676826i \(-0.236645\pi\)
0.736143 + 0.676826i \(0.236645\pi\)
\(440\) 0 0
\(441\) −28.9351 −1.37786
\(442\) 0 0
\(443\) −9.35946 −0.444681 −0.222341 0.974969i \(-0.571370\pi\)
−0.222341 + 0.974969i \(0.571370\pi\)
\(444\) 0 0
\(445\) −23.3345 −1.10616
\(446\) 0 0
\(447\) 37.6275 1.77972
\(448\) 0 0
\(449\) −3.68708 −0.174004 −0.0870021 0.996208i \(-0.527729\pi\)
−0.0870021 + 0.996208i \(0.527729\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −61.7423 −2.90091
\(454\) 0 0
\(455\) −17.2041 −0.806540
\(456\) 0 0
\(457\) 32.1488 1.50386 0.751930 0.659243i \(-0.229123\pi\)
0.751930 + 0.659243i \(0.229123\pi\)
\(458\) 0 0
\(459\) 45.9750 2.14593
\(460\) 0 0
\(461\) 3.41140 0.158885 0.0794423 0.996839i \(-0.474686\pi\)
0.0794423 + 0.996839i \(0.474686\pi\)
\(462\) 0 0
\(463\) 3.72640 0.173181 0.0865903 0.996244i \(-0.472403\pi\)
0.0865903 + 0.996244i \(0.472403\pi\)
\(464\) 0 0
\(465\) 4.48452 0.207965
\(466\) 0 0
\(467\) 1.92963 0.0892928 0.0446464 0.999003i \(-0.485784\pi\)
0.0446464 + 0.999003i \(0.485784\pi\)
\(468\) 0 0
\(469\) 1.11013 0.0512611
\(470\) 0 0
\(471\) −40.3934 −1.86123
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −11.0836 −0.508550
\(476\) 0 0
\(477\) 33.4844 1.53314
\(478\) 0 0
\(479\) −28.2867 −1.29245 −0.646226 0.763146i \(-0.723654\pi\)
−0.646226 + 0.763146i \(0.723654\pi\)
\(480\) 0 0
\(481\) −38.9320 −1.77514
\(482\) 0 0
\(483\) 22.8624 1.04028
\(484\) 0 0
\(485\) −10.9112 −0.495453
\(486\) 0 0
\(487\) −11.6571 −0.528236 −0.264118 0.964490i \(-0.585081\pi\)
−0.264118 + 0.964490i \(0.585081\pi\)
\(488\) 0 0
\(489\) −10.7400 −0.485678
\(490\) 0 0
\(491\) −18.5772 −0.838377 −0.419189 0.907899i \(-0.637685\pi\)
−0.419189 + 0.907899i \(0.637685\pi\)
\(492\) 0 0
\(493\) 22.2446 1.00184
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.26515 −0.0567499
\(498\) 0 0
\(499\) −3.70872 −0.166025 −0.0830125 0.996549i \(-0.526454\pi\)
−0.0830125 + 0.996549i \(0.526454\pi\)
\(500\) 0 0
\(501\) −30.6188 −1.36795
\(502\) 0 0
\(503\) 31.0826 1.38590 0.692952 0.720984i \(-0.256310\pi\)
0.692952 + 0.720984i \(0.256310\pi\)
\(504\) 0 0
\(505\) −3.69824 −0.164570
\(506\) 0 0
\(507\) −1.15041 −0.0510917
\(508\) 0 0
\(509\) −38.9603 −1.72689 −0.863443 0.504446i \(-0.831697\pi\)
−0.863443 + 0.504446i \(0.831697\pi\)
\(510\) 0 0
\(511\) 0.826389 0.0365573
\(512\) 0 0
\(513\) 28.2111 1.24555
\(514\) 0 0
\(515\) 7.71047 0.339764
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −7.67729 −0.336996
\(520\) 0 0
\(521\) −11.6240 −0.509258 −0.254629 0.967039i \(-0.581953\pi\)
−0.254629 + 0.967039i \(0.581953\pi\)
\(522\) 0 0
\(523\) 17.7528 0.776275 0.388137 0.921602i \(-0.373119\pi\)
0.388137 + 0.921602i \(0.373119\pi\)
\(524\) 0 0
\(525\) 19.3191 0.843156
\(526\) 0 0
\(527\) −2.18283 −0.0950855
\(528\) 0 0
\(529\) −0.191763 −0.00833752
\(530\) 0 0
\(531\) 56.8018 2.46499
\(532\) 0 0
\(533\) 45.8690 1.98681
\(534\) 0 0
\(535\) −41.0646 −1.77538
\(536\) 0 0
\(537\) 51.3783 2.21714
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 24.2627 1.04313 0.521567 0.853210i \(-0.325348\pi\)
0.521567 + 0.853210i \(0.325348\pi\)
\(542\) 0 0
\(543\) −18.1657 −0.779567
\(544\) 0 0
\(545\) 2.81314 0.120501
\(546\) 0 0
\(547\) 8.29110 0.354502 0.177251 0.984166i \(-0.443280\pi\)
0.177251 + 0.984166i \(0.443280\pi\)
\(548\) 0 0
\(549\) −13.7614 −0.587320
\(550\) 0 0
\(551\) 13.6497 0.581495
\(552\) 0 0
\(553\) −9.09870 −0.386916
\(554\) 0 0
\(555\) 97.8835 4.15492
\(556\) 0 0
\(557\) 41.9655 1.77814 0.889068 0.457775i \(-0.151354\pi\)
0.889068 + 0.457775i \(0.151354\pi\)
\(558\) 0 0
\(559\) 27.2744 1.15358
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −33.8969 −1.42859 −0.714293 0.699847i \(-0.753251\pi\)
−0.714293 + 0.699847i \(0.753251\pi\)
\(564\) 0 0
\(565\) 9.65430 0.406159
\(566\) 0 0
\(567\) −19.3247 −0.811560
\(568\) 0 0
\(569\) −17.3055 −0.725485 −0.362742 0.931889i \(-0.618159\pi\)
−0.362742 + 0.931889i \(0.618159\pi\)
\(570\) 0 0
\(571\) −15.8559 −0.663551 −0.331775 0.943358i \(-0.607648\pi\)
−0.331775 + 0.943358i \(0.607648\pi\)
\(572\) 0 0
\(573\) −21.2340 −0.887065
\(574\) 0 0
\(575\) 19.2734 0.803754
\(576\) 0 0
\(577\) −28.8545 −1.20123 −0.600615 0.799538i \(-0.705078\pi\)
−0.600615 + 0.799538i \(0.705078\pi\)
\(578\) 0 0
\(579\) −11.1944 −0.465224
\(580\) 0 0
\(581\) −11.0973 −0.460392
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 69.8963 2.88986
\(586\) 0 0
\(587\) −27.3318 −1.12811 −0.564053 0.825739i \(-0.690759\pi\)
−0.564053 + 0.825739i \(0.690759\pi\)
\(588\) 0 0
\(589\) −1.33942 −0.0551900
\(590\) 0 0
\(591\) 53.7437 2.21072
\(592\) 0 0
\(593\) −33.4666 −1.37431 −0.687154 0.726512i \(-0.741140\pi\)
−0.687154 + 0.726512i \(0.741140\pi\)
\(594\) 0 0
\(595\) −21.0542 −0.863137
\(596\) 0 0
\(597\) −21.8019 −0.892292
\(598\) 0 0
\(599\) −16.9832 −0.693915 −0.346957 0.937881i \(-0.612785\pi\)
−0.346957 + 0.937881i \(0.612785\pi\)
\(600\) 0 0
\(601\) 0.0293746 0.00119821 0.000599107 1.00000i \(-0.499809\pi\)
0.000599107 1.00000i \(0.499809\pi\)
\(602\) 0 0
\(603\) −4.51021 −0.183670
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −26.0033 −1.05544 −0.527721 0.849418i \(-0.676953\pi\)
−0.527721 + 0.849418i \(0.676953\pi\)
\(608\) 0 0
\(609\) −23.7919 −0.964096
\(610\) 0 0
\(611\) −36.7088 −1.48508
\(612\) 0 0
\(613\) 30.3947 1.22763 0.613815 0.789450i \(-0.289634\pi\)
0.613815 + 0.789450i \(0.289634\pi\)
\(614\) 0 0
\(615\) −115.325 −4.65034
\(616\) 0 0
\(617\) 22.3795 0.900966 0.450483 0.892785i \(-0.351252\pi\)
0.450483 + 0.892785i \(0.351252\pi\)
\(618\) 0 0
\(619\) −23.0882 −0.927994 −0.463997 0.885837i \(-0.653585\pi\)
−0.463997 + 0.885837i \(0.653585\pi\)
\(620\) 0 0
\(621\) −49.0565 −1.96857
\(622\) 0 0
\(623\) −12.1481 −0.486702
\(624\) 0 0
\(625\) −28.8918 −1.15567
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −47.6445 −1.89971
\(630\) 0 0
\(631\) 30.0478 1.19618 0.598092 0.801427i \(-0.295926\pi\)
0.598092 + 0.801427i \(0.295926\pi\)
\(632\) 0 0
\(633\) −62.7536 −2.49423
\(634\) 0 0
\(635\) −30.5410 −1.21198
\(636\) 0 0
\(637\) 16.6448 0.659490
\(638\) 0 0
\(639\) 5.14004 0.203337
\(640\) 0 0
\(641\) 35.9682 1.42066 0.710328 0.703870i \(-0.248546\pi\)
0.710328 + 0.703870i \(0.248546\pi\)
\(642\) 0 0
\(643\) −18.2238 −0.718675 −0.359337 0.933208i \(-0.616997\pi\)
−0.359337 + 0.933208i \(0.616997\pi\)
\(644\) 0 0
\(645\) −68.5737 −2.70009
\(646\) 0 0
\(647\) 11.1258 0.437401 0.218701 0.975792i \(-0.429818\pi\)
0.218701 + 0.975792i \(0.429818\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 2.33467 0.0915028
\(652\) 0 0
\(653\) 16.5405 0.647282 0.323641 0.946180i \(-0.395093\pi\)
0.323641 + 0.946180i \(0.395093\pi\)
\(654\) 0 0
\(655\) −9.05831 −0.353937
\(656\) 0 0
\(657\) −3.35743 −0.130986
\(658\) 0 0
\(659\) 26.0957 1.01655 0.508273 0.861196i \(-0.330284\pi\)
0.508273 + 0.861196i \(0.330284\pi\)
\(660\) 0 0
\(661\) −15.3262 −0.596121 −0.298061 0.954547i \(-0.596340\pi\)
−0.298061 + 0.954547i \(0.596340\pi\)
\(662\) 0 0
\(663\) −50.0753 −1.94476
\(664\) 0 0
\(665\) −12.9192 −0.500986
\(666\) 0 0
\(667\) −23.7355 −0.919043
\(668\) 0 0
\(669\) −19.1039 −0.738600
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 31.9654 1.23218 0.616088 0.787678i \(-0.288717\pi\)
0.616088 + 0.787678i \(0.288717\pi\)
\(674\) 0 0
\(675\) −41.4536 −1.59555
\(676\) 0 0
\(677\) −12.4878 −0.479945 −0.239973 0.970780i \(-0.577138\pi\)
−0.239973 + 0.970780i \(0.577138\pi\)
\(678\) 0 0
\(679\) −5.68045 −0.217996
\(680\) 0 0
\(681\) 48.2009 1.84706
\(682\) 0 0
\(683\) 26.0471 0.996665 0.498332 0.866986i \(-0.333946\pi\)
0.498332 + 0.866986i \(0.333946\pi\)
\(684\) 0 0
\(685\) −3.11985 −0.119203
\(686\) 0 0
\(687\) −51.1711 −1.95230
\(688\) 0 0
\(689\) −19.2617 −0.733814
\(690\) 0 0
\(691\) 46.4545 1.76721 0.883605 0.468232i \(-0.155109\pi\)
0.883605 + 0.468232i \(0.155109\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −8.82210 −0.334641
\(696\) 0 0
\(697\) 56.1340 2.12623
\(698\) 0 0
\(699\) 35.8586 1.35630
\(700\) 0 0
\(701\) 25.2518 0.953747 0.476873 0.878972i \(-0.341770\pi\)
0.476873 + 0.878972i \(0.341770\pi\)
\(702\) 0 0
\(703\) −29.2355 −1.10264
\(704\) 0 0
\(705\) 92.2939 3.47599
\(706\) 0 0
\(707\) −1.92532 −0.0724093
\(708\) 0 0
\(709\) 5.80505 0.218013 0.109007 0.994041i \(-0.465233\pi\)
0.109007 + 0.994041i \(0.465233\pi\)
\(710\) 0 0
\(711\) 36.9660 1.38633
\(712\) 0 0
\(713\) 2.32913 0.0872268
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 77.5483 2.89609
\(718\) 0 0
\(719\) −31.7231 −1.18307 −0.591537 0.806278i \(-0.701478\pi\)
−0.591537 + 0.806278i \(0.701478\pi\)
\(720\) 0 0
\(721\) 4.01411 0.149493
\(722\) 0 0
\(723\) −3.84422 −0.142968
\(724\) 0 0
\(725\) −20.0569 −0.744895
\(726\) 0 0
\(727\) 51.2435 1.90052 0.950258 0.311464i \(-0.100819\pi\)
0.950258 + 0.311464i \(0.100819\pi\)
\(728\) 0 0
\(729\) −15.7553 −0.583529
\(730\) 0 0
\(731\) 33.3781 1.23453
\(732\) 0 0
\(733\) −43.8519 −1.61971 −0.809853 0.586633i \(-0.800453\pi\)
−0.809853 + 0.586633i \(0.800453\pi\)
\(734\) 0 0
\(735\) −41.8486 −1.54361
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −31.0297 −1.14145 −0.570723 0.821142i \(-0.693337\pi\)
−0.570723 + 0.821142i \(0.693337\pi\)
\(740\) 0 0
\(741\) −30.7271 −1.12879
\(742\) 0 0
\(743\) 23.7687 0.871991 0.435995 0.899949i \(-0.356396\pi\)
0.435995 + 0.899949i \(0.356396\pi\)
\(744\) 0 0
\(745\) 36.9740 1.35462
\(746\) 0 0
\(747\) 45.0857 1.64960
\(748\) 0 0
\(749\) −21.3785 −0.781152
\(750\) 0 0
\(751\) −42.6882 −1.55771 −0.778857 0.627202i \(-0.784200\pi\)
−0.778857 + 0.627202i \(0.784200\pi\)
\(752\) 0 0
\(753\) 70.5261 2.57011
\(754\) 0 0
\(755\) −60.6700 −2.20801
\(756\) 0 0
\(757\) −24.1511 −0.877785 −0.438893 0.898540i \(-0.644629\pi\)
−0.438893 + 0.898540i \(0.644629\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 13.6328 0.494190 0.247095 0.968991i \(-0.420524\pi\)
0.247095 + 0.968991i \(0.420524\pi\)
\(762\) 0 0
\(763\) 1.46453 0.0530197
\(764\) 0 0
\(765\) 85.5384 3.09265
\(766\) 0 0
\(767\) −32.6750 −1.17983
\(768\) 0 0
\(769\) 17.6960 0.638135 0.319068 0.947732i \(-0.396630\pi\)
0.319068 + 0.947732i \(0.396630\pi\)
\(770\) 0 0
\(771\) 16.5063 0.594458
\(772\) 0 0
\(773\) 27.6029 0.992809 0.496404 0.868091i \(-0.334653\pi\)
0.496404 + 0.868091i \(0.334653\pi\)
\(774\) 0 0
\(775\) 1.96816 0.0706983
\(776\) 0 0
\(777\) 50.9587 1.82813
\(778\) 0 0
\(779\) 34.4448 1.23411
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 51.0509 1.82441
\(784\) 0 0
\(785\) −39.6918 −1.41666
\(786\) 0 0
\(787\) 20.1012 0.716529 0.358265 0.933620i \(-0.383369\pi\)
0.358265 + 0.933620i \(0.383369\pi\)
\(788\) 0 0
\(789\) 49.9775 1.77925
\(790\) 0 0
\(791\) 5.02608 0.178707
\(792\) 0 0
\(793\) 7.91616 0.281111
\(794\) 0 0
\(795\) 48.4282 1.71757
\(796\) 0 0
\(797\) −13.4666 −0.477011 −0.238506 0.971141i \(-0.576658\pi\)
−0.238506 + 0.971141i \(0.576658\pi\)
\(798\) 0 0
\(799\) −44.9238 −1.58929
\(800\) 0 0
\(801\) 49.3549 1.74387
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 22.4653 0.791799
\(806\) 0 0
\(807\) −84.5477 −2.97622
\(808\) 0 0
\(809\) 8.69714 0.305775 0.152888 0.988244i \(-0.451143\pi\)
0.152888 + 0.988244i \(0.451143\pi\)
\(810\) 0 0
\(811\) −12.5832 −0.441855 −0.220928 0.975290i \(-0.570908\pi\)
−0.220928 + 0.975290i \(0.570908\pi\)
\(812\) 0 0
\(813\) 91.4178 3.20616
\(814\) 0 0
\(815\) −10.5534 −0.369671
\(816\) 0 0
\(817\) 20.4814 0.716553
\(818\) 0 0
\(819\) 36.3884 1.27151
\(820\) 0 0
\(821\) 34.6064 1.20777 0.603886 0.797071i \(-0.293618\pi\)
0.603886 + 0.797071i \(0.293618\pi\)
\(822\) 0 0
\(823\) 46.2135 1.61090 0.805451 0.592662i \(-0.201923\pi\)
0.805451 + 0.592662i \(0.201923\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.5933 0.437913 0.218957 0.975735i \(-0.429735\pi\)
0.218957 + 0.975735i \(0.429735\pi\)
\(828\) 0 0
\(829\) 32.3556 1.12376 0.561879 0.827220i \(-0.310079\pi\)
0.561879 + 0.827220i \(0.310079\pi\)
\(830\) 0 0
\(831\) −73.3528 −2.54458
\(832\) 0 0
\(833\) 20.3697 0.705768
\(834\) 0 0
\(835\) −30.0871 −1.04121
\(836\) 0 0
\(837\) −5.00956 −0.173156
\(838\) 0 0
\(839\) −23.0636 −0.796245 −0.398123 0.917332i \(-0.630338\pi\)
−0.398123 + 0.917332i \(0.630338\pi\)
\(840\) 0 0
\(841\) −4.29951 −0.148259
\(842\) 0 0
\(843\) −35.1285 −1.20989
\(844\) 0 0
\(845\) −1.13043 −0.0388881
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −50.1979 −1.72279
\(850\) 0 0
\(851\) 50.8379 1.74270
\(852\) 0 0
\(853\) 45.6465 1.56290 0.781452 0.623965i \(-0.214479\pi\)
0.781452 + 0.623965i \(0.214479\pi\)
\(854\) 0 0
\(855\) 52.4879 1.79505
\(856\) 0 0
\(857\) 25.6018 0.874541 0.437271 0.899330i \(-0.355945\pi\)
0.437271 + 0.899330i \(0.355945\pi\)
\(858\) 0 0
\(859\) 3.93870 0.134387 0.0671934 0.997740i \(-0.478596\pi\)
0.0671934 + 0.997740i \(0.478596\pi\)
\(860\) 0 0
\(861\) −60.0386 −2.04611
\(862\) 0 0
\(863\) −26.1546 −0.890313 −0.445156 0.895453i \(-0.646852\pi\)
−0.445156 + 0.895453i \(0.646852\pi\)
\(864\) 0 0
\(865\) −7.54395 −0.256502
\(866\) 0 0
\(867\) −9.27754 −0.315082
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 2.59448 0.0879107
\(872\) 0 0
\(873\) 23.0784 0.781085
\(874\) 0 0
\(875\) −4.53639 −0.153358
\(876\) 0 0
\(877\) 17.9876 0.607397 0.303699 0.952768i \(-0.401778\pi\)
0.303699 + 0.952768i \(0.401778\pi\)
\(878\) 0 0
\(879\) 51.4106 1.73404
\(880\) 0 0
\(881\) −13.1327 −0.442453 −0.221227 0.975222i \(-0.571006\pi\)
−0.221227 + 0.975222i \(0.571006\pi\)
\(882\) 0 0
\(883\) −24.6832 −0.830655 −0.415328 0.909672i \(-0.636333\pi\)
−0.415328 + 0.909672i \(0.636333\pi\)
\(884\) 0 0
\(885\) 82.1521 2.76151
\(886\) 0 0
\(887\) 23.5929 0.792173 0.396086 0.918213i \(-0.370368\pi\)
0.396086 + 0.918213i \(0.370368\pi\)
\(888\) 0 0
\(889\) −15.8998 −0.533263
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −27.5661 −0.922463
\(894\) 0 0
\(895\) 50.4859 1.68756
\(896\) 0 0
\(897\) 53.4316 1.78403
\(898\) 0 0
\(899\) −2.42383 −0.0808391
\(900\) 0 0
\(901\) −23.5723 −0.785307
\(902\) 0 0
\(903\) −35.6999 −1.18802
\(904\) 0 0
\(905\) −17.8502 −0.593362
\(906\) 0 0
\(907\) −47.7002 −1.58386 −0.791930 0.610612i \(-0.790924\pi\)
−0.791930 + 0.610612i \(0.790924\pi\)
\(908\) 0 0
\(909\) 7.82216 0.259445
\(910\) 0 0
\(911\) −0.986775 −0.0326933 −0.0163467 0.999866i \(-0.505204\pi\)
−0.0163467 + 0.999866i \(0.505204\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −19.9030 −0.657972
\(916\) 0 0
\(917\) −4.71581 −0.155730
\(918\) 0 0
\(919\) 19.9561 0.658291 0.329146 0.944279i \(-0.393239\pi\)
0.329146 + 0.944279i \(0.393239\pi\)
\(920\) 0 0
\(921\) 37.6481 1.24055
\(922\) 0 0
\(923\) −2.95678 −0.0973238
\(924\) 0 0
\(925\) 42.9589 1.41248
\(926\) 0 0
\(927\) −16.3084 −0.535639
\(928\) 0 0
\(929\) 27.0216 0.886550 0.443275 0.896386i \(-0.353817\pi\)
0.443275 + 0.896386i \(0.353817\pi\)
\(930\) 0 0
\(931\) 12.4992 0.409645
\(932\) 0 0
\(933\) 50.7707 1.66216
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 39.5367 1.29161 0.645803 0.763504i \(-0.276523\pi\)
0.645803 + 0.763504i \(0.276523\pi\)
\(938\) 0 0
\(939\) 69.8462 2.27935
\(940\) 0 0
\(941\) −24.0796 −0.784972 −0.392486 0.919758i \(-0.628385\pi\)
−0.392486 + 0.919758i \(0.628385\pi\)
\(942\) 0 0
\(943\) −59.8964 −1.95049
\(944\) 0 0
\(945\) −48.3190 −1.57182
\(946\) 0 0
\(947\) 34.6471 1.12588 0.562940 0.826498i \(-0.309670\pi\)
0.562940 + 0.826498i \(0.309670\pi\)
\(948\) 0 0
\(949\) 1.93135 0.0626943
\(950\) 0 0
\(951\) −14.5832 −0.472893
\(952\) 0 0
\(953\) 0.916697 0.0296947 0.0148474 0.999890i \(-0.495274\pi\)
0.0148474 + 0.999890i \(0.495274\pi\)
\(954\) 0 0
\(955\) −20.8653 −0.675184
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.62421 −0.0524484
\(960\) 0 0
\(961\) −30.7622 −0.992328
\(962\) 0 0
\(963\) 86.8559 2.79889
\(964\) 0 0
\(965\) −11.0000 −0.354103
\(966\) 0 0
\(967\) 40.8240 1.31281 0.656406 0.754408i \(-0.272076\pi\)
0.656406 + 0.754408i \(0.272076\pi\)
\(968\) 0 0
\(969\) −37.6035 −1.20800
\(970\) 0 0
\(971\) 49.4231 1.58606 0.793031 0.609181i \(-0.208502\pi\)
0.793031 + 0.609181i \(0.208502\pi\)
\(972\) 0 0
\(973\) −4.59283 −0.147239
\(974\) 0 0
\(975\) 45.1506 1.44598
\(976\) 0 0
\(977\) −23.5440 −0.753239 −0.376619 0.926368i \(-0.622914\pi\)
−0.376619 + 0.926368i \(0.622914\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −5.95007 −0.189971
\(982\) 0 0
\(983\) 5.82382 0.185751 0.0928755 0.995678i \(-0.470394\pi\)
0.0928755 + 0.995678i \(0.470394\pi\)
\(984\) 0 0
\(985\) 52.8103 1.68268
\(986\) 0 0
\(987\) 48.0487 1.52941
\(988\) 0 0
\(989\) −35.6153 −1.13250
\(990\) 0 0
\(991\) −14.3008 −0.454280 −0.227140 0.973862i \(-0.572938\pi\)
−0.227140 + 0.973862i \(0.572938\pi\)
\(992\) 0 0
\(993\) −99.3967 −3.15426
\(994\) 0 0
\(995\) −21.4232 −0.679163
\(996\) 0 0
\(997\) 28.2737 0.895437 0.447719 0.894174i \(-0.352237\pi\)
0.447719 + 0.894174i \(0.352237\pi\)
\(998\) 0 0
\(999\) −109.343 −3.45947
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7744.2.a.du.1.2 6
4.3 odd 2 7744.2.a.dv.1.5 6
8.3 odd 2 3872.2.a.bn.1.2 6
8.5 even 2 3872.2.a.bq.1.5 6
11.5 even 5 704.2.m.m.641.1 12
11.9 even 5 704.2.m.m.257.1 12
11.10 odd 2 7744.2.a.dt.1.2 6
44.27 odd 10 704.2.m.n.641.3 12
44.31 odd 10 704.2.m.n.257.3 12
44.43 even 2 7744.2.a.dw.1.5 6
88.5 even 10 352.2.m.e.289.3 yes 12
88.21 odd 2 3872.2.a.bp.1.5 6
88.27 odd 10 352.2.m.f.289.1 yes 12
88.43 even 2 3872.2.a.bo.1.2 6
88.53 even 10 352.2.m.e.257.3 12
88.75 odd 10 352.2.m.f.257.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
352.2.m.e.257.3 12 88.53 even 10
352.2.m.e.289.3 yes 12 88.5 even 10
352.2.m.f.257.1 yes 12 88.75 odd 10
352.2.m.f.289.1 yes 12 88.27 odd 10
704.2.m.m.257.1 12 11.9 even 5
704.2.m.m.641.1 12 11.5 even 5
704.2.m.n.257.3 12 44.31 odd 10
704.2.m.n.641.3 12 44.27 odd 10
3872.2.a.bn.1.2 6 8.3 odd 2
3872.2.a.bo.1.2 6 88.43 even 2
3872.2.a.bp.1.5 6 88.21 odd 2
3872.2.a.bq.1.5 6 8.5 even 2
7744.2.a.dt.1.2 6 11.10 odd 2
7744.2.a.du.1.2 6 1.1 even 1 trivial
7744.2.a.dv.1.5 6 4.3 odd 2
7744.2.a.dw.1.5 6 44.43 even 2