Properties

Label 352.2.s.b.79.6
Level $352$
Weight $2$
Character 352.79
Analytic conductor $2.811$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [352,2,Mod(79,352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(352, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("352.79");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 352 = 2^{5} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 352.s (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.81073415115\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 79.6
Character \(\chi\) \(=\) 352.79
Dual form 352.2.s.b.303.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.903665 - 0.656551i) q^{3} +(3.74056 - 1.21538i) q^{5} +(2.25832 + 1.64076i) q^{7} +(-0.541500 + 1.66657i) q^{9} +(-3.00002 - 1.41418i) q^{11} +(-0.653051 + 2.00988i) q^{13} +(2.58225 - 3.55416i) q^{15} +(-4.42965 + 1.43928i) q^{17} +(-2.18382 - 3.00577i) q^{19} +3.11801 q^{21} -0.854640i q^{23} +(8.46953 - 6.15347i) q^{25} +(1.64036 + 5.04850i) q^{27} +(-4.36210 - 3.16925i) q^{29} +(0.796872 + 0.258919i) q^{31} +(-3.63949 + 0.691723i) q^{33} +(10.4415 + 3.39265i) q^{35} +(2.13456 - 2.93797i) q^{37} +(0.729452 + 2.24502i) q^{39} +(-2.17890 - 2.99900i) q^{41} +1.38448i q^{43} +6.89201i q^{45} +(0.799046 + 1.09979i) q^{47} +(0.244772 + 0.753330i) q^{49} +(-3.05796 + 4.20892i) q^{51} +(-4.01470 - 1.30446i) q^{53} +(-12.9405 - 1.64365i) q^{55} +(-3.94688 - 1.28242i) q^{57} +(-6.80468 - 4.94389i) q^{59} +(0.970728 + 2.98759i) q^{61} +(-3.95732 + 2.87516i) q^{63} +8.31179i q^{65} -3.45851 q^{67} +(-0.561115 - 0.772308i) q^{69} +(11.7395 - 3.81439i) q^{71} +(1.90829 - 2.62654i) q^{73} +(3.61355 - 11.1214i) q^{75} +(-4.45466 - 8.11598i) q^{77} +(-3.59997 + 11.0796i) q^{79} +(0.543938 + 0.395194i) q^{81} +(-0.870974 + 0.282997i) q^{83} +(-14.8201 + 10.7674i) q^{85} -6.02266 q^{87} +7.98458 q^{89} +(-4.77254 + 3.46745i) q^{91} +(0.890099 - 0.289211i) q^{93} +(-11.8218 - 8.58907i) q^{95} +(-3.44331 + 10.5974i) q^{97} +(3.98133 - 4.23395i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{3} - 10 q^{9} + 18 q^{11} - 10 q^{17} + 6 q^{25} + 32 q^{27} + 32 q^{33} + 10 q^{35} - 10 q^{41} - 18 q^{49} - 60 q^{51} - 80 q^{57} - 28 q^{59} + 28 q^{67} - 10 q^{73} - 4 q^{75} + 28 q^{81}+ \cdots - 122 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/352\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(287\) \(321\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.903665 0.656551i 0.521731 0.379060i −0.295525 0.955335i \(-0.595494\pi\)
0.817256 + 0.576275i \(0.195494\pi\)
\(4\) 0 0
\(5\) 3.74056 1.21538i 1.67283 0.543535i 0.689329 0.724448i \(-0.257905\pi\)
0.983499 + 0.180914i \(0.0579055\pi\)
\(6\) 0 0
\(7\) 2.25832 + 1.64076i 0.853564 + 0.620150i 0.926126 0.377214i \(-0.123118\pi\)
−0.0725628 + 0.997364i \(0.523118\pi\)
\(8\) 0 0
\(9\) −0.541500 + 1.66657i −0.180500 + 0.555522i
\(10\) 0 0
\(11\) −3.00002 1.41418i −0.904539 0.426390i
\(12\) 0 0
\(13\) −0.653051 + 2.00988i −0.181124 + 0.557441i −0.999860 0.0167282i \(-0.994675\pi\)
0.818736 + 0.574170i \(0.194675\pi\)
\(14\) 0 0
\(15\) 2.58225 3.55416i 0.666734 0.917681i
\(16\) 0 0
\(17\) −4.42965 + 1.43928i −1.07435 + 0.349077i −0.792180 0.610288i \(-0.791054\pi\)
−0.282169 + 0.959365i \(0.591054\pi\)
\(18\) 0 0
\(19\) −2.18382 3.00577i −0.501002 0.689570i 0.481368 0.876519i \(-0.340140\pi\)
−0.982370 + 0.186949i \(0.940140\pi\)
\(20\) 0 0
\(21\) 3.11801 0.680405
\(22\) 0 0
\(23\) 0.854640i 0.178205i −0.996022 0.0891024i \(-0.971600\pi\)
0.996022 0.0891024i \(-0.0283998\pi\)
\(24\) 0 0
\(25\) 8.46953 6.15347i 1.69391 1.23069i
\(26\) 0 0
\(27\) 1.64036 + 5.04850i 0.315687 + 0.971585i
\(28\) 0 0
\(29\) −4.36210 3.16925i −0.810022 0.588516i 0.103815 0.994597i \(-0.466895\pi\)
−0.913837 + 0.406081i \(0.866895\pi\)
\(30\) 0 0
\(31\) 0.796872 + 0.258919i 0.143122 + 0.0465033i 0.379702 0.925109i \(-0.376026\pi\)
−0.236580 + 0.971612i \(0.576026\pi\)
\(32\) 0 0
\(33\) −3.63949 + 0.691723i −0.633554 + 0.120413i
\(34\) 0 0
\(35\) 10.4415 + 3.39265i 1.76494 + 0.573463i
\(36\) 0 0
\(37\) 2.13456 2.93797i 0.350919 0.482999i −0.596671 0.802486i \(-0.703510\pi\)
0.947591 + 0.319487i \(0.103510\pi\)
\(38\) 0 0
\(39\) 0.729452 + 2.24502i 0.116806 + 0.359491i
\(40\) 0 0
\(41\) −2.17890 2.99900i −0.340287 0.468365i 0.604238 0.796804i \(-0.293478\pi\)
−0.944525 + 0.328439i \(0.893478\pi\)
\(42\) 0 0
\(43\) 1.38448i 0.211131i 0.994412 + 0.105565i \(0.0336652\pi\)
−0.994412 + 0.105565i \(0.966335\pi\)
\(44\) 0 0
\(45\) 6.89201i 1.02740i
\(46\) 0 0
\(47\) 0.799046 + 1.09979i 0.116553 + 0.160421i 0.863307 0.504679i \(-0.168389\pi\)
−0.746754 + 0.665100i \(0.768389\pi\)
\(48\) 0 0
\(49\) 0.244772 + 0.753330i 0.0349674 + 0.107619i
\(50\) 0 0
\(51\) −3.05796 + 4.20892i −0.428200 + 0.589367i
\(52\) 0 0
\(53\) −4.01470 1.30446i −0.551462 0.179181i 0.0200141 0.999800i \(-0.493629\pi\)
−0.571476 + 0.820619i \(0.693629\pi\)
\(54\) 0 0
\(55\) −12.9405 1.64365i −1.74490 0.221629i
\(56\) 0 0
\(57\) −3.94688 1.28242i −0.522776 0.169860i
\(58\) 0 0
\(59\) −6.80468 4.94389i −0.885894 0.643640i 0.0489102 0.998803i \(-0.484425\pi\)
−0.934804 + 0.355164i \(0.884425\pi\)
\(60\) 0 0
\(61\) 0.970728 + 2.98759i 0.124289 + 0.382522i 0.993771 0.111443i \(-0.0355471\pi\)
−0.869482 + 0.493965i \(0.835547\pi\)
\(62\) 0 0
\(63\) −3.95732 + 2.87516i −0.498575 + 0.362236i
\(64\) 0 0
\(65\) 8.31179i 1.03095i
\(66\) 0 0
\(67\) −3.45851 −0.422524 −0.211262 0.977429i \(-0.567757\pi\)
−0.211262 + 0.977429i \(0.567757\pi\)
\(68\) 0 0
\(69\) −0.561115 0.772308i −0.0675503 0.0929750i
\(70\) 0 0
\(71\) 11.7395 3.81439i 1.39322 0.452684i 0.486227 0.873832i \(-0.338373\pi\)
0.906992 + 0.421148i \(0.138373\pi\)
\(72\) 0 0
\(73\) 1.90829 2.62654i 0.223349 0.307413i −0.682607 0.730786i \(-0.739154\pi\)
0.905956 + 0.423373i \(0.139154\pi\)
\(74\) 0 0
\(75\) 3.61355 11.1214i 0.417257 1.28418i
\(76\) 0 0
\(77\) −4.45466 8.11598i −0.507656 0.924901i
\(78\) 0 0
\(79\) −3.59997 + 11.0796i −0.405029 + 1.24655i 0.515843 + 0.856683i \(0.327479\pi\)
−0.920871 + 0.389867i \(0.872521\pi\)
\(80\) 0 0
\(81\) 0.543938 + 0.395194i 0.0604376 + 0.0439105i
\(82\) 0 0
\(83\) −0.870974 + 0.282997i −0.0956018 + 0.0310629i −0.356427 0.934323i \(-0.616005\pi\)
0.260826 + 0.965386i \(0.416005\pi\)
\(84\) 0 0
\(85\) −14.8201 + 10.7674i −1.60746 + 1.16789i
\(86\) 0 0
\(87\) −6.02266 −0.645697
\(88\) 0 0
\(89\) 7.98458 0.846363 0.423182 0.906045i \(-0.360913\pi\)
0.423182 + 0.906045i \(0.360913\pi\)
\(90\) 0 0
\(91\) −4.77254 + 3.46745i −0.500298 + 0.363488i
\(92\) 0 0
\(93\) 0.890099 0.289211i 0.0922990 0.0299898i
\(94\) 0 0
\(95\) −11.8218 8.58907i −1.21289 0.881220i
\(96\) 0 0
\(97\) −3.44331 + 10.5974i −0.349615 + 1.07600i 0.609451 + 0.792824i \(0.291390\pi\)
−0.959066 + 0.283181i \(0.908610\pi\)
\(98\) 0 0
\(99\) 3.98133 4.23395i 0.400138 0.425528i
\(100\) 0 0
\(101\) −1.65660 + 5.09849i −0.164838 + 0.507319i −0.999024 0.0441635i \(-0.985938\pi\)
0.834186 + 0.551483i \(0.185938\pi\)
\(102\) 0 0
\(103\) 3.62026 4.98285i 0.356714 0.490975i −0.592515 0.805559i \(-0.701865\pi\)
0.949230 + 0.314584i \(0.101865\pi\)
\(104\) 0 0
\(105\) 11.6631 3.78956i 1.13820 0.369824i
\(106\) 0 0
\(107\) 9.02248 + 12.4184i 0.872236 + 1.20053i 0.978511 + 0.206193i \(0.0661075\pi\)
−0.106275 + 0.994337i \(0.533893\pi\)
\(108\) 0 0
\(109\) 2.86723 0.274631 0.137315 0.990527i \(-0.456153\pi\)
0.137315 + 0.990527i \(0.456153\pi\)
\(110\) 0 0
\(111\) 4.05639i 0.385015i
\(112\) 0 0
\(113\) −8.25780 + 5.99964i −0.776828 + 0.564399i −0.904025 0.427479i \(-0.859402\pi\)
0.127197 + 0.991877i \(0.459402\pi\)
\(114\) 0 0
\(115\) −1.03871 3.19683i −0.0968605 0.298106i
\(116\) 0 0
\(117\) −2.99598 2.17670i −0.276978 0.201236i
\(118\) 0 0
\(119\) −12.3651 4.01766i −1.13350 0.368298i
\(120\) 0 0
\(121\) 7.00021 + 8.48511i 0.636383 + 0.771374i
\(122\) 0 0
\(123\) −3.93799 1.27953i −0.355077 0.115371i
\(124\) 0 0
\(125\) 12.6430 17.4016i 1.13082 1.55645i
\(126\) 0 0
\(127\) 3.94256 + 12.1339i 0.349845 + 1.07671i 0.958938 + 0.283614i \(0.0915335\pi\)
−0.609093 + 0.793099i \(0.708467\pi\)
\(128\) 0 0
\(129\) 0.908979 + 1.25110i 0.0800312 + 0.110153i
\(130\) 0 0
\(131\) 10.8120i 0.944646i −0.881426 0.472323i \(-0.843416\pi\)
0.881426 0.472323i \(-0.156584\pi\)
\(132\) 0 0
\(133\) 10.3711i 0.899288i
\(134\) 0 0
\(135\) 12.2717 + 16.8906i 1.05618 + 1.45371i
\(136\) 0 0
\(137\) −6.64424 20.4489i −0.567656 1.74707i −0.659925 0.751332i \(-0.729412\pi\)
0.0922685 0.995734i \(-0.470588\pi\)
\(138\) 0 0
\(139\) −4.01113 + 5.52085i −0.340220 + 0.468273i −0.944506 0.328495i \(-0.893459\pi\)
0.604286 + 0.796768i \(0.293459\pi\)
\(140\) 0 0
\(141\) 1.44414 + 0.469230i 0.121619 + 0.0395163i
\(142\) 0 0
\(143\) 4.80149 5.10616i 0.401521 0.426998i
\(144\) 0 0
\(145\) −20.1686 6.55316i −1.67491 0.544210i
\(146\) 0 0
\(147\) 0.715792 + 0.520053i 0.0590375 + 0.0428932i
\(148\) 0 0
\(149\) 3.50314 + 10.7816i 0.286989 + 0.883260i 0.985796 + 0.167950i \(0.0537147\pi\)
−0.698807 + 0.715310i \(0.746285\pi\)
\(150\) 0 0
\(151\) 1.11632 0.811053i 0.0908447 0.0660026i −0.541436 0.840742i \(-0.682119\pi\)
0.632280 + 0.774740i \(0.282119\pi\)
\(152\) 0 0
\(153\) 8.16168i 0.659832i
\(154\) 0 0
\(155\) 3.29543 0.264695
\(156\) 0 0
\(157\) 11.3001 + 15.5532i 0.901843 + 1.24128i 0.969876 + 0.243598i \(0.0783277\pi\)
−0.0680330 + 0.997683i \(0.521672\pi\)
\(158\) 0 0
\(159\) −4.48439 + 1.45707i −0.355635 + 0.115553i
\(160\) 0 0
\(161\) 1.40226 1.93005i 0.110514 0.152109i
\(162\) 0 0
\(163\) −3.44315 + 10.5969i −0.269689 + 0.830016i 0.720887 + 0.693052i \(0.243734\pi\)
−0.990576 + 0.136964i \(0.956266\pi\)
\(164\) 0 0
\(165\) −12.7730 + 7.01079i −0.994378 + 0.545789i
\(166\) 0 0
\(167\) 6.27006 19.2973i 0.485192 1.49327i −0.346510 0.938046i \(-0.612633\pi\)
0.831702 0.555222i \(-0.187367\pi\)
\(168\) 0 0
\(169\) 6.90406 + 5.01610i 0.531082 + 0.385854i
\(170\) 0 0
\(171\) 6.19184 2.01185i 0.473502 0.153850i
\(172\) 0 0
\(173\) 12.6022 9.15603i 0.958127 0.696120i 0.00541199 0.999985i \(-0.498277\pi\)
0.952715 + 0.303865i \(0.0982773\pi\)
\(174\) 0 0
\(175\) 29.2233 2.20907
\(176\) 0 0
\(177\) −9.39507 −0.706176
\(178\) 0 0
\(179\) −13.7239 + 9.97097i −1.02577 + 0.745265i −0.967458 0.253033i \(-0.918572\pi\)
−0.0583123 + 0.998298i \(0.518572\pi\)
\(180\) 0 0
\(181\) 12.6430 4.10796i 0.939746 0.305342i 0.201204 0.979549i \(-0.435515\pi\)
0.738542 + 0.674207i \(0.235515\pi\)
\(182\) 0 0
\(183\) 2.83872 + 2.06245i 0.209844 + 0.152461i
\(184\) 0 0
\(185\) 4.41369 13.5839i 0.324501 0.998711i
\(186\) 0 0
\(187\) 15.3244 + 1.94644i 1.12063 + 0.142338i
\(188\) 0 0
\(189\) −4.57895 + 14.0926i −0.333070 + 1.02508i
\(190\) 0 0
\(191\) 14.8778 20.4775i 1.07652 1.48170i 0.213224 0.977003i \(-0.431603\pi\)
0.863295 0.504699i \(-0.168397\pi\)
\(192\) 0 0
\(193\) 6.00552 1.95131i 0.432287 0.140458i −0.0847876 0.996399i \(-0.527021\pi\)
0.517074 + 0.855941i \(0.327021\pi\)
\(194\) 0 0
\(195\) 5.45711 + 7.51107i 0.390792 + 0.537879i
\(196\) 0 0
\(197\) 10.8725 0.774631 0.387316 0.921947i \(-0.373402\pi\)
0.387316 + 0.921947i \(0.373402\pi\)
\(198\) 0 0
\(199\) 22.1838i 1.57257i 0.617866 + 0.786283i \(0.287997\pi\)
−0.617866 + 0.786283i \(0.712003\pi\)
\(200\) 0 0
\(201\) −3.12533 + 2.27069i −0.220444 + 0.160162i
\(202\) 0 0
\(203\) −4.65102 14.3144i −0.326437 1.00467i
\(204\) 0 0
\(205\) −11.7952 8.56973i −0.823814 0.598536i
\(206\) 0 0
\(207\) 1.42431 + 0.462788i 0.0989966 + 0.0321660i
\(208\) 0 0
\(209\) 2.30080 + 12.1056i 0.159150 + 0.837365i
\(210\) 0 0
\(211\) −4.29344 1.39502i −0.295572 0.0960373i 0.157477 0.987523i \(-0.449664\pi\)
−0.453050 + 0.891485i \(0.649664\pi\)
\(212\) 0 0
\(213\) 8.10421 11.1545i 0.555291 0.764293i
\(214\) 0 0
\(215\) 1.68267 + 5.17871i 0.114757 + 0.353185i
\(216\) 0 0
\(217\) 1.37476 + 1.89220i 0.0933251 + 0.128451i
\(218\) 0 0
\(219\) 3.62640i 0.245049i
\(220\) 0 0
\(221\) 9.84301i 0.662112i
\(222\) 0 0
\(223\) −9.00750 12.3978i −0.603187 0.830216i 0.392808 0.919620i \(-0.371504\pi\)
−0.995995 + 0.0894046i \(0.971504\pi\)
\(224\) 0 0
\(225\) 5.66892 + 17.4471i 0.377928 + 1.16314i
\(226\) 0 0
\(227\) 11.9130 16.3968i 0.790692 1.08829i −0.203329 0.979110i \(-0.565176\pi\)
0.994022 0.109184i \(-0.0348238\pi\)
\(228\) 0 0
\(229\) −3.54360 1.15138i −0.234168 0.0760856i 0.189583 0.981865i \(-0.439287\pi\)
−0.423750 + 0.905779i \(0.639287\pi\)
\(230\) 0 0
\(231\) −9.35407 4.40941i −0.615453 0.290118i
\(232\) 0 0
\(233\) 23.3988 + 7.60272i 1.53290 + 0.498071i 0.949408 0.314045i \(-0.101684\pi\)
0.583496 + 0.812116i \(0.301684\pi\)
\(234\) 0 0
\(235\) 4.32555 + 3.14269i 0.282168 + 0.205007i
\(236\) 0 0
\(237\) 4.02114 + 12.3758i 0.261201 + 0.803894i
\(238\) 0 0
\(239\) −14.0082 + 10.1775i −0.906113 + 0.658330i −0.940029 0.341095i \(-0.889202\pi\)
0.0339157 + 0.999425i \(0.489202\pi\)
\(240\) 0 0
\(241\) 12.0062i 0.773387i −0.922208 0.386694i \(-0.873617\pi\)
0.922208 0.386694i \(-0.126383\pi\)
\(242\) 0 0
\(243\) −15.1739 −0.973408
\(244\) 0 0
\(245\) 1.83117 + 2.52038i 0.116989 + 0.161021i
\(246\) 0 0
\(247\) 7.46738 2.42630i 0.475138 0.154382i
\(248\) 0 0
\(249\) −0.601267 + 0.827573i −0.0381037 + 0.0524453i
\(250\) 0 0
\(251\) −0.828764 + 2.55067i −0.0523111 + 0.160997i −0.973799 0.227410i \(-0.926974\pi\)
0.921488 + 0.388407i \(0.126974\pi\)
\(252\) 0 0
\(253\) −1.20861 + 2.56393i −0.0759848 + 0.161193i
\(254\) 0 0
\(255\) −6.32303 + 19.4603i −0.395964 + 1.21865i
\(256\) 0 0
\(257\) −10.9160 7.93091i −0.680919 0.494717i 0.192743 0.981249i \(-0.438261\pi\)
−0.873662 + 0.486533i \(0.838261\pi\)
\(258\) 0 0
\(259\) 9.64102 3.13256i 0.599064 0.194648i
\(260\) 0 0
\(261\) 7.64385 5.55358i 0.473142 0.343758i
\(262\) 0 0
\(263\) 0.593593 0.0366025 0.0183013 0.999833i \(-0.494174\pi\)
0.0183013 + 0.999833i \(0.494174\pi\)
\(264\) 0 0
\(265\) −16.6026 −1.01989
\(266\) 0 0
\(267\) 7.21538 5.24228i 0.441574 0.320822i
\(268\) 0 0
\(269\) −18.5270 + 6.01978i −1.12961 + 0.367032i −0.813427 0.581666i \(-0.802401\pi\)
−0.316182 + 0.948699i \(0.602401\pi\)
\(270\) 0 0
\(271\) −19.8565 14.4266i −1.20619 0.876351i −0.211314 0.977418i \(-0.567774\pi\)
−0.994880 + 0.101067i \(0.967774\pi\)
\(272\) 0 0
\(273\) −2.03622 + 6.26683i −0.123237 + 0.379286i
\(274\) 0 0
\(275\) −34.1108 + 6.48312i −2.05696 + 0.390947i
\(276\) 0 0
\(277\) 4.54208 13.9791i 0.272907 0.839921i −0.716859 0.697219i \(-0.754421\pi\)
0.989766 0.142703i \(-0.0455793\pi\)
\(278\) 0 0
\(279\) −0.863012 + 1.18783i −0.0516672 + 0.0711138i
\(280\) 0 0
\(281\) −21.9124 + 7.11976i −1.30718 + 0.424729i −0.878075 0.478524i \(-0.841172\pi\)
−0.429108 + 0.903253i \(0.641172\pi\)
\(282\) 0 0
\(283\) −13.2652 18.2581i −0.788537 1.08533i −0.994289 0.106724i \(-0.965964\pi\)
0.205751 0.978604i \(-0.434036\pi\)
\(284\) 0 0
\(285\) −16.3221 −0.966840
\(286\) 0 0
\(287\) 10.3477i 0.610808i
\(288\) 0 0
\(289\) 3.79700 2.75868i 0.223353 0.162275i
\(290\) 0 0
\(291\) 3.84615 + 11.8372i 0.225465 + 0.693910i
\(292\) 0 0
\(293\) 0.181791 + 0.132079i 0.0106203 + 0.00771613i 0.593083 0.805142i \(-0.297911\pi\)
−0.582462 + 0.812858i \(0.697911\pi\)
\(294\) 0 0
\(295\) −31.4620 10.2226i −1.83179 0.595184i
\(296\) 0 0
\(297\) 2.21837 17.4654i 0.128723 1.01344i
\(298\) 0 0
\(299\) 1.71773 + 0.558123i 0.0993387 + 0.0322771i
\(300\) 0 0
\(301\) −2.27160 + 3.12659i −0.130933 + 0.180213i
\(302\) 0 0
\(303\) 1.85041 + 5.69497i 0.106303 + 0.327168i
\(304\) 0 0
\(305\) 7.26213 + 9.99546i 0.415828 + 0.572339i
\(306\) 0 0
\(307\) 7.94263i 0.453310i −0.973975 0.226655i \(-0.927221\pi\)
0.973975 0.226655i \(-0.0727790\pi\)
\(308\) 0 0
\(309\) 6.87971i 0.391373i
\(310\) 0 0
\(311\) 18.5030 + 25.4672i 1.04921 + 1.44411i 0.889491 + 0.456952i \(0.151059\pi\)
0.159720 + 0.987162i \(0.448941\pi\)
\(312\) 0 0
\(313\) 5.75907 + 17.7246i 0.325522 + 1.00185i 0.971204 + 0.238248i \(0.0765730\pi\)
−0.645682 + 0.763606i \(0.723427\pi\)
\(314\) 0 0
\(315\) −11.3082 + 15.5643i −0.637143 + 0.876952i
\(316\) 0 0
\(317\) −21.9489 7.13164i −1.23277 0.400553i −0.381056 0.924552i \(-0.624439\pi\)
−0.851719 + 0.523999i \(0.824439\pi\)
\(318\) 0 0
\(319\) 8.60450 + 15.6766i 0.481760 + 0.877721i
\(320\) 0 0
\(321\) 16.3066 + 5.29833i 0.910145 + 0.295724i
\(322\) 0 0
\(323\) 13.9997 + 10.1714i 0.778963 + 0.565950i
\(324\) 0 0
\(325\) 6.83673 + 21.0413i 0.379234 + 1.16716i
\(326\) 0 0
\(327\) 2.59101 1.88248i 0.143283 0.104101i
\(328\) 0 0
\(329\) 3.79473i 0.209210i
\(330\) 0 0
\(331\) 19.9470 1.09639 0.548194 0.836351i \(-0.315316\pi\)
0.548194 + 0.836351i \(0.315316\pi\)
\(332\) 0 0
\(333\) 3.74045 + 5.14829i 0.204976 + 0.282125i
\(334\) 0 0
\(335\) −12.9368 + 4.20341i −0.706810 + 0.229657i
\(336\) 0 0
\(337\) 2.52155 3.47062i 0.137358 0.189056i −0.734797 0.678287i \(-0.762722\pi\)
0.872154 + 0.489231i \(0.162722\pi\)
\(338\) 0 0
\(339\) −3.52321 + 10.8433i −0.191355 + 0.588929i
\(340\) 0 0
\(341\) −2.02447 1.90368i −0.109631 0.103090i
\(342\) 0 0
\(343\) 5.35494 16.4808i 0.289139 0.889880i
\(344\) 0 0
\(345\) −3.03753 2.20689i −0.163535 0.118815i
\(346\) 0 0
\(347\) −13.9379 + 4.52870i −0.748226 + 0.243113i −0.658217 0.752828i \(-0.728689\pi\)
−0.0900080 + 0.995941i \(0.528689\pi\)
\(348\) 0 0
\(349\) −27.4557 + 19.9477i −1.46967 + 1.06778i −0.488961 + 0.872306i \(0.662624\pi\)
−0.980709 + 0.195472i \(0.937376\pi\)
\(350\) 0 0
\(351\) −11.2181 −0.598780
\(352\) 0 0
\(353\) 13.8039 0.734707 0.367353 0.930081i \(-0.380264\pi\)
0.367353 + 0.930081i \(0.380264\pi\)
\(354\) 0 0
\(355\) 39.2762 28.5359i 2.08457 1.51453i
\(356\) 0 0
\(357\) −13.8117 + 4.48769i −0.730992 + 0.237514i
\(358\) 0 0
\(359\) −13.6648 9.92802i −0.721198 0.523981i 0.165569 0.986198i \(-0.447054\pi\)
−0.886767 + 0.462217i \(0.847054\pi\)
\(360\) 0 0
\(361\) 1.60575 4.94200i 0.0845133 0.260105i
\(362\) 0 0
\(363\) 11.8967 + 3.07170i 0.624417 + 0.161222i
\(364\) 0 0
\(365\) 3.94583 12.1440i 0.206534 0.635646i
\(366\) 0 0
\(367\) 0.132390 0.182219i 0.00691070 0.00951176i −0.805548 0.592531i \(-0.798129\pi\)
0.812458 + 0.583019i \(0.198129\pi\)
\(368\) 0 0
\(369\) 6.17790 2.00732i 0.321609 0.104497i
\(370\) 0 0
\(371\) −6.92616 9.53305i −0.359589 0.494931i
\(372\) 0 0
\(373\) 11.3347 0.586890 0.293445 0.955976i \(-0.405198\pi\)
0.293445 + 0.955976i \(0.405198\pi\)
\(374\) 0 0
\(375\) 24.0260i 1.24070i
\(376\) 0 0
\(377\) 9.21851 6.69764i 0.474777 0.344946i
\(378\) 0 0
\(379\) 1.61104 + 4.95826i 0.0827534 + 0.254689i 0.983869 0.178890i \(-0.0572506\pi\)
−0.901116 + 0.433579i \(0.857251\pi\)
\(380\) 0 0
\(381\) 11.5293 + 8.37652i 0.590664 + 0.429142i
\(382\) 0 0
\(383\) 31.4132 + 10.2068i 1.60514 + 0.521541i 0.968371 0.249514i \(-0.0802710\pi\)
0.636768 + 0.771056i \(0.280271\pi\)
\(384\) 0 0
\(385\) −26.5269 24.9442i −1.35194 1.27127i
\(386\) 0 0
\(387\) −2.30732 0.749694i −0.117288 0.0381091i
\(388\) 0 0
\(389\) −4.37628 + 6.02343i −0.221886 + 0.305400i −0.905418 0.424520i \(-0.860443\pi\)
0.683532 + 0.729920i \(0.260443\pi\)
\(390\) 0 0
\(391\) 1.23007 + 3.78576i 0.0622072 + 0.191454i
\(392\) 0 0
\(393\) −7.09860 9.77039i −0.358077 0.492851i
\(394\) 0 0
\(395\) 45.8191i 2.30541i
\(396\) 0 0
\(397\) 12.5755i 0.631147i 0.948901 + 0.315573i \(0.102197\pi\)
−0.948901 + 0.315573i \(0.897803\pi\)
\(398\) 0 0
\(399\) −6.80915 9.37199i −0.340884 0.469187i
\(400\) 0 0
\(401\) −4.30402 13.2464i −0.214933 0.661494i −0.999158 0.0410189i \(-0.986940\pi\)
0.784226 0.620476i \(-0.213060\pi\)
\(402\) 0 0
\(403\) −1.04080 + 1.43253i −0.0518457 + 0.0713595i
\(404\) 0 0
\(405\) 2.51494 + 0.817155i 0.124969 + 0.0406047i
\(406\) 0 0
\(407\) −10.5585 + 5.79531i −0.523366 + 0.287263i
\(408\) 0 0
\(409\) −1.47362 0.478807i −0.0728657 0.0236755i 0.272357 0.962196i \(-0.412197\pi\)
−0.345223 + 0.938521i \(0.612197\pi\)
\(410\) 0 0
\(411\) −19.4299 14.1167i −0.958406 0.696323i
\(412\) 0 0
\(413\) −7.25537 22.3297i −0.357014 1.09877i
\(414\) 0 0
\(415\) −2.91398 + 2.11713i −0.143042 + 0.103926i
\(416\) 0 0
\(417\) 7.62252i 0.373276i
\(418\) 0 0
\(419\) 18.4122 0.899496 0.449748 0.893155i \(-0.351514\pi\)
0.449748 + 0.893155i \(0.351514\pi\)
\(420\) 0 0
\(421\) −16.4415 22.6298i −0.801311 1.10291i −0.992606 0.121378i \(-0.961269\pi\)
0.191295 0.981533i \(-0.438731\pi\)
\(422\) 0 0
\(423\) −2.26556 + 0.736125i −0.110155 + 0.0357916i
\(424\) 0 0
\(425\) −28.6605 + 39.4478i −1.39024 + 1.91350i
\(426\) 0 0
\(427\) −2.70972 + 8.33967i −0.131133 + 0.403585i
\(428\) 0 0
\(429\) 0.986489 7.76668i 0.0476282 0.374979i
\(430\) 0 0
\(431\) −9.07766 + 27.9382i −0.437256 + 1.34573i 0.453502 + 0.891255i \(0.350175\pi\)
−0.890758 + 0.454479i \(0.849825\pi\)
\(432\) 0 0
\(433\) −14.9096 10.8325i −0.716509 0.520575i 0.168758 0.985658i \(-0.446024\pi\)
−0.885267 + 0.465083i \(0.846024\pi\)
\(434\) 0 0
\(435\) −22.5281 + 7.31982i −1.08014 + 0.350959i
\(436\) 0 0
\(437\) −2.56885 + 1.86638i −0.122885 + 0.0892809i
\(438\) 0 0
\(439\) 2.97316 0.141901 0.0709506 0.997480i \(-0.477397\pi\)
0.0709506 + 0.997480i \(0.477397\pi\)
\(440\) 0 0
\(441\) −1.38802 −0.0660961
\(442\) 0 0
\(443\) 0.965497 0.701475i 0.0458722 0.0333281i −0.564613 0.825356i \(-0.690975\pi\)
0.610485 + 0.792028i \(0.290975\pi\)
\(444\) 0 0
\(445\) 29.8668 9.70430i 1.41582 0.460028i
\(446\) 0 0
\(447\) 10.2443 + 7.44293i 0.484540 + 0.352039i
\(448\) 0 0
\(449\) 5.69852 17.5383i 0.268930 0.827681i −0.721832 0.692068i \(-0.756700\pi\)
0.990762 0.135613i \(-0.0433003\pi\)
\(450\) 0 0
\(451\) 2.29562 + 12.0784i 0.108097 + 0.568750i
\(452\) 0 0
\(453\) 0.476280 1.46584i 0.0223776 0.0688712i
\(454\) 0 0
\(455\) −13.6377 + 18.7707i −0.639344 + 0.879982i
\(456\) 0 0
\(457\) 0.304061 0.0987953i 0.0142234 0.00462145i −0.301897 0.953341i \(-0.597620\pi\)
0.316120 + 0.948719i \(0.397620\pi\)
\(458\) 0 0
\(459\) −14.5324 20.0022i −0.678316 0.933622i
\(460\) 0 0
\(461\) 14.6804 0.683735 0.341868 0.939748i \(-0.388941\pi\)
0.341868 + 0.939748i \(0.388941\pi\)
\(462\) 0 0
\(463\) 16.1267i 0.749471i −0.927132 0.374735i \(-0.877734\pi\)
0.927132 0.374735i \(-0.122266\pi\)
\(464\) 0 0
\(465\) 2.97797 2.16362i 0.138100 0.100335i
\(466\) 0 0
\(467\) 1.71292 + 5.27183i 0.0792645 + 0.243951i 0.982834 0.184489i \(-0.0590632\pi\)
−0.903570 + 0.428441i \(0.859063\pi\)
\(468\) 0 0
\(469\) −7.81041 5.67460i −0.360651 0.262028i
\(470\) 0 0
\(471\) 20.4229 + 6.63582i 0.941040 + 0.305762i
\(472\) 0 0
\(473\) 1.95789 4.15345i 0.0900241 0.190976i
\(474\) 0 0
\(475\) −36.9918 12.0194i −1.69730 0.551486i
\(476\) 0 0
\(477\) 4.34792 5.98440i 0.199078 0.274007i
\(478\) 0 0
\(479\) −1.04517 3.21671i −0.0477551 0.146975i 0.924336 0.381581i \(-0.124620\pi\)
−0.972091 + 0.234606i \(0.924620\pi\)
\(480\) 0 0
\(481\) 4.51100 + 6.20886i 0.205684 + 0.283100i
\(482\) 0 0
\(483\) 2.66477i 0.121251i
\(484\) 0 0
\(485\) 43.8252i 1.99000i
\(486\) 0 0
\(487\) −17.9182 24.6623i −0.811952 1.11756i −0.991019 0.133719i \(-0.957308\pi\)
0.179068 0.983837i \(-0.442692\pi\)
\(488\) 0 0
\(489\) 3.84597 + 11.8367i 0.173921 + 0.535273i
\(490\) 0 0
\(491\) 19.3196 26.5912i 0.871882 1.20004i −0.106721 0.994289i \(-0.534035\pi\)
0.978604 0.205754i \(-0.0659647\pi\)
\(492\) 0 0
\(493\) 23.8841 + 7.76040i 1.07568 + 0.349511i
\(494\) 0 0
\(495\) 9.74652 20.6762i 0.438074 0.929324i
\(496\) 0 0
\(497\) 32.7700 + 10.6476i 1.46993 + 0.477610i
\(498\) 0 0
\(499\) 8.74683 + 6.35494i 0.391562 + 0.284486i 0.766095 0.642727i \(-0.222197\pi\)
−0.374533 + 0.927213i \(0.622197\pi\)
\(500\) 0 0
\(501\) −7.00361 21.5549i −0.312898 0.963001i
\(502\) 0 0
\(503\) 20.9779 15.2413i 0.935357 0.679577i −0.0119412 0.999929i \(-0.503801\pi\)
0.947299 + 0.320352i \(0.103801\pi\)
\(504\) 0 0
\(505\) 21.0846i 0.938253i
\(506\) 0 0
\(507\) 9.53228 0.423344
\(508\) 0 0
\(509\) 15.4298 + 21.2373i 0.683914 + 0.941327i 0.999973 0.00741265i \(-0.00235954\pi\)
−0.316058 + 0.948740i \(0.602360\pi\)
\(510\) 0 0
\(511\) 8.61905 2.80050i 0.381284 0.123887i
\(512\) 0 0
\(513\) 11.5924 15.9555i 0.511816 0.704454i
\(514\) 0 0
\(515\) 7.48571 23.0386i 0.329860 1.01520i
\(516\) 0 0
\(517\) −0.841852 4.42939i −0.0370246 0.194804i
\(518\) 0 0
\(519\) 5.37676 16.5480i 0.236014 0.726375i
\(520\) 0 0
\(521\) 9.15472 + 6.65129i 0.401076 + 0.291399i 0.769979 0.638069i \(-0.220267\pi\)
−0.368903 + 0.929468i \(0.620267\pi\)
\(522\) 0 0
\(523\) 21.7647 7.07178i 0.951704 0.309227i 0.208296 0.978066i \(-0.433208\pi\)
0.743408 + 0.668838i \(0.233208\pi\)
\(524\) 0 0
\(525\) 26.4080 19.1866i 1.15254 0.837371i
\(526\) 0 0
\(527\) −3.90252 −0.169997
\(528\) 0 0
\(529\) 22.2696 0.968243
\(530\) 0 0
\(531\) 11.9241 8.66333i 0.517460 0.375957i
\(532\) 0 0
\(533\) 7.45057 2.42084i 0.322720 0.104858i
\(534\) 0 0
\(535\) 48.8421 + 35.4859i 2.11163 + 1.53419i
\(536\) 0 0
\(537\) −5.85532 + 18.0208i −0.252676 + 0.777656i
\(538\) 0 0
\(539\) 0.331022 2.60616i 0.0142581 0.112255i
\(540\) 0 0
\(541\) 5.01194 15.4252i 0.215480 0.663180i −0.783639 0.621217i \(-0.786639\pi\)
0.999119 0.0419633i \(-0.0133613\pi\)
\(542\) 0 0
\(543\) 8.72795 12.0130i 0.374552 0.515527i
\(544\) 0 0
\(545\) 10.7250 3.48477i 0.459410 0.149271i
\(546\) 0 0
\(547\) 6.35466 + 8.74643i 0.271705 + 0.373970i 0.922965 0.384885i \(-0.125759\pi\)
−0.651259 + 0.758855i \(0.725759\pi\)
\(548\) 0 0
\(549\) −5.50467 −0.234934
\(550\) 0 0
\(551\) 20.0325i 0.853415i
\(552\) 0 0
\(553\) −26.3088 + 19.1145i −1.11877 + 0.812831i
\(554\) 0 0
\(555\) −4.93005 15.1731i −0.209269 0.644064i
\(556\) 0 0
\(557\) −3.64856 2.65084i −0.154595 0.112320i 0.507799 0.861476i \(-0.330459\pi\)
−0.662394 + 0.749156i \(0.730459\pi\)
\(558\) 0 0
\(559\) −2.78264 0.904133i −0.117693 0.0382408i
\(560\) 0 0
\(561\) 15.1261 8.30234i 0.638624 0.350525i
\(562\) 0 0
\(563\) 0.590824 + 0.191970i 0.0249003 + 0.00809058i 0.321441 0.946930i \(-0.395833\pi\)
−0.296540 + 0.955020i \(0.595833\pi\)
\(564\) 0 0
\(565\) −23.5969 + 32.4784i −0.992730 + 1.36638i
\(566\) 0 0
\(567\) 0.579965 + 1.78495i 0.0243562 + 0.0749607i
\(568\) 0 0
\(569\) −11.6083 15.9774i −0.486644 0.669807i 0.493121 0.869961i \(-0.335856\pi\)
−0.979765 + 0.200153i \(0.935856\pi\)
\(570\) 0 0
\(571\) 28.2428i 1.18193i 0.806699 + 0.590963i \(0.201252\pi\)
−0.806699 + 0.590963i \(0.798748\pi\)
\(572\) 0 0
\(573\) 28.2729i 1.18112i
\(574\) 0 0
\(575\) −5.25901 7.23840i −0.219316 0.301862i
\(576\) 0 0
\(577\) 4.23700 + 13.0402i 0.176389 + 0.542869i 0.999694 0.0247297i \(-0.00787253\pi\)
−0.823305 + 0.567599i \(0.807873\pi\)
\(578\) 0 0
\(579\) 4.14584 5.70626i 0.172295 0.237144i
\(580\) 0 0
\(581\) −2.43126 0.789966i −0.100866 0.0327733i
\(582\) 0 0
\(583\) 10.1994 + 9.59089i 0.422418 + 0.397214i
\(584\) 0 0
\(585\) −13.8521 4.50083i −0.572716 0.186087i
\(586\) 0 0
\(587\) −27.8108 20.2057i −1.14788 0.833981i −0.159679 0.987169i \(-0.551046\pi\)
−0.988197 + 0.153188i \(0.951046\pi\)
\(588\) 0 0
\(589\) −0.961971 2.96064i −0.0396373 0.121991i
\(590\) 0 0
\(591\) 9.82507 7.13833i 0.404149 0.293632i
\(592\) 0 0
\(593\) 18.6125i 0.764323i −0.924096 0.382161i \(-0.875180\pi\)
0.924096 0.382161i \(-0.124820\pi\)
\(594\) 0 0
\(595\) −51.1353 −2.09634
\(596\) 0 0
\(597\) 14.5648 + 20.0467i 0.596097 + 0.820457i
\(598\) 0 0
\(599\) −14.6710 + 4.76689i −0.599440 + 0.194770i −0.592990 0.805209i \(-0.702053\pi\)
−0.00644913 + 0.999979i \(0.502053\pi\)
\(600\) 0 0
\(601\) −6.78408 + 9.33748i −0.276728 + 0.380884i −0.924647 0.380826i \(-0.875640\pi\)
0.647919 + 0.761710i \(0.275640\pi\)
\(602\) 0 0
\(603\) 1.87278 5.76383i 0.0762656 0.234721i
\(604\) 0 0
\(605\) 36.4973 + 23.2311i 1.48383 + 0.944479i
\(606\) 0 0
\(607\) −0.811344 + 2.49706i −0.0329314 + 0.101353i −0.966171 0.257902i \(-0.916969\pi\)
0.933240 + 0.359254i \(0.116969\pi\)
\(608\) 0 0
\(609\) −13.6011 9.88175i −0.551143 0.400429i
\(610\) 0 0
\(611\) −2.73227 + 0.887770i −0.110536 + 0.0359153i
\(612\) 0 0
\(613\) 23.6605 17.1903i 0.955638 0.694311i 0.00350423 0.999994i \(-0.498885\pi\)
0.952134 + 0.305682i \(0.0988846\pi\)
\(614\) 0 0
\(615\) −16.2854 −0.656691
\(616\) 0 0
\(617\) −18.7736 −0.755798 −0.377899 0.925847i \(-0.623353\pi\)
−0.377899 + 0.925847i \(0.623353\pi\)
\(618\) 0 0
\(619\) −35.7686 + 25.9874i −1.43766 + 1.04452i −0.449139 + 0.893462i \(0.648269\pi\)
−0.988524 + 0.151061i \(0.951731\pi\)
\(620\) 0 0
\(621\) 4.31465 1.40192i 0.173141 0.0562569i
\(622\) 0 0
\(623\) 18.0317 + 13.1008i 0.722425 + 0.524872i
\(624\) 0 0
\(625\) 9.96692 30.6750i 0.398677 1.22700i
\(626\) 0 0
\(627\) 10.0271 + 9.42885i 0.400445 + 0.376552i
\(628\) 0 0
\(629\) −5.22679 + 16.0864i −0.208406 + 0.641407i
\(630\) 0 0
\(631\) 3.44264 4.73839i 0.137049 0.188632i −0.734976 0.678093i \(-0.762806\pi\)
0.872025 + 0.489461i \(0.162806\pi\)
\(632\) 0 0
\(633\) −4.79573 + 1.55823i −0.190613 + 0.0619340i
\(634\) 0 0
\(635\) 29.4947 + 40.5960i 1.17046 + 1.61100i
\(636\) 0 0
\(637\) −1.67395 −0.0663245
\(638\) 0 0
\(639\) 21.6301i 0.855673i
\(640\) 0 0
\(641\) −15.9169 + 11.5643i −0.628680 + 0.456763i −0.855943 0.517071i \(-0.827022\pi\)
0.227263 + 0.973833i \(0.427022\pi\)
\(642\) 0 0
\(643\) −3.22855 9.93645i −0.127322 0.391855i 0.866995 0.498316i \(-0.166048\pi\)
−0.994317 + 0.106461i \(0.966048\pi\)
\(644\) 0 0
\(645\) 4.92065 + 3.57506i 0.193751 + 0.140768i
\(646\) 0 0
\(647\) 6.43578 + 2.09111i 0.253017 + 0.0822101i 0.432779 0.901500i \(-0.357533\pi\)
−0.179763 + 0.983710i \(0.557533\pi\)
\(648\) 0 0
\(649\) 13.4226 + 24.4548i 0.526884 + 0.959934i
\(650\) 0 0
\(651\) 2.48465 + 0.807312i 0.0973812 + 0.0316411i
\(652\) 0 0
\(653\) −20.1960 + 27.7974i −0.790332 + 1.08780i 0.203735 + 0.979026i \(0.434692\pi\)
−0.994067 + 0.108772i \(0.965308\pi\)
\(654\) 0 0
\(655\) −13.1406 40.4428i −0.513448 1.58023i
\(656\) 0 0
\(657\) 3.34396 + 4.60256i 0.130460 + 0.179563i
\(658\) 0 0
\(659\) 34.5518i 1.34595i −0.739667 0.672973i \(-0.765017\pi\)
0.739667 0.672973i \(-0.234983\pi\)
\(660\) 0 0
\(661\) 17.3103i 0.673292i −0.941631 0.336646i \(-0.890707\pi\)
0.941631 0.336646i \(-0.109293\pi\)
\(662\) 0 0
\(663\) −6.46244 8.89478i −0.250980 0.345445i
\(664\) 0 0
\(665\) −12.6048 38.7937i −0.488794 1.50435i
\(666\) 0 0
\(667\) −2.70857 + 3.72803i −0.104876 + 0.144350i
\(668\) 0 0
\(669\) −16.2795 5.28954i −0.629403 0.204505i
\(670\) 0 0
\(671\) 1.31278 10.3356i 0.0506795 0.399002i
\(672\) 0 0
\(673\) −25.9975 8.44710i −1.00213 0.325612i −0.238413 0.971164i \(-0.576627\pi\)
−0.763716 + 0.645552i \(0.776627\pi\)
\(674\) 0 0
\(675\) 44.9589 + 32.6646i 1.73047 + 1.25726i
\(676\) 0 0
\(677\) −8.46763 26.0607i −0.325438 1.00159i −0.971243 0.238091i \(-0.923478\pi\)
0.645805 0.763502i \(-0.276522\pi\)
\(678\) 0 0
\(679\) −25.1639 + 18.2827i −0.965703 + 0.701625i
\(680\) 0 0
\(681\) 22.6387i 0.867517i
\(682\) 0 0
\(683\) 19.0093 0.727370 0.363685 0.931522i \(-0.381518\pi\)
0.363685 + 0.931522i \(0.381518\pi\)
\(684\) 0 0
\(685\) −49.7064 68.4149i −1.89918 2.61400i
\(686\) 0 0
\(687\) −3.95817 + 1.28609i −0.151013 + 0.0490673i
\(688\) 0 0
\(689\) 5.24361 7.21721i 0.199766 0.274954i
\(690\) 0 0
\(691\) −10.0374 + 30.8919i −0.381840 + 1.17518i 0.556907 + 0.830575i \(0.311988\pi\)
−0.938747 + 0.344607i \(0.888012\pi\)
\(692\) 0 0
\(693\) 15.9380 3.02918i 0.605435 0.115069i
\(694\) 0 0
\(695\) −8.29394 + 25.5261i −0.314607 + 0.968261i
\(696\) 0 0
\(697\) 13.9682 + 10.1485i 0.529082 + 0.384401i
\(698\) 0 0
\(699\) 26.1362 8.49217i 0.988563 0.321203i
\(700\) 0 0
\(701\) −34.5883 + 25.1299i −1.30638 + 0.949142i −0.999996 0.00276567i \(-0.999120\pi\)
−0.306386 + 0.951908i \(0.599120\pi\)
\(702\) 0 0
\(703\) −13.4923 −0.508873
\(704\) 0 0
\(705\) 5.97218 0.224925
\(706\) 0 0
\(707\) −12.1066 + 8.79593i −0.455314 + 0.330805i
\(708\) 0 0
\(709\) −6.59283 + 2.14214i −0.247599 + 0.0804498i −0.430187 0.902740i \(-0.641552\pi\)
0.182588 + 0.983189i \(0.441552\pi\)
\(710\) 0 0
\(711\) −16.5155 11.9992i −0.619378 0.450005i
\(712\) 0 0
\(713\) 0.221283 0.681039i 0.00828711 0.0255051i
\(714\) 0 0
\(715\) 11.7543 24.9355i 0.439587 0.932535i
\(716\) 0 0
\(717\) −5.97662 + 18.3942i −0.223201 + 0.686942i
\(718\) 0 0
\(719\) −29.1465 + 40.1168i −1.08698 + 1.49610i −0.235388 + 0.971901i \(0.575636\pi\)
−0.851594 + 0.524202i \(0.824364\pi\)
\(720\) 0 0
\(721\) 16.3514 5.31288i 0.608957 0.197862i
\(722\) 0 0
\(723\) −7.88268 10.8496i −0.293160 0.403500i
\(724\) 0 0
\(725\) −56.4469 −2.09639
\(726\) 0 0
\(727\) 20.0972i 0.745365i −0.927959 0.372683i \(-0.878438\pi\)
0.927959 0.372683i \(-0.121562\pi\)
\(728\) 0 0
\(729\) −15.3440 + 11.1480i −0.568295 + 0.412890i
\(730\) 0 0
\(731\) −1.99265 6.13275i −0.0737008 0.226828i
\(732\) 0 0
\(733\) 38.5016 + 27.9731i 1.42209 + 1.03321i 0.991422 + 0.130699i \(0.0417222\pi\)
0.430669 + 0.902510i \(0.358278\pi\)
\(734\) 0 0
\(735\) 3.30952 + 1.07533i 0.122074 + 0.0396641i
\(736\) 0 0
\(737\) 10.3756 + 4.89094i 0.382190 + 0.180160i
\(738\) 0 0
\(739\) 47.1991 + 15.3359i 1.73625 + 0.564140i 0.994329 0.106351i \(-0.0339168\pi\)
0.741917 + 0.670492i \(0.233917\pi\)
\(740\) 0 0
\(741\) 5.15502 7.09528i 0.189374 0.260651i
\(742\) 0 0
\(743\) −11.3841 35.0366i −0.417642 1.28537i −0.909866 0.414901i \(-0.863816\pi\)
0.492225 0.870468i \(-0.336184\pi\)
\(744\) 0 0
\(745\) 26.2074 + 36.0714i 0.960166 + 1.32155i
\(746\) 0 0
\(747\) 1.60478i 0.0587157i
\(748\) 0 0
\(749\) 42.8484i 1.56565i
\(750\) 0 0
\(751\) −3.19001 4.39067i −0.116405 0.160218i 0.746839 0.665005i \(-0.231571\pi\)
−0.863244 + 0.504788i \(0.831571\pi\)
\(752\) 0 0
\(753\) 0.925722 + 2.84908i 0.0337352 + 0.103826i
\(754\) 0 0
\(755\) 3.18992 4.39054i 0.116093 0.159788i
\(756\) 0 0
\(757\) 18.5263 + 6.01955i 0.673348 + 0.218784i 0.625681 0.780079i \(-0.284821\pi\)
0.0476675 + 0.998863i \(0.484821\pi\)
\(758\) 0 0
\(759\) 0.591174 + 3.11045i 0.0214582 + 0.112902i
\(760\) 0 0
\(761\) −11.3571 3.69015i −0.411695 0.133768i 0.0958447 0.995396i \(-0.469445\pi\)
−0.507539 + 0.861629i \(0.669445\pi\)
\(762\) 0 0
\(763\) 6.47511 + 4.70444i 0.234415 + 0.170312i
\(764\) 0 0
\(765\) −9.91954 30.5292i −0.358642 1.10379i
\(766\) 0 0
\(767\) 14.3804 10.4480i 0.519248 0.377256i
\(768\) 0 0
\(769\) 42.9323i 1.54818i −0.633077 0.774089i \(-0.718208\pi\)
0.633077 0.774089i \(-0.281792\pi\)
\(770\) 0 0
\(771\) −15.0714 −0.542784
\(772\) 0 0
\(773\) −5.52701 7.60728i −0.198793 0.273615i 0.697969 0.716128i \(-0.254087\pi\)
−0.896762 + 0.442513i \(0.854087\pi\)
\(774\) 0 0
\(775\) 8.34239 2.71061i 0.299667 0.0973678i
\(776\) 0 0
\(777\) 6.65557 9.16060i 0.238767 0.328635i
\(778\) 0 0
\(779\) −4.25597 + 13.0985i −0.152486 + 0.469303i
\(780\) 0 0
\(781\) −40.6128 5.15846i −1.45324 0.184584i
\(782\) 0 0
\(783\) 8.84458 27.2208i 0.316079 0.972793i
\(784\) 0 0
\(785\) 61.1716 + 44.4438i 2.18331 + 1.58627i
\(786\) 0 0
\(787\) −48.8038 + 15.8573i −1.73967 + 0.565252i −0.994790 0.101948i \(-0.967493\pi\)
−0.744878 + 0.667200i \(0.767493\pi\)
\(788\) 0 0
\(789\) 0.536409 0.389724i 0.0190967 0.0138745i
\(790\) 0 0
\(791\) −28.4927 −1.01308
\(792\) 0 0
\(793\) −6.63865 −0.235745
\(794\) 0 0
\(795\) −15.0032 + 10.9005i −0.532109 + 0.386600i
\(796\) 0 0
\(797\) −20.8890 + 6.78723i −0.739925 + 0.240416i −0.654640 0.755941i \(-0.727180\pi\)
−0.0852843 + 0.996357i \(0.527180\pi\)
\(798\) 0 0
\(799\) −5.12241 3.72165i −0.181218 0.131662i
\(800\) 0 0
\(801\) −4.32365 + 13.3068i −0.152769 + 0.470173i
\(802\) 0 0
\(803\) −9.43929 + 5.18100i −0.333105 + 0.182833i
\(804\) 0 0
\(805\) 2.89950 8.92374i 0.102194 0.314520i
\(806\) 0 0
\(807\) −12.7899 + 17.6038i −0.450225 + 0.619682i
\(808\) 0 0
\(809\) −44.5044 + 14.4604i −1.56469 + 0.508399i −0.958056 0.286580i \(-0.907482\pi\)
−0.606636 + 0.794980i \(0.707482\pi\)
\(810\) 0 0
\(811\) 1.59838 + 2.19998i 0.0561267 + 0.0772518i 0.836158 0.548489i \(-0.184797\pi\)
−0.780031 + 0.625741i \(0.784797\pi\)
\(812\) 0 0
\(813\) −27.4153 −0.961498
\(814\) 0 0
\(815\) 43.8232i 1.53506i
\(816\) 0 0
\(817\) 4.16141 3.02344i 0.145589 0.105777i
\(818\) 0 0
\(819\) −3.19441 9.83137i −0.111622 0.343536i
\(820\) 0 0
\(821\) 35.2195 + 25.5884i 1.22917 + 0.893043i 0.996828 0.0795914i \(-0.0253616\pi\)
0.232341 + 0.972634i \(0.425362\pi\)
\(822\) 0 0
\(823\) 18.1038 + 5.88230i 0.631060 + 0.205044i 0.607045 0.794668i \(-0.292355\pi\)
0.0240156 + 0.999712i \(0.492355\pi\)
\(824\) 0 0
\(825\) −26.5683 + 28.2541i −0.924988 + 0.983680i
\(826\) 0 0
\(827\) −36.6382 11.9045i −1.27404 0.413959i −0.407560 0.913179i \(-0.633620\pi\)
−0.866476 + 0.499220i \(0.833620\pi\)
\(828\) 0 0
\(829\) −19.6824 + 27.0905i −0.683597 + 0.940890i −0.999970 0.00774447i \(-0.997535\pi\)
0.316373 + 0.948635i \(0.397535\pi\)
\(830\) 0 0
\(831\) −5.07346 15.6145i −0.175996 0.541661i
\(832\) 0 0
\(833\) −2.16851 2.98470i −0.0751344 0.103414i
\(834\) 0 0
\(835\) 79.8031i 2.76170i
\(836\) 0 0
\(837\) 4.44773i 0.153736i
\(838\) 0 0
\(839\) 3.48024 + 4.79014i 0.120151 + 0.165374i 0.864856 0.502020i \(-0.167410\pi\)
−0.744705 + 0.667394i \(0.767410\pi\)
\(840\) 0 0
\(841\) 0.0222891 + 0.0685987i 0.000768589 + 0.00236547i
\(842\) 0 0
\(843\) −15.1270 + 20.8205i −0.521000 + 0.717095i
\(844\) 0 0
\(845\) 31.9215 + 10.3719i 1.09813 + 0.356805i
\(846\) 0 0
\(847\) 1.88663 + 30.6477i 0.0648255 + 1.05307i
\(848\) 0 0
\(849\) −23.9747 7.78985i −0.822809 0.267347i
\(850\) 0 0
\(851\) −2.51091 1.82428i −0.0860727 0.0625355i
\(852\) 0 0
\(853\) −2.67901 8.24514i −0.0917275 0.282308i 0.894660 0.446749i \(-0.147418\pi\)
−0.986387 + 0.164440i \(0.947418\pi\)
\(854\) 0 0
\(855\) 20.7158 15.0509i 0.708464 0.514730i
\(856\) 0 0
\(857\) 18.5127i 0.632382i 0.948695 + 0.316191i \(0.102404\pi\)
−0.948695 + 0.316191i \(0.897596\pi\)
\(858\) 0 0
\(859\) 0.218543 0.00745661 0.00372830 0.999993i \(-0.498813\pi\)
0.00372830 + 0.999993i \(0.498813\pi\)
\(860\) 0 0
\(861\) −6.79382 9.35090i −0.231533 0.318678i
\(862\) 0 0
\(863\) −5.38003 + 1.74808i −0.183138 + 0.0595053i −0.399151 0.916885i \(-0.630695\pi\)
0.216012 + 0.976391i \(0.430695\pi\)
\(864\) 0 0
\(865\) 36.0112 49.5651i 1.22442 1.68526i
\(866\) 0 0
\(867\) 1.62000 4.98584i 0.0550180 0.169328i
\(868\) 0 0
\(869\) 26.4685 28.1479i 0.897881 0.954853i
\(870\) 0 0
\(871\) 2.25858 6.95120i 0.0765291 0.235532i
\(872\) 0 0
\(873\) −15.7967 11.4770i −0.534639 0.388438i
\(874\) 0 0
\(875\) 57.1038 18.5541i 1.93046 0.627244i
\(876\) 0 0
\(877\) 28.1771 20.4719i 0.951473 0.691286i 0.000318228 1.00000i \(-0.499899\pi\)
0.951155 + 0.308714i \(0.0998987\pi\)
\(878\) 0 0
\(879\) 0.250994 0.00846583
\(880\) 0 0
\(881\) −29.7384 −1.00191 −0.500957 0.865472i \(-0.667018\pi\)
−0.500957 + 0.865472i \(0.667018\pi\)
\(882\) 0 0
\(883\) −16.7903 + 12.1988i −0.565038 + 0.410524i −0.833299 0.552822i \(-0.813551\pi\)
0.268262 + 0.963346i \(0.413551\pi\)
\(884\) 0 0
\(885\) −35.1428 + 11.4186i −1.18131 + 0.383831i
\(886\) 0 0
\(887\) −21.3255 15.4939i −0.716042 0.520235i 0.169075 0.985603i \(-0.445922\pi\)
−0.885117 + 0.465368i \(0.845922\pi\)
\(888\) 0 0
\(889\) −11.0054 + 33.8711i −0.369109 + 1.13600i
\(890\) 0 0
\(891\) −1.07295 1.95481i −0.0359452 0.0654887i
\(892\) 0 0
\(893\) 1.56075 4.80349i 0.0522285 0.160743i
\(894\) 0 0
\(895\) −39.2164 + 53.9767i −1.31086 + 1.80424i
\(896\) 0 0
\(897\) 1.91869 0.623419i 0.0640630 0.0208153i
\(898\) 0 0
\(899\) −2.65546 3.65492i −0.0885645 0.121899i
\(900\) 0 0
\(901\) 19.6612 0.655010
\(902\) 0 0
\(903\) 4.31681i 0.143654i
\(904\) 0 0
\(905\) 42.2991 30.7321i 1.40607 1.02157i
\(906\) 0 0
\(907\) −2.25055 6.92648i −0.0747283 0.229990i 0.906715 0.421745i \(-0.138582\pi\)
−0.981443 + 0.191755i \(0.938582\pi\)
\(908\) 0 0
\(909\) −7.59993 5.52167i −0.252074 0.183142i
\(910\) 0 0
\(911\) −15.5732 5.06005i −0.515964 0.167647i 0.0394488 0.999222i \(-0.487440\pi\)
−0.555413 + 0.831575i \(0.687440\pi\)
\(912\) 0 0
\(913\) 3.01314 + 0.382716i 0.0997205 + 0.0126661i
\(914\) 0 0
\(915\) 13.1251 + 4.26459i 0.433901 + 0.140983i
\(916\) 0 0
\(917\) 17.7399 24.4168i 0.585822 0.806315i
\(918\) 0 0
\(919\) −1.67576 5.15747i −0.0552783 0.170129i 0.919606 0.392843i \(-0.128508\pi\)
−0.974884 + 0.222714i \(0.928508\pi\)
\(920\) 0 0
\(921\) −5.21474 7.17748i −0.171832 0.236506i
\(922\) 0 0
\(923\) 26.0860i 0.858630i
\(924\) 0 0
\(925\) 38.0182i 1.25003i
\(926\) 0 0
\(927\) 6.34389 + 8.73161i 0.208361 + 0.286784i
\(928\) 0 0
\(929\) 5.92577 + 18.2377i 0.194418 + 0.598358i 0.999983 + 0.00584999i \(0.00186212\pi\)
−0.805565 + 0.592508i \(0.798138\pi\)
\(930\) 0 0
\(931\) 1.72980 2.38086i 0.0566918 0.0780296i
\(932\) 0 0
\(933\) 33.4411 + 10.8657i 1.09481 + 0.355726i
\(934\) 0 0
\(935\) 59.6876 11.3442i 1.95199 0.370996i
\(936\) 0 0
\(937\) 29.5300 + 9.59489i 0.964705 + 0.313452i 0.748676 0.662936i \(-0.230690\pi\)
0.216028 + 0.976387i \(0.430690\pi\)
\(938\) 0 0
\(939\) 16.8414 + 12.2360i 0.549598 + 0.399306i
\(940\) 0 0
\(941\) 17.9943 + 55.3808i 0.586598 + 1.80536i 0.592756 + 0.805382i \(0.298040\pi\)
−0.00615836 + 0.999981i \(0.501960\pi\)
\(942\) 0 0
\(943\) −2.56306 + 1.86218i −0.0834649 + 0.0606408i
\(944\) 0 0
\(945\) 58.2792i 1.89582i
\(946\) 0 0
\(947\) −3.35443 −0.109004 −0.0545022 0.998514i \(-0.517357\pi\)
−0.0545022 + 0.998514i \(0.517357\pi\)
\(948\) 0 0
\(949\) 4.03282 + 5.55070i 0.130911 + 0.180183i
\(950\) 0 0
\(951\) −24.5168 + 7.96598i −0.795010 + 0.258315i
\(952\) 0 0
\(953\) 10.8409 14.9213i 0.351173 0.483348i −0.596490 0.802620i \(-0.703439\pi\)
0.947663 + 0.319273i \(0.103439\pi\)
\(954\) 0 0
\(955\) 30.7633 94.6796i 0.995476 3.06376i
\(956\) 0 0
\(957\) 18.0681 + 8.51710i 0.584058 + 0.275319i
\(958\) 0 0
\(959\) 18.5470 57.0817i 0.598913 1.84326i
\(960\) 0 0
\(961\) −24.5116 17.8087i −0.790696 0.574474i
\(962\) 0 0
\(963\) −25.5817 + 8.31200i −0.824359 + 0.267850i
\(964\) 0 0
\(965\) 20.0924 14.5980i 0.646797 0.469925i
\(966\) 0 0
\(967\) 48.1597 1.54871 0.774356 0.632750i \(-0.218074\pi\)
0.774356 + 0.632750i \(0.218074\pi\)
\(968\) 0 0
\(969\) 19.3290 0.620938
\(970\) 0 0
\(971\) 1.37224 0.996990i 0.0440372 0.0319949i −0.565549 0.824715i \(-0.691336\pi\)
0.609586 + 0.792720i \(0.291336\pi\)
\(972\) 0 0
\(973\) −18.1168 + 5.88651i −0.580799 + 0.188713i
\(974\) 0 0
\(975\) 19.9928 + 14.5256i 0.640282 + 0.465192i
\(976\) 0 0
\(977\) −13.9474 + 42.9258i −0.446218 + 1.37332i 0.434925 + 0.900467i \(0.356775\pi\)
−0.881143 + 0.472851i \(0.843225\pi\)
\(978\) 0 0
\(979\) −23.9539 11.2916i −0.765569 0.360881i
\(980\) 0 0
\(981\) −1.55260 + 4.77842i −0.0495708 + 0.152563i
\(982\) 0 0
\(983\) −9.96222 + 13.7118i −0.317745 + 0.437339i −0.937777 0.347238i \(-0.887120\pi\)
0.620032 + 0.784577i \(0.287120\pi\)
\(984\) 0 0
\(985\) 40.6691 13.2142i 1.29582 0.421039i
\(986\) 0 0
\(987\) 2.49143 + 3.42916i 0.0793031 + 0.109151i
\(988\) 0 0
\(989\) 1.18323 0.0376245
\(990\) 0 0
\(991\) 18.1908i 0.577849i −0.957352 0.288925i \(-0.906702\pi\)
0.957352 0.288925i \(-0.0932977\pi\)
\(992\) 0 0
\(993\) 18.0254 13.0962i 0.572019 0.415596i
\(994\) 0 0
\(995\) 26.9617 + 82.9797i 0.854744 + 2.63063i
\(996\) 0 0
\(997\) −9.00121 6.53976i −0.285071 0.207116i 0.436055 0.899920i \(-0.356375\pi\)
−0.721126 + 0.692804i \(0.756375\pi\)
\(998\) 0 0
\(999\) 18.3338 + 5.95701i 0.580055 + 0.188471i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 352.2.s.b.79.6 32
4.3 odd 2 88.2.k.b.35.6 yes 32
8.3 odd 2 inner 352.2.s.b.79.5 32
8.5 even 2 88.2.k.b.35.4 32
11.4 even 5 3872.2.g.d.1935.16 32
11.6 odd 10 inner 352.2.s.b.303.5 32
11.7 odd 10 3872.2.g.d.1935.14 32
12.11 even 2 792.2.bp.b.739.3 32
24.5 odd 2 792.2.bp.b.739.5 32
44.3 odd 10 968.2.k.i.403.3 32
44.7 even 10 968.2.g.e.483.1 32
44.15 odd 10 968.2.g.e.483.32 32
44.19 even 10 968.2.k.e.403.6 32
44.27 odd 10 968.2.k.h.699.5 32
44.31 odd 10 968.2.k.e.723.2 32
44.35 even 10 968.2.k.i.723.7 32
44.39 even 10 88.2.k.b.83.4 yes 32
44.43 even 2 968.2.k.h.475.3 32
88.5 even 10 968.2.k.h.699.3 32
88.13 odd 10 968.2.k.i.723.3 32
88.21 odd 2 968.2.k.h.475.5 32
88.29 odd 10 968.2.g.e.483.31 32
88.37 even 10 968.2.g.e.483.2 32
88.51 even 10 3872.2.g.d.1935.13 32
88.53 even 10 968.2.k.e.723.6 32
88.59 odd 10 3872.2.g.d.1935.15 32
88.61 odd 10 88.2.k.b.83.6 yes 32
88.69 even 10 968.2.k.i.403.7 32
88.83 even 10 inner 352.2.s.b.303.6 32
88.85 odd 10 968.2.k.e.403.2 32
132.83 odd 10 792.2.bp.b.523.5 32
264.149 even 10 792.2.bp.b.523.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.k.b.35.4 32 8.5 even 2
88.2.k.b.35.6 yes 32 4.3 odd 2
88.2.k.b.83.4 yes 32 44.39 even 10
88.2.k.b.83.6 yes 32 88.61 odd 10
352.2.s.b.79.5 32 8.3 odd 2 inner
352.2.s.b.79.6 32 1.1 even 1 trivial
352.2.s.b.303.5 32 11.6 odd 10 inner
352.2.s.b.303.6 32 88.83 even 10 inner
792.2.bp.b.523.3 32 264.149 even 10
792.2.bp.b.523.5 32 132.83 odd 10
792.2.bp.b.739.3 32 12.11 even 2
792.2.bp.b.739.5 32 24.5 odd 2
968.2.g.e.483.1 32 44.7 even 10
968.2.g.e.483.2 32 88.37 even 10
968.2.g.e.483.31 32 88.29 odd 10
968.2.g.e.483.32 32 44.15 odd 10
968.2.k.e.403.2 32 88.85 odd 10
968.2.k.e.403.6 32 44.19 even 10
968.2.k.e.723.2 32 44.31 odd 10
968.2.k.e.723.6 32 88.53 even 10
968.2.k.h.475.3 32 44.43 even 2
968.2.k.h.475.5 32 88.21 odd 2
968.2.k.h.699.3 32 88.5 even 10
968.2.k.h.699.5 32 44.27 odd 10
968.2.k.i.403.3 32 44.3 odd 10
968.2.k.i.403.7 32 88.69 even 10
968.2.k.i.723.3 32 88.13 odd 10
968.2.k.i.723.7 32 44.35 even 10
3872.2.g.d.1935.13 32 88.51 even 10
3872.2.g.d.1935.14 32 11.7 odd 10
3872.2.g.d.1935.15 32 88.59 odd 10
3872.2.g.d.1935.16 32 11.4 even 5