Properties

Label 352.2.u.a.95.8
Level $352$
Weight $2$
Character 352.95
Analytic conductor $2.811$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [352,2,Mod(63,352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(352, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("352.63");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 352 = 2^{5} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 352.u (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.81073415115\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 95.8
Character \(\chi\) \(=\) 352.95
Dual form 352.2.u.a.63.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.821048 + 0.266775i) q^{3} +(0.946699 - 0.687817i) q^{5} +(-1.39243 - 4.28545i) q^{7} +(-1.82410 - 1.32529i) q^{9} +(-1.25816 - 3.06872i) q^{11} +(2.26030 - 3.11103i) q^{13} +(0.960777 - 0.312175i) q^{15} +(4.70931 + 6.48181i) q^{17} +(-0.853485 + 2.62676i) q^{19} -3.89002i q^{21} +3.09605i q^{23} +(-1.12194 + 3.45297i) q^{25} +(-2.66643 - 3.67002i) q^{27} +(7.05366 - 2.29187i) q^{29} +(-0.434298 + 0.597760i) q^{31} +(-0.214353 - 2.85521i) q^{33} +(-4.26581 - 3.09929i) q^{35} +(0.572081 + 1.76068i) q^{37} +(2.68576 - 1.95132i) q^{39} +(-0.0835459 - 0.0271457i) q^{41} +8.29153 q^{43} -2.63843 q^{45} +(-2.06484 - 0.670908i) q^{47} +(-10.7631 + 7.81985i) q^{49} +(2.13739 + 6.57821i) q^{51} +(-2.64442 - 1.92129i) q^{53} +(-3.30181 - 2.03977i) q^{55} +(-1.40150 + 1.92900i) q^{57} +(5.86792 - 1.90660i) q^{59} +(-6.81768 - 9.38374i) q^{61} +(-3.13952 + 9.66245i) q^{63} -4.49988i q^{65} +9.54408i q^{67} +(-0.825948 + 2.54201i) q^{69} +(-0.138253 - 0.190289i) q^{71} +(1.49411 - 0.485466i) q^{73} +(-1.84233 + 2.53575i) q^{75} +(-11.3989 + 9.66474i) q^{77} +(12.3705 + 8.98766i) q^{79} +(0.880036 + 2.70847i) q^{81} +(3.59158 - 2.60943i) q^{83} +(8.91660 + 2.89718i) q^{85} +6.40281 q^{87} +8.42612 q^{89} +(-16.4795 - 5.35451i) q^{91} +(-0.516047 + 0.374930i) q^{93} +(0.998734 + 3.07379i) q^{95} +(-10.9895 - 7.98432i) q^{97} +(-1.77192 + 7.26507i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{9} + 4 q^{25} + 36 q^{33} + 40 q^{41} - 96 q^{45} - 4 q^{49} - 8 q^{53} + 20 q^{57} - 8 q^{69} - 40 q^{73} - 72 q^{77} - 72 q^{81} - 80 q^{85} - 40 q^{89} + 8 q^{93} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/352\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(287\) \(321\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.821048 + 0.266775i 0.474032 + 0.154022i 0.536283 0.844038i \(-0.319828\pi\)
−0.0622508 + 0.998061i \(0.519828\pi\)
\(4\) 0 0
\(5\) 0.946699 0.687817i 0.423376 0.307601i −0.355618 0.934631i \(-0.615730\pi\)
0.778995 + 0.627030i \(0.215730\pi\)
\(6\) 0 0
\(7\) −1.39243 4.28545i −0.526288 1.61975i −0.761755 0.647865i \(-0.775662\pi\)
0.235467 0.971882i \(-0.424338\pi\)
\(8\) 0 0
\(9\) −1.82410 1.32529i −0.608033 0.441762i
\(10\) 0 0
\(11\) −1.25816 3.06872i −0.379349 0.925254i
\(12\) 0 0
\(13\) 2.26030 3.11103i 0.626894 0.862846i −0.370938 0.928658i \(-0.620964\pi\)
0.997832 + 0.0658120i \(0.0209638\pi\)
\(14\) 0 0
\(15\) 0.960777 0.312175i 0.248072 0.0806034i
\(16\) 0 0
\(17\) 4.70931 + 6.48181i 1.14218 + 1.57207i 0.762548 + 0.646932i \(0.223948\pi\)
0.379629 + 0.925139i \(0.376052\pi\)
\(18\) 0 0
\(19\) −0.853485 + 2.62676i −0.195803 + 0.602619i 0.804164 + 0.594408i \(0.202614\pi\)
−0.999966 + 0.00821083i \(0.997386\pi\)
\(20\) 0 0
\(21\) 3.89002i 0.848873i
\(22\) 0 0
\(23\) 3.09605i 0.645571i 0.946472 + 0.322785i \(0.104619\pi\)
−0.946472 + 0.322785i \(0.895381\pi\)
\(24\) 0 0
\(25\) −1.12194 + 3.45297i −0.224388 + 0.690594i
\(26\) 0 0
\(27\) −2.66643 3.67002i −0.513154 0.706296i
\(28\) 0 0
\(29\) 7.05366 2.29187i 1.30983 0.425590i 0.430840 0.902428i \(-0.358217\pi\)
0.878991 + 0.476838i \(0.158217\pi\)
\(30\) 0 0
\(31\) −0.434298 + 0.597760i −0.0780022 + 0.107361i −0.846235 0.532809i \(-0.821136\pi\)
0.768233 + 0.640170i \(0.221136\pi\)
\(32\) 0 0
\(33\) −0.214353 2.85521i −0.0373141 0.497028i
\(34\) 0 0
\(35\) −4.26581 3.09929i −0.721054 0.523876i
\(36\) 0 0
\(37\) 0.572081 + 1.76068i 0.0940495 + 0.289455i 0.987005 0.160691i \(-0.0513722\pi\)
−0.892955 + 0.450145i \(0.851372\pi\)
\(38\) 0 0
\(39\) 2.68576 1.95132i 0.430066 0.312461i
\(40\) 0 0
\(41\) −0.0835459 0.0271457i −0.0130477 0.00423945i 0.302486 0.953154i \(-0.402183\pi\)
−0.315534 + 0.948914i \(0.602183\pi\)
\(42\) 0 0
\(43\) 8.29153 1.26445 0.632223 0.774786i \(-0.282142\pi\)
0.632223 + 0.774786i \(0.282142\pi\)
\(44\) 0 0
\(45\) −2.63843 −0.393313
\(46\) 0 0
\(47\) −2.06484 0.670908i −0.301188 0.0978619i 0.154524 0.987989i \(-0.450615\pi\)
−0.455712 + 0.890127i \(0.650615\pi\)
\(48\) 0 0
\(49\) −10.7631 + 7.81985i −1.53759 + 1.11712i
\(50\) 0 0
\(51\) 2.13739 + 6.57821i 0.299294 + 0.921133i
\(52\) 0 0
\(53\) −2.64442 1.92129i −0.363240 0.263909i 0.391162 0.920322i \(-0.372073\pi\)
−0.754402 + 0.656413i \(0.772073\pi\)
\(54\) 0 0
\(55\) −3.30181 2.03977i −0.445217 0.275042i
\(56\) 0 0
\(57\) −1.40150 + 1.92900i −0.185634 + 0.255503i
\(58\) 0 0
\(59\) 5.86792 1.90660i 0.763938 0.248218i 0.0989698 0.995090i \(-0.468445\pi\)
0.664968 + 0.746872i \(0.268445\pi\)
\(60\) 0 0
\(61\) −6.81768 9.38374i −0.872915 1.20146i −0.978333 0.207037i \(-0.933618\pi\)
0.105418 0.994428i \(-0.466382\pi\)
\(62\) 0 0
\(63\) −3.13952 + 9.66245i −0.395542 + 1.21735i
\(64\) 0 0
\(65\) 4.49988i 0.558142i
\(66\) 0 0
\(67\) 9.54408i 1.16600i 0.812474 + 0.582998i \(0.198120\pi\)
−0.812474 + 0.582998i \(0.801880\pi\)
\(68\) 0 0
\(69\) −0.825948 + 2.54201i −0.0994324 + 0.306022i
\(70\) 0 0
\(71\) −0.138253 0.190289i −0.0164077 0.0225832i 0.800734 0.599020i \(-0.204443\pi\)
−0.817142 + 0.576436i \(0.804443\pi\)
\(72\) 0 0
\(73\) 1.49411 0.485466i 0.174873 0.0568195i −0.220272 0.975438i \(-0.570695\pi\)
0.395145 + 0.918619i \(0.370695\pi\)
\(74\) 0 0
\(75\) −1.84233 + 2.53575i −0.212734 + 0.292803i
\(76\) 0 0
\(77\) −11.3989 + 9.66474i −1.29903 + 1.10140i
\(78\) 0 0
\(79\) 12.3705 + 8.98766i 1.39179 + 1.01119i 0.995667 + 0.0929915i \(0.0296430\pi\)
0.396118 + 0.918200i \(0.370357\pi\)
\(80\) 0 0
\(81\) 0.880036 + 2.70847i 0.0977817 + 0.300941i
\(82\) 0 0
\(83\) 3.59158 2.60943i 0.394227 0.286423i −0.372959 0.927848i \(-0.621657\pi\)
0.767185 + 0.641425i \(0.221657\pi\)
\(84\) 0 0
\(85\) 8.91660 + 2.89718i 0.967141 + 0.314243i
\(86\) 0 0
\(87\) 6.40281 0.686453
\(88\) 0 0
\(89\) 8.42612 0.893167 0.446584 0.894742i \(-0.352641\pi\)
0.446584 + 0.894742i \(0.352641\pi\)
\(90\) 0 0
\(91\) −16.4795 5.35451i −1.72752 0.561305i
\(92\) 0 0
\(93\) −0.516047 + 0.374930i −0.0535116 + 0.0388784i
\(94\) 0 0
\(95\) 0.998734 + 3.07379i 0.102468 + 0.315364i
\(96\) 0 0
\(97\) −10.9895 7.98432i −1.11581 0.810685i −0.132243 0.991217i \(-0.542218\pi\)
−0.983569 + 0.180532i \(0.942218\pi\)
\(98\) 0 0
\(99\) −1.77192 + 7.26507i −0.178085 + 0.730167i
\(100\) 0 0
\(101\) −3.67693 + 5.06086i −0.365869 + 0.503575i −0.951772 0.306806i \(-0.900740\pi\)
0.585904 + 0.810381i \(0.300740\pi\)
\(102\) 0 0
\(103\) −12.3038 + 3.99775i −1.21233 + 0.393910i −0.844284 0.535897i \(-0.819974\pi\)
−0.368048 + 0.929807i \(0.619974\pi\)
\(104\) 0 0
\(105\) −2.67562 3.68268i −0.261114 0.359393i
\(106\) 0 0
\(107\) 1.95157 6.00630i 0.188665 0.580651i −0.811327 0.584592i \(-0.801255\pi\)
0.999992 + 0.00394122i \(0.00125453\pi\)
\(108\) 0 0
\(109\) 1.65134i 0.158170i 0.996868 + 0.0790849i \(0.0251998\pi\)
−0.996868 + 0.0790849i \(0.974800\pi\)
\(110\) 0 0
\(111\) 1.59822i 0.151697i
\(112\) 0 0
\(113\) 0.999070 3.07482i 0.0939846 0.289255i −0.893003 0.450051i \(-0.851406\pi\)
0.986988 + 0.160796i \(0.0514060\pi\)
\(114\) 0 0
\(115\) 2.12951 + 2.93103i 0.198578 + 0.273320i
\(116\) 0 0
\(117\) −8.24602 + 2.67929i −0.762345 + 0.247701i
\(118\) 0 0
\(119\) 21.2201 29.2070i 1.94524 2.67740i
\(120\) 0 0
\(121\) −7.83407 + 7.72188i −0.712188 + 0.701989i
\(122\) 0 0
\(123\) −0.0613534 0.0445759i −0.00553205 0.00401927i
\(124\) 0 0
\(125\) 3.12091 + 9.60517i 0.279142 + 0.859112i
\(126\) 0 0
\(127\) −15.1368 + 10.9975i −1.34318 + 0.975874i −0.343855 + 0.939023i \(0.611733\pi\)
−0.999321 + 0.0368512i \(0.988267\pi\)
\(128\) 0 0
\(129\) 6.80775 + 2.21197i 0.599389 + 0.194753i
\(130\) 0 0
\(131\) 13.7690 1.20300 0.601500 0.798873i \(-0.294570\pi\)
0.601500 + 0.798873i \(0.294570\pi\)
\(132\) 0 0
\(133\) 12.4452 1.07914
\(134\) 0 0
\(135\) −5.04861 1.64039i −0.434515 0.141182i
\(136\) 0 0
\(137\) 10.2620 7.45580i 0.876744 0.636992i −0.0556438 0.998451i \(-0.517721\pi\)
0.932388 + 0.361459i \(0.117721\pi\)
\(138\) 0 0
\(139\) 2.13372 + 6.56691i 0.180980 + 0.556998i 0.999856 0.0169719i \(-0.00540259\pi\)
−0.818876 + 0.573970i \(0.805403\pi\)
\(140\) 0 0
\(141\) −1.51635 1.10170i −0.127700 0.0927795i
\(142\) 0 0
\(143\) −12.3907 3.02204i −1.03616 0.252716i
\(144\) 0 0
\(145\) 5.10130 7.02134i 0.423640 0.583090i
\(146\) 0 0
\(147\) −10.9232 + 3.54915i −0.900927 + 0.292729i
\(148\) 0 0
\(149\) 3.42416 + 4.71295i 0.280518 + 0.386100i 0.925905 0.377755i \(-0.123304\pi\)
−0.645387 + 0.763856i \(0.723304\pi\)
\(150\) 0 0
\(151\) 0.610801 1.87985i 0.0497063 0.152980i −0.923122 0.384506i \(-0.874372\pi\)
0.972829 + 0.231526i \(0.0743718\pi\)
\(152\) 0 0
\(153\) 18.0647i 1.46044i
\(154\) 0 0
\(155\) 0.864616i 0.0694476i
\(156\) 0 0
\(157\) 2.27594 7.00462i 0.181640 0.559029i −0.818235 0.574884i \(-0.805047\pi\)
0.999874 + 0.0158551i \(0.00504703\pi\)
\(158\) 0 0
\(159\) −1.65865 2.28293i −0.131539 0.181048i
\(160\) 0 0
\(161\) 13.2680 4.31102i 1.04566 0.339756i
\(162\) 0 0
\(163\) −0.416303 + 0.572992i −0.0326073 + 0.0448802i −0.825009 0.565119i \(-0.808830\pi\)
0.792402 + 0.609999i \(0.208830\pi\)
\(164\) 0 0
\(165\) −2.16679 2.55559i −0.168684 0.198952i
\(166\) 0 0
\(167\) −8.89406 6.46192i −0.688243 0.500038i 0.187839 0.982200i \(-0.439852\pi\)
−0.876082 + 0.482162i \(0.839852\pi\)
\(168\) 0 0
\(169\) −0.552362 1.70000i −0.0424894 0.130769i
\(170\) 0 0
\(171\) 5.03804 3.66035i 0.385269 0.279914i
\(172\) 0 0
\(173\) 12.6386 + 4.10654i 0.960898 + 0.312215i 0.747136 0.664671i \(-0.231428\pi\)
0.213762 + 0.976886i \(0.431428\pi\)
\(174\) 0 0
\(175\) 16.3598 1.23668
\(176\) 0 0
\(177\) 5.32648 0.400362
\(178\) 0 0
\(179\) −3.38857 1.10101i −0.253273 0.0822935i 0.179629 0.983734i \(-0.442510\pi\)
−0.432902 + 0.901441i \(0.642510\pi\)
\(180\) 0 0
\(181\) −13.2963 + 9.66033i −0.988306 + 0.718047i −0.959550 0.281540i \(-0.909155\pi\)
−0.0287567 + 0.999586i \(0.509155\pi\)
\(182\) 0 0
\(183\) −3.09430 9.52329i −0.228738 0.703982i
\(184\) 0 0
\(185\) 1.75262 + 1.27335i 0.128855 + 0.0936185i
\(186\) 0 0
\(187\) 13.9658 22.6067i 1.02128 1.65317i
\(188\) 0 0
\(189\) −12.0149 + 16.5371i −0.873955 + 1.20290i
\(190\) 0 0
\(191\) 6.02166 1.95655i 0.435712 0.141571i −0.0829446 0.996554i \(-0.526432\pi\)
0.518656 + 0.854983i \(0.326432\pi\)
\(192\) 0 0
\(193\) −7.00924 9.64740i −0.504536 0.694435i 0.478450 0.878115i \(-0.341199\pi\)
−0.982986 + 0.183680i \(0.941199\pi\)
\(194\) 0 0
\(195\) 1.20046 3.69462i 0.0859664 0.264577i
\(196\) 0 0
\(197\) 21.1804i 1.50904i −0.656275 0.754522i \(-0.727869\pi\)
0.656275 0.754522i \(-0.272131\pi\)
\(198\) 0 0
\(199\) 9.63234i 0.682819i 0.939915 + 0.341409i \(0.110904\pi\)
−0.939915 + 0.341409i \(0.889096\pi\)
\(200\) 0 0
\(201\) −2.54612 + 7.83615i −0.179590 + 0.552720i
\(202\) 0 0
\(203\) −19.6434 27.0368i −1.37870 1.89761i
\(204\) 0 0
\(205\) −0.0977640 + 0.0317655i −0.00682814 + 0.00221860i
\(206\) 0 0
\(207\) 4.10315 5.64750i 0.285189 0.392529i
\(208\) 0 0
\(209\) 9.13459 0.685773i 0.631853 0.0474359i
\(210\) 0 0
\(211\) −20.0237 14.5480i −1.37849 1.00153i −0.997020 0.0771453i \(-0.975419\pi\)
−0.381466 0.924383i \(-0.624581\pi\)
\(212\) 0 0
\(213\) −0.0627483 0.193119i −0.00429944 0.0132323i
\(214\) 0 0
\(215\) 7.84958 5.70306i 0.535337 0.388945i
\(216\) 0 0
\(217\) 3.16640 + 1.02882i 0.214949 + 0.0698412i
\(218\) 0 0
\(219\) 1.35625 0.0916467
\(220\) 0 0
\(221\) 30.8096 2.07248
\(222\) 0 0
\(223\) 5.16411 + 1.67792i 0.345814 + 0.112362i 0.476774 0.879026i \(-0.341806\pi\)
−0.130960 + 0.991388i \(0.541806\pi\)
\(224\) 0 0
\(225\) 6.62270 4.81168i 0.441514 0.320778i
\(226\) 0 0
\(227\) 7.02945 + 21.6344i 0.466561 + 1.43593i 0.857009 + 0.515301i \(0.172320\pi\)
−0.390448 + 0.920625i \(0.627680\pi\)
\(228\) 0 0
\(229\) −5.54714 4.03023i −0.366565 0.266325i 0.389220 0.921145i \(-0.372745\pi\)
−0.755785 + 0.654820i \(0.772745\pi\)
\(230\) 0 0
\(231\) −11.9374 + 4.89427i −0.785423 + 0.322019i
\(232\) 0 0
\(233\) 0.0558764 0.0769073i 0.00366059 0.00503837i −0.807183 0.590302i \(-0.799009\pi\)
0.810843 + 0.585263i \(0.199009\pi\)
\(234\) 0 0
\(235\) −2.41624 + 0.785085i −0.157618 + 0.0512133i
\(236\) 0 0
\(237\) 7.75906 + 10.6794i 0.504005 + 0.693704i
\(238\) 0 0
\(239\) −6.60521 + 20.3288i −0.427256 + 1.31496i 0.473562 + 0.880761i \(0.342968\pi\)
−0.900818 + 0.434197i \(0.857032\pi\)
\(240\) 0 0
\(241\) 10.7913i 0.695130i −0.937656 0.347565i \(-0.887009\pi\)
0.937656 0.347565i \(-0.112991\pi\)
\(242\) 0 0
\(243\) 16.0678i 1.03075i
\(244\) 0 0
\(245\) −4.81079 + 14.8061i −0.307350 + 0.945926i
\(246\) 0 0
\(247\) 6.24280 + 8.59247i 0.397220 + 0.546726i
\(248\) 0 0
\(249\) 3.64499 1.18433i 0.230992 0.0750538i
\(250\) 0 0
\(251\) −3.62774 + 4.99316i −0.228981 + 0.315166i −0.908012 0.418944i \(-0.862400\pi\)
0.679031 + 0.734110i \(0.262400\pi\)
\(252\) 0 0
\(253\) 9.50090 3.89532i 0.597317 0.244897i
\(254\) 0 0
\(255\) 6.54807 + 4.75745i 0.410056 + 0.297923i
\(256\) 0 0
\(257\) 4.41700 + 13.5941i 0.275525 + 0.847978i 0.989080 + 0.147379i \(0.0470837\pi\)
−0.713555 + 0.700599i \(0.752916\pi\)
\(258\) 0 0
\(259\) 6.74874 4.90325i 0.419346 0.304673i
\(260\) 0 0
\(261\) −15.9040 5.16751i −0.984431 0.319861i
\(262\) 0 0
\(263\) −22.8100 −1.40653 −0.703263 0.710929i \(-0.748274\pi\)
−0.703263 + 0.710929i \(0.748274\pi\)
\(264\) 0 0
\(265\) −3.82497 −0.234966
\(266\) 0 0
\(267\) 6.91825 + 2.24788i 0.423390 + 0.137568i
\(268\) 0 0
\(269\) −17.9057 + 13.0093i −1.09173 + 0.793190i −0.979691 0.200514i \(-0.935739\pi\)
−0.112041 + 0.993704i \(0.535739\pi\)
\(270\) 0 0
\(271\) −4.08031 12.5579i −0.247861 0.762839i −0.995153 0.0983421i \(-0.968646\pi\)
0.747291 0.664497i \(-0.231354\pi\)
\(272\) 0 0
\(273\) −12.1020 8.79262i −0.732446 0.532153i
\(274\) 0 0
\(275\) 12.0078 0.901476i 0.724096 0.0543610i
\(276\) 0 0
\(277\) 15.0108 20.6606i 0.901912 1.24138i −0.0679420 0.997689i \(-0.521643\pi\)
0.969854 0.243686i \(-0.0783567\pi\)
\(278\) 0 0
\(279\) 1.58441 0.514804i 0.0948559 0.0308205i
\(280\) 0 0
\(281\) 0.140020 + 0.192720i 0.00835286 + 0.0114967i 0.813173 0.582022i \(-0.197738\pi\)
−0.804820 + 0.593519i \(0.797738\pi\)
\(282\) 0 0
\(283\) −6.84605 + 21.0700i −0.406955 + 1.25248i 0.512296 + 0.858809i \(0.328795\pi\)
−0.919252 + 0.393671i \(0.871205\pi\)
\(284\) 0 0
\(285\) 2.79016i 0.165275i
\(286\) 0 0
\(287\) 0.395830i 0.0233651i
\(288\) 0 0
\(289\) −14.5830 + 44.8818i −0.857823 + 2.64011i
\(290\) 0 0
\(291\) −6.89287 9.48723i −0.404067 0.556151i
\(292\) 0 0
\(293\) 2.20964 0.717956i 0.129089 0.0419434i −0.243760 0.969836i \(-0.578381\pi\)
0.372849 + 0.927892i \(0.378381\pi\)
\(294\) 0 0
\(295\) 4.24376 5.84103i 0.247081 0.340078i
\(296\) 0 0
\(297\) −7.90748 + 12.8000i −0.458838 + 0.742731i
\(298\) 0 0
\(299\) 9.63191 + 6.99800i 0.557028 + 0.404705i
\(300\) 0 0
\(301\) −11.5454 35.5329i −0.665463 2.04808i
\(302\) 0 0
\(303\) −4.36905 + 3.17430i −0.250995 + 0.182359i
\(304\) 0 0
\(305\) −12.9086 4.19425i −0.739143 0.240162i
\(306\) 0 0
\(307\) 21.3506 1.21854 0.609272 0.792961i \(-0.291462\pi\)
0.609272 + 0.792961i \(0.291462\pi\)
\(308\) 0 0
\(309\) −11.1685 −0.635355
\(310\) 0 0
\(311\) 22.0461 + 7.16322i 1.25012 + 0.406189i 0.857964 0.513709i \(-0.171729\pi\)
0.392157 + 0.919898i \(0.371729\pi\)
\(312\) 0 0
\(313\) −18.5533 + 13.4798i −1.04869 + 0.761921i −0.971964 0.235131i \(-0.924448\pi\)
−0.0767304 + 0.997052i \(0.524448\pi\)
\(314\) 0 0
\(315\) 3.67382 + 11.3068i 0.206996 + 0.637068i
\(316\) 0 0
\(317\) −21.0321 15.2807i −1.18128 0.858249i −0.188963 0.981984i \(-0.560513\pi\)
−0.992315 + 0.123736i \(0.960513\pi\)
\(318\) 0 0
\(319\) −15.9077 18.7622i −0.890662 1.05048i
\(320\) 0 0
\(321\) 3.20466 4.41083i 0.178867 0.246189i
\(322\) 0 0
\(323\) −21.0455 + 6.83809i −1.17100 + 0.380481i
\(324\) 0 0
\(325\) 8.20640 + 11.2951i 0.455209 + 0.626541i
\(326\) 0 0
\(327\) −0.440536 + 1.35583i −0.0243617 + 0.0749777i
\(328\) 0 0
\(329\) 9.78296i 0.539352i
\(330\) 0 0
\(331\) 4.78936i 0.263247i 0.991300 + 0.131624i \(0.0420190\pi\)
−0.991300 + 0.131624i \(0.957981\pi\)
\(332\) 0 0
\(333\) 1.28988 3.96983i 0.0706848 0.217545i
\(334\) 0 0
\(335\) 6.56458 + 9.03537i 0.358661 + 0.493655i
\(336\) 0 0
\(337\) −2.66425 + 0.865668i −0.145131 + 0.0471559i −0.380682 0.924706i \(-0.624311\pi\)
0.235551 + 0.971862i \(0.424311\pi\)
\(338\) 0 0
\(339\) 1.64057 2.25805i 0.0891035 0.122640i
\(340\) 0 0
\(341\) 2.38077 + 0.580661i 0.128926 + 0.0314446i
\(342\) 0 0
\(343\) 22.9805 + 16.6963i 1.24083 + 0.901515i
\(344\) 0 0
\(345\) 0.966511 + 2.97461i 0.0520352 + 0.160148i
\(346\) 0 0
\(347\) 10.8961 7.91651i 0.584936 0.424981i −0.255564 0.966792i \(-0.582261\pi\)
0.840500 + 0.541811i \(0.182261\pi\)
\(348\) 0 0
\(349\) 10.0828 + 3.27610i 0.539720 + 0.175366i 0.566176 0.824284i \(-0.308422\pi\)
−0.0264563 + 0.999650i \(0.508422\pi\)
\(350\) 0 0
\(351\) −17.4445 −0.931118
\(352\) 0 0
\(353\) −24.1753 −1.28672 −0.643360 0.765564i \(-0.722460\pi\)
−0.643360 + 0.765564i \(0.722460\pi\)
\(354\) 0 0
\(355\) −0.261768 0.0850537i −0.0138932 0.00451418i
\(356\) 0 0
\(357\) 25.2144 18.3193i 1.33449 0.969563i
\(358\) 0 0
\(359\) 0.575034 + 1.76977i 0.0303492 + 0.0934051i 0.965084 0.261942i \(-0.0843628\pi\)
−0.934735 + 0.355347i \(0.884363\pi\)
\(360\) 0 0
\(361\) 9.19992 + 6.68413i 0.484206 + 0.351796i
\(362\) 0 0
\(363\) −8.49215 + 4.25010i −0.445722 + 0.223072i
\(364\) 0 0
\(365\) 1.08056 1.48727i 0.0565592 0.0778470i
\(366\) 0 0
\(367\) 11.8946 3.86477i 0.620891 0.201740i 0.0183550 0.999832i \(-0.494157\pi\)
0.602536 + 0.798092i \(0.294157\pi\)
\(368\) 0 0
\(369\) 0.116420 + 0.160239i 0.00606059 + 0.00834169i
\(370\) 0 0
\(371\) −4.55141 + 14.0078i −0.236297 + 0.727248i
\(372\) 0 0
\(373\) 7.74672i 0.401110i −0.979682 0.200555i \(-0.935725\pi\)
0.979682 0.200555i \(-0.0642745\pi\)
\(374\) 0 0
\(375\) 8.71888i 0.450241i
\(376\) 0 0
\(377\) 8.81328 27.1245i 0.453907 1.39698i
\(378\) 0 0
\(379\) 7.54898 + 10.3903i 0.387765 + 0.533713i 0.957621 0.288032i \(-0.0930009\pi\)
−0.569856 + 0.821745i \(0.693001\pi\)
\(380\) 0 0
\(381\) −15.3619 + 4.99139i −0.787015 + 0.255717i
\(382\) 0 0
\(383\) 9.92745 13.6640i 0.507269 0.698196i −0.476187 0.879344i \(-0.657981\pi\)
0.983456 + 0.181148i \(0.0579814\pi\)
\(384\) 0 0
\(385\) −4.14379 + 16.9900i −0.211187 + 0.865890i
\(386\) 0 0
\(387\) −15.1246 10.9887i −0.768826 0.558585i
\(388\) 0 0
\(389\) 7.35307 + 22.6304i 0.372815 + 1.14741i 0.944941 + 0.327241i \(0.106119\pi\)
−0.572126 + 0.820166i \(0.693881\pi\)
\(390\) 0 0
\(391\) −20.0680 + 14.5803i −1.01488 + 0.737356i
\(392\) 0 0
\(393\) 11.3050 + 3.67321i 0.570261 + 0.185289i
\(394\) 0 0
\(395\) 17.8930 0.900292
\(396\) 0 0
\(397\) −10.8989 −0.547002 −0.273501 0.961872i \(-0.588182\pi\)
−0.273501 + 0.961872i \(0.588182\pi\)
\(398\) 0 0
\(399\) 10.2181 + 3.32008i 0.511547 + 0.166212i
\(400\) 0 0
\(401\) 3.91875 2.84714i 0.195693 0.142179i −0.485624 0.874168i \(-0.661408\pi\)
0.681317 + 0.731988i \(0.261408\pi\)
\(402\) 0 0
\(403\) 0.878008 + 2.70223i 0.0437367 + 0.134608i
\(404\) 0 0
\(405\) 2.69606 + 1.95880i 0.133968 + 0.0973337i
\(406\) 0 0
\(407\) 4.68327 3.97078i 0.232141 0.196824i
\(408\) 0 0
\(409\) −11.3951 + 15.6840i −0.563450 + 0.775523i −0.991760 0.128109i \(-0.959109\pi\)
0.428310 + 0.903632i \(0.359109\pi\)
\(410\) 0 0
\(411\) 10.4146 3.38392i 0.513716 0.166917i
\(412\) 0 0
\(413\) −16.3413 22.4919i −0.804102 1.10675i
\(414\) 0 0
\(415\) 1.60533 4.94070i 0.0788025 0.242529i
\(416\) 0 0
\(417\) 5.96097i 0.291910i
\(418\) 0 0
\(419\) 25.7867i 1.25976i −0.776691 0.629882i \(-0.783103\pi\)
0.776691 0.629882i \(-0.216897\pi\)
\(420\) 0 0
\(421\) −2.92555 + 9.00393i −0.142583 + 0.438824i −0.996692 0.0812687i \(-0.974103\pi\)
0.854110 + 0.520093i \(0.174103\pi\)
\(422\) 0 0
\(423\) 2.87733 + 3.96031i 0.139901 + 0.192557i
\(424\) 0 0
\(425\) −27.6651 + 8.98893i −1.34195 + 0.436027i
\(426\) 0 0
\(427\) −30.7204 + 42.2830i −1.48666 + 2.04622i
\(428\) 0 0
\(429\) −9.36716 5.78677i −0.452251 0.279388i
\(430\) 0 0
\(431\) 6.42802 + 4.67023i 0.309627 + 0.224957i 0.731736 0.681588i \(-0.238710\pi\)
−0.422110 + 0.906545i \(0.638710\pi\)
\(432\) 0 0
\(433\) −4.71114 14.4994i −0.226403 0.696797i −0.998146 0.0608624i \(-0.980615\pi\)
0.771743 0.635934i \(-0.219385\pi\)
\(434\) 0 0
\(435\) 6.06153 4.40396i 0.290628 0.211154i
\(436\) 0 0
\(437\) −8.13256 2.64243i −0.389033 0.126405i
\(438\) 0 0
\(439\) −6.03531 −0.288050 −0.144025 0.989574i \(-0.546005\pi\)
−0.144025 + 0.989574i \(0.546005\pi\)
\(440\) 0 0
\(441\) 29.9965 1.42841
\(442\) 0 0
\(443\) −27.8478 9.04831i −1.32309 0.429898i −0.439535 0.898225i \(-0.644857\pi\)
−0.883555 + 0.468327i \(0.844857\pi\)
\(444\) 0 0
\(445\) 7.97700 5.79563i 0.378146 0.274739i
\(446\) 0 0
\(447\) 1.55410 + 4.78304i 0.0735066 + 0.226230i
\(448\) 0 0
\(449\) 21.5716 + 15.6727i 1.01802 + 0.739638i 0.965877 0.259001i \(-0.0833933\pi\)
0.0521477 + 0.998639i \(0.483393\pi\)
\(450\) 0 0
\(451\) 0.0218115 + 0.290532i 0.00102706 + 0.0136806i
\(452\) 0 0
\(453\) 1.00299 1.38050i 0.0471248 0.0648617i
\(454\) 0 0
\(455\) −19.2840 + 6.26576i −0.904049 + 0.293743i
\(456\) 0 0
\(457\) 5.80699 + 7.99263i 0.271639 + 0.373880i 0.922942 0.384938i \(-0.125777\pi\)
−0.651303 + 0.758818i \(0.725777\pi\)
\(458\) 0 0
\(459\) 11.2314 34.5666i 0.524235 1.61343i
\(460\) 0 0
\(461\) 19.1288i 0.890917i −0.895302 0.445459i \(-0.853041\pi\)
0.895302 0.445459i \(-0.146959\pi\)
\(462\) 0 0
\(463\) 32.6826i 1.51889i −0.650572 0.759445i \(-0.725471\pi\)
0.650572 0.759445i \(-0.274529\pi\)
\(464\) 0 0
\(465\) −0.230658 + 0.709891i −0.0106965 + 0.0329204i
\(466\) 0 0
\(467\) −6.44149 8.86594i −0.298076 0.410267i 0.633540 0.773710i \(-0.281601\pi\)
−0.931616 + 0.363443i \(0.881601\pi\)
\(468\) 0 0
\(469\) 40.9007 13.2894i 1.88862 0.613649i
\(470\) 0 0
\(471\) 3.73731 5.14397i 0.172206 0.237021i
\(472\) 0 0
\(473\) −10.4321 25.4444i −0.479667 1.16993i
\(474\) 0 0
\(475\) −8.11256 5.89412i −0.372230 0.270441i
\(476\) 0 0
\(477\) 2.27744 + 7.00924i 0.104277 + 0.320931i
\(478\) 0 0
\(479\) −9.80461 + 7.12347i −0.447984 + 0.325479i −0.788799 0.614651i \(-0.789297\pi\)
0.340815 + 0.940130i \(0.389297\pi\)
\(480\) 0 0
\(481\) 6.77062 + 2.19991i 0.308714 + 0.100307i
\(482\) 0 0
\(483\) 12.0437 0.548008
\(484\) 0 0
\(485\) −15.8955 −0.721776
\(486\) 0 0
\(487\) −31.7555 10.3180i −1.43898 0.467553i −0.517400 0.855743i \(-0.673100\pi\)
−0.921579 + 0.388191i \(0.873100\pi\)
\(488\) 0 0
\(489\) −0.494664 + 0.359395i −0.0223695 + 0.0162524i
\(490\) 0 0
\(491\) −0.933713 2.87367i −0.0421379 0.129687i 0.927774 0.373141i \(-0.121719\pi\)
−0.969912 + 0.243454i \(0.921719\pi\)
\(492\) 0 0
\(493\) 48.0734 + 34.9274i 2.16512 + 1.57305i
\(494\) 0 0
\(495\) 3.31956 + 8.09659i 0.149203 + 0.363915i
\(496\) 0 0
\(497\) −0.622968 + 0.857442i −0.0279439 + 0.0384615i
\(498\) 0 0
\(499\) 39.3585 12.7883i 1.76193 0.572485i 0.764530 0.644588i \(-0.222971\pi\)
0.997397 + 0.0721028i \(0.0229710\pi\)
\(500\) 0 0
\(501\) −5.57858 7.67826i −0.249233 0.343039i
\(502\) 0 0
\(503\) 6.83618 21.0396i 0.304810 0.938109i −0.674938 0.737875i \(-0.735830\pi\)
0.979748 0.200235i \(-0.0641704\pi\)
\(504\) 0 0
\(505\) 7.32017i 0.325743i
\(506\) 0 0
\(507\) 1.54314i 0.0685331i
\(508\) 0 0
\(509\) 3.10119 9.54450i 0.137458 0.423052i −0.858506 0.512803i \(-0.828607\pi\)
0.995964 + 0.0897508i \(0.0286071\pi\)
\(510\) 0 0
\(511\) −4.16088 5.72696i −0.184067 0.253346i
\(512\) 0 0
\(513\) 11.9160 3.87175i 0.526105 0.170942i
\(514\) 0 0
\(515\) −8.89829 + 12.2474i −0.392105 + 0.539687i
\(516\) 0 0
\(517\) 0.539073 + 7.18053i 0.0237084 + 0.315799i
\(518\) 0 0
\(519\) 9.28142 + 6.74334i 0.407409 + 0.296000i
\(520\) 0 0
\(521\) 0.550645 + 1.69471i 0.0241242 + 0.0742467i 0.962394 0.271658i \(-0.0875720\pi\)
−0.938270 + 0.345905i \(0.887572\pi\)
\(522\) 0 0
\(523\) −12.4675 + 9.05816i −0.545165 + 0.396086i −0.826000 0.563671i \(-0.809389\pi\)
0.280835 + 0.959756i \(0.409389\pi\)
\(524\) 0 0
\(525\) 13.4321 + 4.36437i 0.586227 + 0.190477i
\(526\) 0 0
\(527\) −5.91981 −0.257871
\(528\) 0 0
\(529\) 13.4145 0.583238
\(530\) 0 0
\(531\) −13.2305 4.29884i −0.574153 0.186554i
\(532\) 0 0
\(533\) −0.273290 + 0.198557i −0.0118375 + 0.00860044i
\(534\) 0 0
\(535\) −2.28369 7.02848i −0.0987325 0.303867i
\(536\) 0 0
\(537\) −2.48845 1.80797i −0.107385 0.0780195i
\(538\) 0 0
\(539\) 37.5386 + 23.1903i 1.61690 + 0.998877i
\(540\) 0 0
\(541\) 9.04600 12.4508i 0.388918 0.535300i −0.569002 0.822336i \(-0.692670\pi\)
0.957920 + 0.287037i \(0.0926702\pi\)
\(542\) 0 0
\(543\) −13.4940 + 4.38448i −0.579085 + 0.188156i
\(544\) 0 0
\(545\) 1.13582 + 1.56332i 0.0486532 + 0.0669654i
\(546\) 0 0
\(547\) 10.0471 30.9217i 0.429582 1.32212i −0.468956 0.883221i \(-0.655370\pi\)
0.898538 0.438895i \(-0.144630\pi\)
\(548\) 0 0
\(549\) 26.1523i 1.11615i
\(550\) 0 0
\(551\) 20.4843i 0.872661i
\(552\) 0 0
\(553\) 21.2912 65.5276i 0.905395 2.78652i
\(554\) 0 0
\(555\) 1.09928 + 1.51304i 0.0466620 + 0.0642248i
\(556\) 0 0
\(557\) −10.3610 + 3.36648i −0.439008 + 0.142642i −0.520178 0.854058i \(-0.674134\pi\)
0.0811697 + 0.996700i \(0.474134\pi\)
\(558\) 0 0
\(559\) 18.7413 25.7952i 0.792674 1.09102i
\(560\) 0 0
\(561\) 17.4975 14.8355i 0.738745 0.626355i
\(562\) 0 0
\(563\) −7.04716 5.12006i −0.297002 0.215785i 0.429297 0.903163i \(-0.358761\pi\)
−0.726299 + 0.687379i \(0.758761\pi\)
\(564\) 0 0
\(565\) −1.16910 3.59811i −0.0491842 0.151374i
\(566\) 0 0
\(567\) 10.3816 7.54270i 0.435987 0.316763i
\(568\) 0 0
\(569\) 13.3128 + 4.32558i 0.558100 + 0.181338i 0.574466 0.818528i \(-0.305210\pi\)
−0.0163661 + 0.999866i \(0.505210\pi\)
\(570\) 0 0
\(571\) −29.5709 −1.23751 −0.618753 0.785586i \(-0.712362\pi\)
−0.618753 + 0.785586i \(0.712362\pi\)
\(572\) 0 0
\(573\) 5.46603 0.228347
\(574\) 0 0
\(575\) −10.6906 3.47358i −0.445828 0.144858i
\(576\) 0 0
\(577\) −7.64850 + 5.55696i −0.318411 + 0.231339i −0.735497 0.677528i \(-0.763051\pi\)
0.417086 + 0.908867i \(0.363051\pi\)
\(578\) 0 0
\(579\) −3.18125 9.79087i −0.132208 0.406895i
\(580\) 0 0
\(581\) −16.1836 11.7581i −0.671409 0.487807i
\(582\) 0 0
\(583\) −2.56878 + 10.5323i −0.106388 + 0.436202i
\(584\) 0 0
\(585\) −5.96363 + 8.20823i −0.246566 + 0.339369i
\(586\) 0 0
\(587\) −27.7154 + 9.00528i −1.14394 + 0.371688i −0.818856 0.573998i \(-0.805392\pi\)
−0.325081 + 0.945686i \(0.605392\pi\)
\(588\) 0 0
\(589\) −1.19950 1.65097i −0.0494246 0.0680272i
\(590\) 0 0
\(591\) 5.65041 17.3902i 0.232427 0.715336i
\(592\) 0 0
\(593\) 19.7983i 0.813018i 0.913647 + 0.406509i \(0.133254\pi\)
−0.913647 + 0.406509i \(0.866746\pi\)
\(594\) 0 0
\(595\) 42.2458i 1.73191i
\(596\) 0 0
\(597\) −2.56967 + 7.90862i −0.105169 + 0.323678i
\(598\) 0 0
\(599\) 19.2444 + 26.4876i 0.786305 + 1.08226i 0.994558 + 0.104181i \(0.0332220\pi\)
−0.208254 + 0.978075i \(0.566778\pi\)
\(600\) 0 0
\(601\) −14.6558 + 4.76196i −0.597823 + 0.194245i −0.592269 0.805740i \(-0.701768\pi\)
−0.00555393 + 0.999985i \(0.501768\pi\)
\(602\) 0 0
\(603\) 12.6486 17.4094i 0.515092 0.708964i
\(604\) 0 0
\(605\) −2.10527 + 12.6987i −0.0855913 + 0.516275i
\(606\) 0 0
\(607\) −5.82959 4.23544i −0.236616 0.171911i 0.463159 0.886275i \(-0.346716\pi\)
−0.699774 + 0.714364i \(0.746716\pi\)
\(608\) 0 0
\(609\) −8.91544 27.4389i −0.361272 1.11188i
\(610\) 0 0
\(611\) −6.75437 + 4.90734i −0.273253 + 0.198530i
\(612\) 0 0
\(613\) −32.9602 10.7094i −1.33125 0.432550i −0.444907 0.895577i \(-0.646763\pi\)
−0.886344 + 0.463027i \(0.846763\pi\)
\(614\) 0 0
\(615\) −0.0887432 −0.00357847
\(616\) 0 0
\(617\) 1.08499 0.0436801 0.0218400 0.999761i \(-0.493048\pi\)
0.0218400 + 0.999761i \(0.493048\pi\)
\(618\) 0 0
\(619\) 28.5161 + 9.26544i 1.14616 + 0.372409i 0.819695 0.572800i \(-0.194143\pi\)
0.326463 + 0.945210i \(0.394143\pi\)
\(620\) 0 0
\(621\) 11.3626 8.25539i 0.455964 0.331277i
\(622\) 0 0
\(623\) −11.7328 36.1097i −0.470063 1.44671i
\(624\) 0 0
\(625\) −5.12521 3.72369i −0.205009 0.148947i
\(626\) 0 0
\(627\) 7.68289 + 1.87383i 0.306825 + 0.0748334i
\(628\) 0 0
\(629\) −8.71832 + 11.9997i −0.347622 + 0.478461i
\(630\) 0 0
\(631\) 37.8220 12.2891i 1.50567 0.489222i 0.564005 0.825771i \(-0.309260\pi\)
0.941666 + 0.336549i \(0.109260\pi\)
\(632\) 0 0
\(633\) −12.5593 17.2864i −0.499189 0.687075i
\(634\) 0 0
\(635\) −6.76571 + 20.8227i −0.268489 + 0.826324i
\(636\) 0 0
\(637\) 51.1596i 2.02702i
\(638\) 0 0
\(639\) 0.530332i 0.0209796i
\(640\) 0 0
\(641\) 8.52476 26.2365i 0.336708 1.03628i −0.629167 0.777270i \(-0.716604\pi\)
0.965875 0.259010i \(-0.0833963\pi\)
\(642\) 0 0
\(643\) −19.7858 27.2328i −0.780277 1.07396i −0.995251 0.0973391i \(-0.968967\pi\)
0.214975 0.976620i \(-0.431033\pi\)
\(644\) 0 0
\(645\) 7.96632 2.58841i 0.313673 0.101919i
\(646\) 0 0
\(647\) −17.7392 + 24.4160i −0.697402 + 0.959891i 0.302576 + 0.953125i \(0.402154\pi\)
−0.999977 + 0.00676544i \(0.997846\pi\)
\(648\) 0 0
\(649\) −13.2336 15.6082i −0.519464 0.612674i
\(650\) 0 0
\(651\) 2.32530 + 1.68943i 0.0911357 + 0.0662140i
\(652\) 0 0
\(653\) 5.80704 + 17.8722i 0.227247 + 0.699394i 0.998056 + 0.0623276i \(0.0198524\pi\)
−0.770809 + 0.637067i \(0.780148\pi\)
\(654\) 0 0
\(655\) 13.0351 9.47052i 0.509322 0.370044i
\(656\) 0 0
\(657\) −3.36879 1.09459i −0.131429 0.0427039i
\(658\) 0 0
\(659\) −35.7219 −1.39153 −0.695763 0.718272i \(-0.744934\pi\)
−0.695763 + 0.718272i \(0.744934\pi\)
\(660\) 0 0
\(661\) −43.4094 −1.68843 −0.844215 0.536005i \(-0.819933\pi\)
−0.844215 + 0.536005i \(0.819933\pi\)
\(662\) 0 0
\(663\) 25.2962 + 8.21922i 0.982422 + 0.319208i
\(664\) 0 0
\(665\) 11.7819 8.56005i 0.456882 0.331944i
\(666\) 0 0
\(667\) 7.09575 + 21.8385i 0.274749 + 0.845589i
\(668\) 0 0
\(669\) 3.79236 + 2.75531i 0.146621 + 0.106526i
\(670\) 0 0
\(671\) −20.2183 + 32.7278i −0.780519 + 1.26344i
\(672\) 0 0
\(673\) 11.9404 16.4346i 0.460269 0.633506i −0.514296 0.857613i \(-0.671947\pi\)
0.974564 + 0.224107i \(0.0719466\pi\)
\(674\) 0 0
\(675\) 15.6641 5.08956i 0.602910 0.195897i
\(676\) 0 0
\(677\) 13.9695 + 19.2274i 0.536892 + 0.738969i 0.988161 0.153419i \(-0.0490285\pi\)
−0.451269 + 0.892388i \(0.649029\pi\)
\(678\) 0 0
\(679\) −18.9144 + 58.2124i −0.725867 + 2.23399i
\(680\) 0 0
\(681\) 19.6382i 0.752536i
\(682\) 0 0
\(683\) 37.5222i 1.43575i 0.696173 + 0.717874i \(0.254885\pi\)
−0.696173 + 0.717874i \(0.745115\pi\)
\(684\) 0 0
\(685\) 4.58682 14.1168i 0.175254 0.539375i
\(686\) 0 0
\(687\) −3.47930 4.78885i −0.132744 0.182706i
\(688\) 0 0
\(689\) −11.9544 + 3.88421i −0.455425 + 0.147977i
\(690\) 0 0
\(691\) −15.2949 + 21.0517i −0.581847 + 0.800843i −0.993896 0.110318i \(-0.964813\pi\)
0.412050 + 0.911161i \(0.364813\pi\)
\(692\) 0 0
\(693\) 33.6014 2.52260i 1.27641 0.0958256i
\(694\) 0 0
\(695\) 6.53682 + 4.74928i 0.247956 + 0.180150i
\(696\) 0 0
\(697\) −0.217490 0.669367i −0.00823804 0.0253541i
\(698\) 0 0
\(699\) 0.0663942 0.0482382i 0.00251126 0.00182454i
\(700\) 0 0
\(701\) −14.6243 4.75173i −0.552353 0.179470i 0.0195246 0.999809i \(-0.493785\pi\)
−0.571878 + 0.820339i \(0.693785\pi\)
\(702\) 0 0
\(703\) −5.11315 −0.192846
\(704\) 0 0
\(705\) −2.19329 −0.0826042
\(706\) 0 0
\(707\) 26.8079 + 8.71043i 1.00822 + 0.327589i
\(708\) 0 0
\(709\) 0.994218 0.722342i 0.0373386 0.0271281i −0.568959 0.822366i \(-0.692654\pi\)
0.606298 + 0.795237i \(0.292654\pi\)
\(710\) 0 0
\(711\) −10.6537 32.7888i −0.399546 1.22968i
\(712\) 0 0
\(713\) −1.85069 1.34461i −0.0693090 0.0503560i
\(714\) 0 0
\(715\) −13.8089 + 5.66157i −0.516423 + 0.211731i
\(716\) 0 0
\(717\) −10.8464 + 14.9288i −0.405066 + 0.557526i
\(718\) 0 0
\(719\) 15.6222 5.07597i 0.582611 0.189302i −0.00285891 0.999996i \(-0.500910\pi\)
0.585470 + 0.810694i \(0.300910\pi\)
\(720\) 0 0
\(721\) 34.2643 + 47.1608i 1.27607 + 1.75636i
\(722\) 0 0
\(723\) 2.87885 8.86020i 0.107066 0.329514i
\(724\) 0 0
\(725\) 26.9274i 1.00006i
\(726\) 0 0
\(727\) 22.9858i 0.852496i −0.904606 0.426248i \(-0.859835\pi\)
0.904606 0.426248i \(-0.140165\pi\)
\(728\) 0 0
\(729\) −1.64636 + 5.06699i −0.0609764 + 0.187666i
\(730\) 0 0
\(731\) 39.0474 + 53.7442i 1.44422 + 1.98780i
\(732\) 0 0
\(733\) −31.8479 + 10.3480i −1.17633 + 0.382212i −0.831002 0.556270i \(-0.812232\pi\)
−0.345327 + 0.938482i \(0.612232\pi\)
\(734\) 0 0
\(735\) −7.89978 + 10.8731i −0.291388 + 0.401061i
\(736\) 0 0
\(737\) 29.2881 12.0080i 1.07884 0.442320i
\(738\) 0 0
\(739\) 22.1277 + 16.0767i 0.813979 + 0.591391i 0.914982 0.403496i \(-0.132205\pi\)
−0.101002 + 0.994886i \(0.532205\pi\)
\(740\) 0 0
\(741\) 2.83338 + 8.72025i 0.104087 + 0.320346i
\(742\) 0 0
\(743\) −20.4711 + 14.8731i −0.751011 + 0.545642i −0.896140 0.443771i \(-0.853640\pi\)
0.145129 + 0.989413i \(0.453640\pi\)
\(744\) 0 0
\(745\) 6.48330 + 2.10655i 0.237530 + 0.0771781i
\(746\) 0 0
\(747\) −10.0096 −0.366234
\(748\) 0 0
\(749\) −28.4571 −1.03980
\(750\) 0 0
\(751\) 19.6946 + 6.39918i 0.718668 + 0.233509i 0.645445 0.763806i \(-0.276672\pi\)
0.0732222 + 0.997316i \(0.476672\pi\)
\(752\) 0 0
\(753\) −4.31060 + 3.13184i −0.157087 + 0.114130i
\(754\) 0 0
\(755\) −0.714749 2.19977i −0.0260124 0.0800579i
\(756\) 0 0
\(757\) −13.0963 9.51499i −0.475992 0.345828i 0.323780 0.946132i \(-0.395046\pi\)
−0.799772 + 0.600304i \(0.795046\pi\)
\(758\) 0 0
\(759\) 8.83987 0.663648i 0.320867 0.0240889i
\(760\) 0 0
\(761\) −9.50090 + 13.0769i −0.344407 + 0.474036i −0.945722 0.324976i \(-0.894644\pi\)
0.601315 + 0.799012i \(0.294644\pi\)
\(762\) 0 0
\(763\) 7.07674 2.29937i 0.256195 0.0832429i
\(764\) 0 0
\(765\) −12.4252 17.1018i −0.449233 0.618317i
\(766\) 0 0
\(767\) 7.33174 22.5648i 0.264734 0.814767i
\(768\) 0 0
\(769\) 28.0773i 1.01249i −0.862389 0.506247i \(-0.831032\pi\)
0.862389 0.506247i \(-0.168968\pi\)
\(770\) 0 0
\(771\) 12.3398i 0.444406i
\(772\) 0 0
\(773\) −9.80799 + 30.1859i −0.352769 + 1.08571i 0.604523 + 0.796588i \(0.293364\pi\)
−0.957292 + 0.289123i \(0.906636\pi\)
\(774\) 0 0
\(775\) −1.57679 2.17027i −0.0566401 0.0779583i
\(776\) 0 0
\(777\) 6.84910 2.22541i 0.245710 0.0798361i
\(778\) 0 0
\(779\) 0.142610 0.196286i 0.00510954 0.00703268i
\(780\) 0 0
\(781\) −0.410000 + 0.663675i −0.0146709 + 0.0237482i
\(782\) 0 0
\(783\) −27.2193 19.7760i −0.972738 0.706736i
\(784\) 0 0
\(785\) −2.66327 8.19669i −0.0950560 0.292552i
\(786\) 0 0
\(787\) 14.2814 10.3761i 0.509077 0.369866i −0.303396 0.952865i \(-0.598121\pi\)
0.812474 + 0.582998i \(0.198121\pi\)
\(788\) 0 0
\(789\) −18.7281 6.08514i −0.666739 0.216637i
\(790\) 0 0
\(791\) −14.5681 −0.517983
\(792\) 0 0
\(793\) −44.6031 −1.58390
\(794\) 0 0
\(795\) −3.14048 1.02040i −0.111381 0.0361900i
\(796\) 0 0
\(797\) −11.7546 + 8.54018i −0.416368 + 0.302509i −0.776175 0.630518i \(-0.782843\pi\)
0.359807 + 0.933027i \(0.382843\pi\)
\(798\) 0 0
\(799\) −5.37529 16.5434i −0.190164 0.585265i
\(800\) 0 0
\(801\) −15.3701 11.1670i −0.543075 0.394567i
\(802\) 0 0
\(803\) −3.36959 3.97421i −0.118910 0.140247i
\(804\) 0 0
\(805\) 9.59557 13.2072i 0.338199 0.465491i
\(806\) 0 0
\(807\) −18.1720 + 5.90445i −0.639686 + 0.207846i
\(808\) 0 0
\(809\) −26.2723 36.1607i −0.923684 1.27134i −0.962273 0.272087i \(-0.912286\pi\)
0.0385881 0.999255i \(-0.487714\pi\)
\(810\) 0 0
\(811\) 10.0922 31.0607i 0.354386 1.09069i −0.601978 0.798513i \(-0.705620\pi\)
0.956364 0.292177i \(-0.0943795\pi\)
\(812\) 0 0
\(813\) 11.3992i 0.399786i
\(814\) 0 0
\(815\) 0.828790i 0.0290313i
\(816\) 0 0
\(817\) −7.07669 + 21.7798i −0.247582 + 0.761980i
\(818\) 0 0
\(819\) 22.9640 + 31.6072i 0.802426 + 1.10444i
\(820\) 0 0
\(821\) 13.8070 4.48616i 0.481867 0.156568i −0.0580034 0.998316i \(-0.518473\pi\)
0.539870 + 0.841748i \(0.318473\pi\)
\(822\) 0 0
\(823\) −32.2755 + 44.4235i −1.12505 + 1.54850i −0.327918 + 0.944706i \(0.606347\pi\)
−0.797137 + 0.603799i \(0.793653\pi\)
\(824\) 0 0
\(825\) 10.0995 + 2.46322i 0.351618 + 0.0857582i
\(826\) 0 0
\(827\) −42.4910 30.8715i −1.47756 1.07351i −0.978334 0.207033i \(-0.933619\pi\)
−0.499222 0.866474i \(-0.666381\pi\)
\(828\) 0 0
\(829\) 3.91359 + 12.0448i 0.135925 + 0.418333i 0.995733 0.0922841i \(-0.0294168\pi\)
−0.859808 + 0.510618i \(0.829417\pi\)
\(830\) 0 0
\(831\) 17.8363 12.9588i 0.618735 0.449538i
\(832\) 0 0
\(833\) −101.374 32.9383i −3.51239 1.14124i
\(834\) 0 0
\(835\) −12.8646 −0.445198
\(836\) 0 0
\(837\) 3.35182 0.115856
\(838\) 0 0
\(839\) 25.2353 + 8.19943i 0.871218 + 0.283076i 0.710306 0.703893i \(-0.248557\pi\)
0.160912 + 0.986969i \(0.448557\pi\)
\(840\) 0 0
\(841\) 21.0399 15.2864i 0.725515 0.527117i
\(842\) 0 0
\(843\) 0.0635499 + 0.195586i 0.00218877 + 0.00673635i
\(844\) 0 0
\(845\) −1.69221 1.22946i −0.0582137 0.0422947i
\(846\) 0 0
\(847\) 44.0001 + 22.8204i 1.51186 + 0.784117i
\(848\) 0 0
\(849\) −11.2419 + 15.4731i −0.385820 + 0.531036i
\(850\) 0 0
\(851\) −5.45116 + 1.77119i −0.186863 + 0.0607156i
\(852\) 0 0
\(853\) 34.2960 + 47.2044i 1.17427 + 1.61625i 0.625127 + 0.780523i \(0.285047\pi\)
0.549147 + 0.835726i \(0.314953\pi\)
\(854\) 0 0
\(855\) 2.25186 6.93050i 0.0770119 0.237018i
\(856\) 0 0
\(857\) 33.7944i 1.15440i 0.816604 + 0.577198i \(0.195854\pi\)
−0.816604 + 0.577198i \(0.804146\pi\)
\(858\) 0 0
\(859\) 9.44116i 0.322128i 0.986944 + 0.161064i \(0.0514926\pi\)
−0.986944 + 0.161064i \(0.948507\pi\)
\(860\) 0 0
\(861\) −0.105597 + 0.324996i −0.00359875 + 0.0110758i
\(862\) 0 0
\(863\) 26.6232 + 36.6436i 0.906263 + 1.24736i 0.968427 + 0.249298i \(0.0801998\pi\)
−0.0621641 + 0.998066i \(0.519800\pi\)
\(864\) 0 0
\(865\) 14.7895 4.80541i 0.502859 0.163389i
\(866\) 0 0
\(867\) −23.9467 + 32.9598i −0.813272 + 1.11937i
\(868\) 0 0
\(869\) 12.0166 49.2694i 0.407635 1.67135i
\(870\) 0 0
\(871\) 29.6920 + 21.5725i 1.00607 + 0.730956i
\(872\) 0 0
\(873\) 9.46439 + 29.1284i 0.320321 + 0.985847i
\(874\) 0 0
\(875\) 36.8168 26.7490i 1.24464 0.904281i
\(876\) 0 0
\(877\) 9.07699 + 2.94929i 0.306508 + 0.0995905i 0.458233 0.888832i \(-0.348483\pi\)
−0.151724 + 0.988423i \(0.548483\pi\)
\(878\) 0 0
\(879\) 2.00575 0.0676524
\(880\) 0 0
\(881\) −22.4843 −0.757514 −0.378757 0.925496i \(-0.623648\pi\)
−0.378757 + 0.925496i \(0.623648\pi\)
\(882\) 0 0
\(883\) −1.78032 0.578460i −0.0599124 0.0194667i 0.278907 0.960318i \(-0.410028\pi\)
−0.338820 + 0.940851i \(0.610028\pi\)
\(884\) 0 0
\(885\) 5.04257 3.66364i 0.169504 0.123152i
\(886\) 0 0
\(887\) 13.3179 + 40.9883i 0.447172 + 1.37625i 0.880084 + 0.474818i \(0.157486\pi\)
−0.432912 + 0.901436i \(0.642514\pi\)
\(888\) 0 0
\(889\) 68.2063 + 49.5548i 2.28757 + 1.66201i
\(890\) 0 0
\(891\) 7.20431 6.10827i 0.241353 0.204635i
\(892\) 0 0
\(893\) 3.52462 4.85122i 0.117947 0.162340i
\(894\) 0 0
\(895\) −3.96524 + 1.28839i −0.132543 + 0.0430660i
\(896\) 0 0
\(897\) 6.04138 + 8.31524i 0.201716 + 0.277638i
\(898\) 0 0
\(899\) −1.69340 + 5.21175i −0.0564781 + 0.173822i
\(900\) 0 0
\(901\) 26.1886i 0.872469i
\(902\) 0 0
\(903\) 32.2543i 1.07335i
\(904\) 0 0
\(905\) −5.94305 + 18.2908i −0.197554 + 0.608008i
\(906\) 0 0
\(907\) −22.4567 30.9090i −0.745662 1.02632i −0.998273 0.0587480i \(-0.981289\pi\)
0.252611 0.967568i \(-0.418711\pi\)
\(908\) 0 0
\(909\) 13.4142 4.35853i 0.444920 0.144563i
\(910\) 0 0
\(911\) −17.7625 + 24.4480i −0.588497 + 0.809997i −0.994595 0.103833i \(-0.966889\pi\)
0.406098 + 0.913830i \(0.366889\pi\)
\(912\) 0 0
\(913\) −12.5264 7.73846i −0.414563 0.256106i
\(914\) 0 0
\(915\) −9.47965 6.88737i −0.313388 0.227689i
\(916\) 0 0
\(917\) −19.1723 59.0062i −0.633124 1.94856i
\(918\) 0 0
\(919\) −0.719399 + 0.522674i −0.0237308 + 0.0172414i −0.599587 0.800309i \(-0.704669\pi\)
0.575857 + 0.817551i \(0.304669\pi\)
\(920\) 0 0
\(921\) 17.5299 + 5.69581i 0.577630 + 0.187683i
\(922\) 0 0
\(923\) −0.904491 −0.0297717
\(924\) 0 0
\(925\) −6.72143 −0.220999
\(926\) 0 0
\(927\) 27.7416 + 9.01378i 0.911152 + 0.296051i
\(928\) 0 0
\(929\) 25.3394 18.4102i 0.831359 0.604017i −0.0885847 0.996069i \(-0.528234\pi\)
0.919943 + 0.392051i \(0.128234\pi\)
\(930\) 0 0
\(931\) −11.3547 34.9462i −0.372135 1.14531i
\(932\) 0 0
\(933\) 16.1900 + 11.7627i 0.530036 + 0.385093i
\(934\) 0 0
\(935\) −2.32788 31.0077i −0.0761298 1.01406i
\(936\) 0 0
\(937\) 28.0472 38.6036i 0.916262 1.26113i −0.0487208 0.998812i \(-0.515514\pi\)
0.964983 0.262314i \(-0.0844855\pi\)
\(938\) 0 0
\(939\) −18.8292 + 6.11798i −0.614468 + 0.199653i
\(940\) 0 0
\(941\) −15.9015 21.8865i −0.518373 0.713479i 0.466930 0.884294i \(-0.345360\pi\)
−0.985303 + 0.170815i \(0.945360\pi\)
\(942\) 0 0
\(943\) 0.0840444 0.258662i 0.00273686 0.00842320i
\(944\) 0 0
\(945\) 23.9197i 0.778107i
\(946\) 0 0
\(947\) 19.7824i 0.642843i −0.946936 0.321421i \(-0.895839\pi\)
0.946936 0.321421i \(-0.104161\pi\)
\(948\) 0 0
\(949\) 1.86684 5.74553i 0.0606001 0.186508i
\(950\) 0 0
\(951\) −13.1918 18.1570i −0.427774 0.588781i
\(952\) 0 0
\(953\) 7.79671 2.53331i 0.252560 0.0820618i −0.180001 0.983666i \(-0.557610\pi\)
0.432561 + 0.901605i \(0.357610\pi\)
\(954\) 0 0
\(955\) 4.35494 5.99406i 0.140923 0.193963i
\(956\) 0 0
\(957\) −8.05575 19.6484i −0.260406 0.635143i
\(958\) 0 0
\(959\) −46.2406 33.5958i −1.49319 1.08486i
\(960\) 0 0
\(961\) 9.41082 + 28.9635i 0.303575 + 0.934308i
\(962\) 0 0
\(963\) −11.5199 + 8.36971i −0.371224 + 0.269710i
\(964\) 0 0
\(965\) −13.2713 4.31210i −0.427218 0.138811i
\(966\) 0 0
\(967\) −38.3279 −1.23254 −0.616272 0.787534i \(-0.711358\pi\)
−0.616272 + 0.787534i \(0.711358\pi\)
\(968\) 0 0
\(969\) −19.1036 −0.613695
\(970\) 0 0
\(971\) 12.1455 + 3.94630i 0.389767 + 0.126643i 0.497343 0.867554i \(-0.334309\pi\)
−0.107576 + 0.994197i \(0.534309\pi\)
\(972\) 0 0
\(973\) 25.1711 18.2879i 0.806949 0.586283i
\(974\) 0 0
\(975\) 3.72459 + 11.4631i 0.119282 + 0.367113i
\(976\) 0 0
\(977\) −9.03513 6.56440i −0.289059 0.210014i 0.433800 0.901009i \(-0.357172\pi\)
−0.722859 + 0.690995i \(0.757172\pi\)
\(978\) 0 0
\(979\) −10.6014 25.8574i −0.338822 0.826406i
\(980\) 0 0
\(981\) 2.18850 3.01221i 0.0698734 0.0961725i
\(982\) 0 0
\(983\) 19.3378 6.28323i 0.616780 0.200404i 0.0160700 0.999871i \(-0.494885\pi\)
0.600710 + 0.799467i \(0.294885\pi\)
\(984\) 0 0
\(985\) −14.5683 20.0515i −0.464184 0.638894i
\(986\) 0 0
\(987\) −2.60985 + 8.03228i −0.0830724 + 0.255670i
\(988\) 0 0
\(989\) 25.6710i 0.816290i
\(990\) 0 0
\(991\) 48.9495i 1.55493i −0.628924 0.777467i \(-0.716504\pi\)
0.628924 0.777467i \(-0.283496\pi\)
\(992\) 0 0
\(993\) −1.27768 + 3.93230i −0.0405460 + 0.124788i
\(994\) 0 0
\(995\) 6.62529 + 9.11892i 0.210036 + 0.289089i
\(996\) 0 0
\(997\) −33.7192 + 10.9560i −1.06790 + 0.346981i −0.789668 0.613534i \(-0.789747\pi\)
−0.278229 + 0.960515i \(0.589747\pi\)
\(998\) 0 0
\(999\) 4.93634 6.79429i 0.156179 0.214962i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 352.2.u.a.95.8 yes 48
4.3 odd 2 inner 352.2.u.a.95.5 yes 48
8.3 odd 2 704.2.u.d.447.8 48
8.5 even 2 704.2.u.d.447.5 48
11.8 odd 10 inner 352.2.u.a.63.5 48
44.19 even 10 inner 352.2.u.a.63.8 yes 48
88.19 even 10 704.2.u.d.63.5 48
88.85 odd 10 704.2.u.d.63.8 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
352.2.u.a.63.5 48 11.8 odd 10 inner
352.2.u.a.63.8 yes 48 44.19 even 10 inner
352.2.u.a.95.5 yes 48 4.3 odd 2 inner
352.2.u.a.95.8 yes 48 1.1 even 1 trivial
704.2.u.d.63.5 48 88.19 even 10
704.2.u.d.63.8 48 88.85 odd 10
704.2.u.d.447.5 48 8.5 even 2
704.2.u.d.447.8 48 8.3 odd 2