Properties

Label 3520.2.a.bf
Level $3520$
Weight $2$
Character orbit 3520.a
Self dual yes
Analytic conductor $28.107$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3520,2,Mod(1,3520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3520, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3520.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3520 = 2^{6} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3520.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.1073415115\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 220)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{3} - q^{5} + q^{9} + q^{11} - 2 q^{15} - 4 q^{17} - 4 q^{19} - 6 q^{23} + q^{25} - 4 q^{27} - 2 q^{29} + 2 q^{33} + 6 q^{37} - 10 q^{41} + 4 q^{43} - q^{45} - 10 q^{47} - 7 q^{49} - 8 q^{51}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 2.00000 0 −1.00000 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3520.2.a.bf 1
4.b odd 2 1 3520.2.a.c 1
8.b even 2 1 880.2.a.b 1
8.d odd 2 1 220.2.a.b 1
24.f even 2 1 1980.2.a.b 1
24.h odd 2 1 7920.2.a.l 1
40.e odd 2 1 1100.2.a.a 1
40.f even 2 1 4400.2.a.z 1
40.i odd 4 2 4400.2.b.c 2
40.k even 4 2 1100.2.b.b 2
88.b odd 2 1 9680.2.a.d 1
88.g even 2 1 2420.2.a.g 1
120.m even 2 1 9900.2.a.n 1
120.q odd 4 2 9900.2.c.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.2.a.b 1 8.d odd 2 1
880.2.a.b 1 8.b even 2 1
1100.2.a.a 1 40.e odd 2 1
1100.2.b.b 2 40.k even 4 2
1980.2.a.b 1 24.f even 2 1
2420.2.a.g 1 88.g even 2 1
3520.2.a.c 1 4.b odd 2 1
3520.2.a.bf 1 1.a even 1 1 trivial
4400.2.a.z 1 40.f even 2 1
4400.2.b.c 2 40.i odd 4 2
7920.2.a.l 1 24.h odd 2 1
9680.2.a.d 1 88.b odd 2 1
9900.2.a.n 1 120.m even 2 1
9900.2.c.e 2 120.q odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3520))\):

\( T_{3} - 2 \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display
\( T_{17} + 4 \) Copy content Toggle raw display
\( T_{19} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 2 \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 1 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T + 4 \) Copy content Toggle raw display
$19$ \( T + 4 \) Copy content Toggle raw display
$23$ \( T + 6 \) Copy content Toggle raw display
$29$ \( T + 2 \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T - 6 \) Copy content Toggle raw display
$41$ \( T + 10 \) Copy content Toggle raw display
$43$ \( T - 4 \) Copy content Toggle raw display
$47$ \( T + 10 \) Copy content Toggle raw display
$53$ \( T + 2 \) Copy content Toggle raw display
$59$ \( T + 4 \) Copy content Toggle raw display
$61$ \( T - 14 \) Copy content Toggle raw display
$67$ \( T - 2 \) Copy content Toggle raw display
$71$ \( T + 4 \) Copy content Toggle raw display
$73$ \( T + 4 \) Copy content Toggle raw display
$79$ \( T - 8 \) Copy content Toggle raw display
$83$ \( T - 12 \) Copy content Toggle raw display
$89$ \( T - 6 \) Copy content Toggle raw display
$97$ \( T - 6 \) Copy content Toggle raw display
show more
show less