Properties

Label 3528.2.be
Level 35283528
Weight 22
Character orbit 3528.be
Rep. character χ3528(979,)\chi_{3528}(979,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 944944
Sturm bound 13441344

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3528=233272 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3528.be (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 504 504
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 13441344

Dimensions

The following table gives the dimensions of various subspaces of M2(3528,[χ])M_{2}(3528, [\chi]).

Total New Old
Modular forms 1376 976 400
Cusp forms 1312 944 368
Eisenstein series 64 32 32

Trace form

944q+2q2+2q416q8+8q9+4q11+2q16+22q1812q22436q25+42q30+2q32+44q368q43+84q448q4642q50+96q5140q57+52q99+O(q100) 944 q + 2 q^{2} + 2 q^{4} - 16 q^{8} + 8 q^{9} + 4 q^{11} + 2 q^{16} + 22 q^{18} - 12 q^{22} - 436 q^{25} + 42 q^{30} + 2 q^{32} + 44 q^{36} - 8 q^{43} + 84 q^{44} - 8 q^{46} - 42 q^{50} + 96 q^{51} - 40 q^{57}+ \cdots - 52 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3528,[χ])S_{2}^{\mathrm{new}}(3528, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3528,[χ])S_{2}^{\mathrm{old}}(3528, [\chi]) into lower level spaces

S2old(3528,[χ]) S_{2}^{\mathrm{old}}(3528, [\chi]) \simeq S2new(504,[χ])S_{2}^{\mathrm{new}}(504, [\chi])2^{\oplus 2}