Properties

Label 3528.2.be
Level $3528$
Weight $2$
Character orbit 3528.be
Rep. character $\chi_{3528}(979,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $944$
Sturm bound $1344$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3528.be (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 504 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1344\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3528, [\chi])\).

Total New Old
Modular forms 1376 976 400
Cusp forms 1312 944 368
Eisenstein series 64 32 32

Trace form

\( 944 q + 2 q^{2} + 2 q^{4} - 16 q^{8} + 8 q^{9} + 4 q^{11} + 2 q^{16} + 22 q^{18} - 12 q^{22} - 436 q^{25} + 42 q^{30} + 2 q^{32} + 44 q^{36} - 8 q^{43} + 84 q^{44} - 8 q^{46} - 42 q^{50} + 96 q^{51} - 40 q^{57}+ \cdots - 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3528, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3528, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3528, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 2}\)