Properties

Label 3528.2.cz
Level $3528$
Weight $2$
Character orbit 3528.cz
Rep. character $\chi_{3528}(1195,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $944$
Sturm bound $1344$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3528.cz (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 504 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1344\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3528, [\chi])\).

Total New Old
Modular forms 1376 976 400
Cusp forms 1312 944 368
Eisenstein series 64 32 32

Trace form

\( 944 q - q^{2} + 6 q^{3} - q^{4} - 6 q^{6} - 16 q^{8} + 2 q^{9} + 6 q^{10} + 4 q^{11} + 3 q^{12} - q^{16} + 12 q^{17} + 19 q^{18} + 12 q^{19} + 24 q^{20} + 12 q^{24} + 884 q^{25} - 42 q^{30} - 31 q^{32}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3528, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3528, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3528, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 2}\)