Properties

Label 3528.2.cz
Level 35283528
Weight 22
Character orbit 3528.cz
Rep. character χ3528(1195,)\chi_{3528}(1195,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 944944
Sturm bound 13441344

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3528=233272 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3528.cz (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 504 504
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 13441344

Dimensions

The following table gives the dimensions of various subspaces of M2(3528,[χ])M_{2}(3528, [\chi]).

Total New Old
Modular forms 1376 976 400
Cusp forms 1312 944 368
Eisenstein series 64 32 32

Trace form

944qq2+6q3q46q616q8+2q9+6q10+4q11+3q12q16+12q17+19q18+12q19+24q20+12q24+884q2542q3031q32++2q99+O(q100) 944 q - q^{2} + 6 q^{3} - q^{4} - 6 q^{6} - 16 q^{8} + 2 q^{9} + 6 q^{10} + 4 q^{11} + 3 q^{12} - q^{16} + 12 q^{17} + 19 q^{18} + 12 q^{19} + 24 q^{20} + 12 q^{24} + 884 q^{25} - 42 q^{30} - 31 q^{32}+ \cdots + 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3528,[χ])S_{2}^{\mathrm{new}}(3528, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3528,[χ])S_{2}^{\mathrm{old}}(3528, [\chi]) into lower level spaces

S2old(3528,[χ]) S_{2}^{\mathrm{old}}(3528, [\chi]) \simeq S2new(504,[χ])S_{2}^{\mathrm{new}}(504, [\chi])2^{\oplus 2}