Defining parameters
Level: | \( N \) | \(=\) | \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3528.eo (of order \(42\) and degree \(12\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 392 \) |
Character field: | \(\Q(\zeta_{42})\) | ||
Sturm bound: | \(1344\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(3528, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 8160 | 3384 | 4776 |
Cusp forms | 7968 | 3336 | 4632 |
Eisenstein series | 192 | 48 | 144 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(3528, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(3528, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(3528, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(392, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1176, [\chi])\)\(^{\oplus 2}\)