Properties

Label 3528.2.eo
Level $3528$
Weight $2$
Character orbit 3528.eo
Rep. character $\chi_{3528}(37,\cdot)$
Character field $\Q(\zeta_{42})$
Dimension $3336$
Sturm bound $1344$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3528.eo (of order \(42\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 392 \)
Character field: \(\Q(\zeta_{42})\)
Sturm bound: \(1344\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3528, [\chi])\).

Total New Old
Modular forms 8160 3384 4776
Cusp forms 7968 3336 4632
Eisenstein series 192 48 144

Trace form

\( 3336 q + 13 q^{2} - 13 q^{4} - 24 q^{7} + 4 q^{8} - 6 q^{10} + 55 q^{14} - 17 q^{16} + 26 q^{17} - 18 q^{20} + 6 q^{22} + 26 q^{23} - 296 q^{25} + 18 q^{26} - 38 q^{28} + 60 q^{31} + 3 q^{32} - 50 q^{34}+ \cdots + 219 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3528, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3528, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3528, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(392, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1176, [\chi])\)\(^{\oplus 2}\)