Properties

Label 3528.2.eo
Level 35283528
Weight 22
Character orbit 3528.eo
Rep. character χ3528(37,)\chi_{3528}(37,\cdot)
Character field Q(ζ42)\Q(\zeta_{42})
Dimension 33363336
Sturm bound 13441344

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3528=233272 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3528.eo (of order 4242 and degree 1212)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 392 392
Character field: Q(ζ42)\Q(\zeta_{42})
Sturm bound: 13441344

Dimensions

The following table gives the dimensions of various subspaces of M2(3528,[χ])M_{2}(3528, [\chi]).

Total New Old
Modular forms 8160 3384 4776
Cusp forms 7968 3336 4632
Eisenstein series 192 48 144

Trace form

3336q+13q213q424q7+4q86q10+55q1417q16+26q1718q20+6q22+26q23296q25+18q2638q28+60q31+3q3250q34++219q98+O(q100) 3336 q + 13 q^{2} - 13 q^{4} - 24 q^{7} + 4 q^{8} - 6 q^{10} + 55 q^{14} - 17 q^{16} + 26 q^{17} - 18 q^{20} + 6 q^{22} + 26 q^{23} - 296 q^{25} + 18 q^{26} - 38 q^{28} + 60 q^{31} + 3 q^{32} - 50 q^{34}+ \cdots + 219 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3528,[χ])S_{2}^{\mathrm{new}}(3528, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3528,[χ])S_{2}^{\mathrm{old}}(3528, [\chi]) into lower level spaces

S2old(3528,[χ]) S_{2}^{\mathrm{old}}(3528, [\chi]) \simeq S2new(392,[χ])S_{2}^{\mathrm{new}}(392, [\chi])3^{\oplus 3}\oplusS2new(1176,[χ])S_{2}^{\mathrm{new}}(1176, [\chi])2^{\oplus 2}