Properties

Label 3528.2.eq
Level $3528$
Weight $2$
Character orbit 3528.eq
Rep. character $\chi_{3528}(269,\cdot)$
Character field $\Q(\zeta_{42})$
Dimension $2688$
Sturm bound $1344$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3528.eq (of order \(42\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1176 \)
Character field: \(\Q(\zeta_{42})\)
Sturm bound: \(1344\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3528, [\chi])\).

Total New Old
Modular forms 8160 2688 5472
Cusp forms 7968 2688 5280
Eisenstein series 192 0 192

Trace form

\( 2688 q + 24 q^{22} - 224 q^{25} + 40 q^{28} - 112 q^{34} - 172 q^{40} + 20 q^{46} - 16 q^{49} - 36 q^{52} + 16 q^{58} + 72 q^{64} + 200 q^{70} - 48 q^{73} + 84 q^{76} - 8 q^{82} + 24 q^{88} + 276 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3528, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3528, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3528, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(1176, [\chi])\)\(^{\oplus 2}\)