Properties

Label 3528.2.eq
Level 35283528
Weight 22
Character orbit 3528.eq
Rep. character χ3528(269,)\chi_{3528}(269,\cdot)
Character field Q(ζ42)\Q(\zeta_{42})
Dimension 26882688
Sturm bound 13441344

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3528=233272 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3528.eq (of order 4242 and degree 1212)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 1176 1176
Character field: Q(ζ42)\Q(\zeta_{42})
Sturm bound: 13441344

Dimensions

The following table gives the dimensions of various subspaces of M2(3528,[χ])M_{2}(3528, [\chi]).

Total New Old
Modular forms 8160 2688 5472
Cusp forms 7968 2688 5280
Eisenstein series 192 0 192

Trace form

2688q+24q22224q25+40q28112q34172q40+20q4616q4936q52+16q58+72q64+200q7048q73+84q768q82+24q88+276q94+O(q100) 2688 q + 24 q^{22} - 224 q^{25} + 40 q^{28} - 112 q^{34} - 172 q^{40} + 20 q^{46} - 16 q^{49} - 36 q^{52} + 16 q^{58} + 72 q^{64} + 200 q^{70} - 48 q^{73} + 84 q^{76} - 8 q^{82} + 24 q^{88} + 276 q^{94}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3528,[χ])S_{2}^{\mathrm{new}}(3528, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3528,[χ])S_{2}^{\mathrm{old}}(3528, [\chi]) into lower level spaces

S2old(3528,[χ]) S_{2}^{\mathrm{old}}(3528, [\chi]) \simeq S2new(1176,[χ])S_{2}^{\mathrm{new}}(1176, [\chi])2^{\oplus 2}