Properties

Label 3528.2.fm
Level $3528$
Weight $2$
Character orbit 3528.fm
Rep. character $\chi_{3528}(17,\cdot)$
Character field $\Q(\zeta_{42})$
Dimension $672$
Sturm bound $1344$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3528.fm (of order \(42\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 147 \)
Character field: \(\Q(\zeta_{42})\)
Sturm bound: \(1344\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3528, [\chi])\).

Total New Old
Modular forms 8256 672 7584
Cusp forms 7872 672 7200
Eisenstein series 384 0 384

Trace form

\( 672 q + 8 q^{7} - 12 q^{19} + 44 q^{25} - 24 q^{31} - 40 q^{37} + 8 q^{43} - 32 q^{49} - 28 q^{55} - 28 q^{61} + 20 q^{67} + 60 q^{73} + 32 q^{79} + 80 q^{85} + 28 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3528, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3528, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3528, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(294, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(441, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(588, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(882, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1176, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1764, [\chi])\)\(^{\oplus 2}\)