Properties

Label 3528.2.i
Level $3528$
Weight $2$
Character orbit 3528.i
Rep. character $\chi_{3528}(2645,\cdot)$
Character field $\Q$
Dimension $160$
Sturm bound $1344$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3528.i (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 168 \)
Character field: \(\Q\)
Sturm bound: \(1344\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3528, [\chi])\).

Total New Old
Modular forms 704 160 544
Cusp forms 640 160 480
Eisenstein series 64 0 64

Trace form

\( 160 q + 8 q^{16} - 32 q^{22} - 160 q^{25} + 48 q^{46} - 24 q^{58} - 120 q^{64} + 32 q^{79} + 104 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3528, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3528, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3528, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1176, [\chi])\)\(^{\oplus 2}\)