Properties

Label 3528.2.i
Level 35283528
Weight 22
Character orbit 3528.i
Rep. character χ3528(2645,)\chi_{3528}(2645,\cdot)
Character field Q\Q
Dimension 160160
Sturm bound 13441344

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 3528=233272 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3528.i (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 168 168
Character field: Q\Q
Sturm bound: 13441344

Dimensions

The following table gives the dimensions of various subspaces of M2(3528,[χ])M_{2}(3528, [\chi]).

Total New Old
Modular forms 704 160 544
Cusp forms 640 160 480
Eisenstein series 64 0 64

Trace form

160q+8q1632q22160q25+48q4624q58120q64+32q79+104q88+O(q100) 160 q + 8 q^{16} - 32 q^{22} - 160 q^{25} + 48 q^{46} - 24 q^{58} - 120 q^{64} + 32 q^{79} + 104 q^{88}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(3528,[χ])S_{2}^{\mathrm{new}}(3528, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(3528,[χ])S_{2}^{\mathrm{old}}(3528, [\chi]) into lower level spaces

S2old(3528,[χ]) S_{2}^{\mathrm{old}}(3528, [\chi]) \simeq S2new(168,[χ])S_{2}^{\mathrm{new}}(168, [\chi])4^{\oplus 4}\oplusS2new(504,[χ])S_{2}^{\mathrm{new}}(504, [\chi])2^{\oplus 2}\oplusS2new(1176,[χ])S_{2}^{\mathrm{new}}(1176, [\chi])2^{\oplus 2}