Properties

Label 3564.2.i.b.1189.1
Level $3564$
Weight $2$
Character 3564.1189
Analytic conductor $28.459$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3564,2,Mod(1189,3564)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3564, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3564.1189");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3564 = 2^{2} \cdot 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3564.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.4586832804\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1189.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 3564.1189
Dual form 3564.2.i.b.2377.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{5} +(-1.00000 + 1.73205i) q^{7} +(0.500000 - 0.866025i) q^{11} +(-3.00000 - 5.19615i) q^{13} -4.00000 q^{17} -2.00000 q^{19} +(4.00000 + 6.92820i) q^{23} +(0.500000 - 0.866025i) q^{25} +4.00000 q^{35} -6.00000 q^{37} +(-5.00000 + 8.66025i) q^{43} +(1.50000 + 2.59808i) q^{49} +14.0000 q^{53} -2.00000 q^{55} +(6.00000 + 10.3923i) q^{59} +(7.00000 - 12.1244i) q^{61} +(-6.00000 + 10.3923i) q^{65} +(-2.00000 - 3.46410i) q^{67} +6.00000 q^{73} +(1.00000 + 1.73205i) q^{77} +(-1.00000 + 1.73205i) q^{79} +(-8.00000 + 13.8564i) q^{83} +(4.00000 + 6.92820i) q^{85} -14.0000 q^{89} +12.0000 q^{91} +(2.00000 + 3.46410i) q^{95} +(1.00000 - 1.73205i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - 2 q^{7} + q^{11} - 6 q^{13} - 8 q^{17} - 4 q^{19} + 8 q^{23} + q^{25} + 8 q^{35} - 12 q^{37} - 10 q^{43} + 3 q^{49} + 28 q^{53} - 4 q^{55} + 12 q^{59} + 14 q^{61} - 12 q^{65} - 4 q^{67}+ \cdots + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3564\mathbb{Z}\right)^\times\).

\(n\) \(1541\) \(1783\) \(2917\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 1.73205i −0.447214 0.774597i 0.550990 0.834512i \(-0.314250\pi\)
−0.998203 + 0.0599153i \(0.980917\pi\)
\(6\) 0 0
\(7\) −1.00000 + 1.73205i −0.377964 + 0.654654i −0.990766 0.135583i \(-0.956709\pi\)
0.612801 + 0.790237i \(0.290043\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.500000 0.866025i 0.150756 0.261116i
\(12\) 0 0
\(13\) −3.00000 5.19615i −0.832050 1.44115i −0.896410 0.443227i \(-0.853834\pi\)
0.0643593 0.997927i \(-0.479500\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000 + 6.92820i 0.834058 + 1.44463i 0.894795 + 0.446476i \(0.147321\pi\)
−0.0607377 + 0.998154i \(0.519345\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(30\) 0 0
\(31\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.00000 0.676123
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(42\) 0 0
\(43\) −5.00000 + 8.66025i −0.762493 + 1.32068i 0.179069 + 0.983836i \(0.442691\pi\)
−0.941562 + 0.336840i \(0.890642\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) 0 0
\(49\) 1.50000 + 2.59808i 0.214286 + 0.371154i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 14.0000 1.92305 0.961524 0.274721i \(-0.0885855\pi\)
0.961524 + 0.274721i \(0.0885855\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.00000 + 10.3923i 0.781133 + 1.35296i 0.931282 + 0.364299i \(0.118692\pi\)
−0.150148 + 0.988663i \(0.547975\pi\)
\(60\) 0 0
\(61\) 7.00000 12.1244i 0.896258 1.55236i 0.0640184 0.997949i \(-0.479608\pi\)
0.832240 0.554416i \(-0.187058\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.00000 + 10.3923i −0.744208 + 1.28901i
\(66\) 0 0
\(67\) −2.00000 3.46410i −0.244339 0.423207i 0.717607 0.696449i \(-0.245238\pi\)
−0.961946 + 0.273241i \(0.911904\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.00000 + 1.73205i 0.113961 + 0.197386i
\(78\) 0 0
\(79\) −1.00000 + 1.73205i −0.112509 + 0.194871i −0.916781 0.399390i \(-0.869222\pi\)
0.804272 + 0.594261i \(0.202555\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −8.00000 + 13.8564i −0.878114 + 1.52094i −0.0247060 + 0.999695i \(0.507865\pi\)
−0.853408 + 0.521243i \(0.825468\pi\)
\(84\) 0 0
\(85\) 4.00000 + 6.92820i 0.433861 + 0.751469i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 0 0
\(91\) 12.0000 1.25794
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.00000 + 3.46410i 0.205196 + 0.355409i
\(96\) 0 0
\(97\) 1.00000 1.73205i 0.101535 0.175863i −0.810782 0.585348i \(-0.800958\pi\)
0.912317 + 0.409484i \(0.134291\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.00000 + 6.92820i −0.398015 + 0.689382i −0.993481 0.113998i \(-0.963634\pi\)
0.595466 + 0.803380i \(0.296967\pi\)
\(102\) 0 0
\(103\) 6.00000 + 10.3923i 0.591198 + 1.02398i 0.994071 + 0.108729i \(0.0346780\pi\)
−0.402874 + 0.915255i \(0.631989\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16.0000 1.54678 0.773389 0.633932i \(-0.218560\pi\)
0.773389 + 0.633932i \(0.218560\pi\)
\(108\) 0 0
\(109\) −18.0000 −1.72409 −0.862044 0.506834i \(-0.830816\pi\)
−0.862044 + 0.506834i \(0.830816\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 5.00000 + 8.66025i 0.470360 + 0.814688i 0.999425 0.0338931i \(-0.0107906\pi\)
−0.529065 + 0.848581i \(0.677457\pi\)
\(114\) 0 0
\(115\) 8.00000 13.8564i 0.746004 1.29212i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.00000 6.92820i 0.366679 0.635107i
\(120\) 0 0
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) −6.00000 −0.532414 −0.266207 0.963916i \(-0.585770\pi\)
−0.266207 + 0.963916i \(0.585770\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2.00000 3.46410i −0.174741 0.302660i 0.765331 0.643637i \(-0.222575\pi\)
−0.940072 + 0.340977i \(0.889242\pi\)
\(132\) 0 0
\(133\) 2.00000 3.46410i 0.173422 0.300376i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −7.00000 + 12.1244i −0.598050 + 1.03585i 0.395058 + 0.918656i \(0.370724\pi\)
−0.993109 + 0.117198i \(0.962609\pi\)
\(138\) 0 0
\(139\) −7.00000 12.1244i −0.593732 1.02837i −0.993724 0.111856i \(-0.964321\pi\)
0.399992 0.916519i \(-0.369013\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.00000 −0.501745
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.00000 + 3.46410i 0.163846 + 0.283790i 0.936245 0.351348i \(-0.114277\pi\)
−0.772399 + 0.635138i \(0.780943\pi\)
\(150\) 0 0
\(151\) −5.00000 + 8.66025i −0.406894 + 0.704761i −0.994540 0.104357i \(-0.966722\pi\)
0.587646 + 0.809118i \(0.300055\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 5.00000 + 8.66025i 0.399043 + 0.691164i 0.993608 0.112884i \(-0.0360089\pi\)
−0.594565 + 0.804048i \(0.702676\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −16.0000 −1.26098
\(162\) 0 0
\(163\) 16.0000 1.25322 0.626608 0.779334i \(-0.284443\pi\)
0.626608 + 0.779334i \(0.284443\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.00000 + 10.3923i 0.464294 + 0.804181i 0.999169 0.0407502i \(-0.0129748\pi\)
−0.534875 + 0.844931i \(0.679641\pi\)
\(168\) 0 0
\(169\) −11.5000 + 19.9186i −0.884615 + 1.53220i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.00000 + 6.92820i −0.304114 + 0.526742i −0.977064 0.212947i \(-0.931694\pi\)
0.672949 + 0.739689i \(0.265027\pi\)
\(174\) 0 0
\(175\) 1.00000 + 1.73205i 0.0755929 + 0.130931i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.00000 + 10.3923i 0.441129 + 0.764057i
\(186\) 0 0
\(187\) −2.00000 + 3.46410i −0.146254 + 0.253320i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −12.0000 + 20.7846i −0.868290 + 1.50392i −0.00454614 + 0.999990i \(0.501447\pi\)
−0.863743 + 0.503932i \(0.831886\pi\)
\(192\) 0 0
\(193\) −5.00000 8.66025i −0.359908 0.623379i 0.628037 0.778183i \(-0.283859\pi\)
−0.987945 + 0.154805i \(0.950525\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.0000 1.13995 0.569976 0.821661i \(-0.306952\pi\)
0.569976 + 0.821661i \(0.306952\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.00000 + 1.73205i −0.0691714 + 0.119808i
\(210\) 0 0
\(211\) 5.00000 + 8.66025i 0.344214 + 0.596196i 0.985211 0.171347i \(-0.0548120\pi\)
−0.640996 + 0.767544i \(0.721479\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 20.0000 1.36399
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 12.0000 + 20.7846i 0.807207 + 1.39812i
\(222\) 0 0
\(223\) −6.00000 + 10.3923i −0.401790 + 0.695920i −0.993942 0.109906i \(-0.964945\pi\)
0.592152 + 0.805826i \(0.298278\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.0000 20.7846i 0.796468 1.37952i −0.125435 0.992102i \(-0.540033\pi\)
0.921903 0.387421i \(-0.126634\pi\)
\(228\) 0 0
\(229\) −1.00000 1.73205i −0.0660819 0.114457i 0.831092 0.556136i \(-0.187717\pi\)
−0.897173 + 0.441679i \(0.854383\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 16.0000 1.04819 0.524097 0.851658i \(-0.324403\pi\)
0.524097 + 0.851658i \(0.324403\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.00000 + 3.46410i 0.129369 + 0.224074i 0.923432 0.383761i \(-0.125371\pi\)
−0.794063 + 0.607835i \(0.792038\pi\)
\(240\) 0 0
\(241\) 1.00000 1.73205i 0.0644157 0.111571i −0.832019 0.554747i \(-0.812815\pi\)
0.896435 + 0.443176i \(0.146148\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.00000 5.19615i 0.191663 0.331970i
\(246\) 0 0
\(247\) 6.00000 + 10.3923i 0.381771 + 0.661247i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4.00000 −0.252478 −0.126239 0.992000i \(-0.540291\pi\)
−0.126239 + 0.992000i \(0.540291\pi\)
\(252\) 0 0
\(253\) 8.00000 0.502956
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.00000 1.73205i −0.0623783 0.108042i 0.833150 0.553047i \(-0.186535\pi\)
−0.895528 + 0.445005i \(0.853202\pi\)
\(258\) 0 0
\(259\) 6.00000 10.3923i 0.372822 0.645746i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.00000 10.3923i 0.369976 0.640817i −0.619586 0.784929i \(-0.712699\pi\)
0.989561 + 0.144112i \(0.0460326\pi\)
\(264\) 0 0
\(265\) −14.0000 24.2487i −0.860013 1.48959i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 14.0000 0.853595 0.426798 0.904347i \(-0.359642\pi\)
0.426798 + 0.904347i \(0.359642\pi\)
\(270\) 0 0
\(271\) −10.0000 −0.607457 −0.303728 0.952759i \(-0.598232\pi\)
−0.303728 + 0.952759i \(0.598232\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.500000 0.866025i −0.0301511 0.0522233i
\(276\) 0 0
\(277\) 5.00000 8.66025i 0.300421 0.520344i −0.675810 0.737075i \(-0.736206\pi\)
0.976231 + 0.216731i \(0.0695395\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −16.0000 + 27.7128i −0.954480 + 1.65321i −0.218926 + 0.975741i \(0.570255\pi\)
−0.735554 + 0.677466i \(0.763078\pi\)
\(282\) 0 0
\(283\) 7.00000 + 12.1244i 0.416107 + 0.720718i 0.995544 0.0942988i \(-0.0300609\pi\)
−0.579437 + 0.815017i \(0.696728\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 10.0000 + 17.3205i 0.584206 + 1.01187i 0.994974 + 0.100135i \(0.0319274\pi\)
−0.410768 + 0.911740i \(0.634739\pi\)
\(294\) 0 0
\(295\) 12.0000 20.7846i 0.698667 1.21013i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 24.0000 41.5692i 1.38796 2.40401i
\(300\) 0 0
\(301\) −10.0000 17.3205i −0.576390 0.998337i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −28.0000 −1.60328
\(306\) 0 0
\(307\) −26.0000 −1.48390 −0.741949 0.670456i \(-0.766098\pi\)
−0.741949 + 0.670456i \(0.766098\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.00000 + 6.92820i 0.226819 + 0.392862i 0.956864 0.290537i \(-0.0938340\pi\)
−0.730044 + 0.683400i \(0.760501\pi\)
\(312\) 0 0
\(313\) −7.00000 + 12.1244i −0.395663 + 0.685309i −0.993186 0.116543i \(-0.962819\pi\)
0.597522 + 0.801852i \(0.296152\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9.00000 + 15.5885i −0.505490 + 0.875535i 0.494489 + 0.869184i \(0.335355\pi\)
−0.999980 + 0.00635137i \(0.997978\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.00000 0.445132
\(324\) 0 0
\(325\) −6.00000 −0.332820
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −4.00000 + 6.92820i −0.219860 + 0.380808i −0.954765 0.297361i \(-0.903893\pi\)
0.734905 + 0.678170i \(0.237227\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.00000 + 6.92820i −0.218543 + 0.378528i
\(336\) 0 0
\(337\) 9.00000 + 15.5885i 0.490261 + 0.849157i 0.999937 0.0112091i \(-0.00356804\pi\)
−0.509676 + 0.860366i \(0.670235\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −16.0000 27.7128i −0.858925 1.48770i −0.872955 0.487800i \(-0.837799\pi\)
0.0140303 0.999902i \(-0.495534\pi\)
\(348\) 0 0
\(349\) 3.00000 5.19615i 0.160586 0.278144i −0.774493 0.632583i \(-0.781995\pi\)
0.935079 + 0.354439i \(0.115328\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.00000 5.19615i 0.159674 0.276563i −0.775077 0.631867i \(-0.782289\pi\)
0.934751 + 0.355303i \(0.115622\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6.00000 10.3923i −0.314054 0.543958i
\(366\) 0 0
\(367\) 2.00000 3.46410i 0.104399 0.180825i −0.809093 0.587680i \(-0.800041\pi\)
0.913493 + 0.406855i \(0.133375\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −14.0000 + 24.2487i −0.726844 + 1.25893i
\(372\) 0 0
\(373\) −5.00000 8.66025i −0.258890 0.448411i 0.707055 0.707159i \(-0.250023\pi\)
−0.965945 + 0.258748i \(0.916690\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4.00000 6.92820i −0.204390 0.354015i 0.745548 0.666452i \(-0.232188\pi\)
−0.949938 + 0.312437i \(0.898855\pi\)
\(384\) 0 0
\(385\) 2.00000 3.46410i 0.101929 0.176547i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −9.00000 + 15.5885i −0.456318 + 0.790366i −0.998763 0.0497253i \(-0.984165\pi\)
0.542445 + 0.840091i \(0.317499\pi\)
\(390\) 0 0
\(391\) −16.0000 27.7128i −0.809155 1.40150i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.00000 0.201262
\(396\) 0 0
\(397\) −14.0000 −0.702640 −0.351320 0.936255i \(-0.614267\pi\)
−0.351320 + 0.936255i \(0.614267\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.00000 + 1.73205i 0.0499376 + 0.0864945i 0.889914 0.456129i \(-0.150764\pi\)
−0.839976 + 0.542623i \(0.817431\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.00000 + 5.19615i −0.148704 + 0.257564i
\(408\) 0 0
\(409\) −11.0000 19.0526i −0.543915 0.942088i −0.998674 0.0514740i \(-0.983608\pi\)
0.454759 0.890614i \(-0.349725\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −24.0000 −1.18096
\(414\) 0 0
\(415\) 32.0000 1.57082
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −6.00000 10.3923i −0.293119 0.507697i 0.681426 0.731887i \(-0.261360\pi\)
−0.974546 + 0.224189i \(0.928027\pi\)
\(420\) 0 0
\(421\) 5.00000 8.66025i 0.243685 0.422075i −0.718076 0.695965i \(-0.754977\pi\)
0.961761 + 0.273890i \(0.0883103\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.00000 + 3.46410i −0.0970143 + 0.168034i
\(426\) 0 0
\(427\) 14.0000 + 24.2487i 0.677507 + 1.17348i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12.0000 −0.578020 −0.289010 0.957326i \(-0.593326\pi\)
−0.289010 + 0.957326i \(0.593326\pi\)
\(432\) 0 0
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −8.00000 13.8564i −0.382692 0.662842i
\(438\) 0 0
\(439\) 1.00000 1.73205i 0.0477274 0.0826663i −0.841175 0.540763i \(-0.818135\pi\)
0.888902 + 0.458097i \(0.151469\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.00000 + 3.46410i −0.0950229 + 0.164584i −0.909618 0.415445i \(-0.863626\pi\)
0.814595 + 0.580030i \(0.196959\pi\)
\(444\) 0 0
\(445\) 14.0000 + 24.2487i 0.663664 + 1.14950i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −22.0000 −1.03824 −0.519122 0.854700i \(-0.673741\pi\)
−0.519122 + 0.854700i \(0.673741\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −12.0000 20.7846i −0.562569 0.974398i
\(456\) 0 0
\(457\) −11.0000 + 19.0526i −0.514558 + 0.891241i 0.485299 + 0.874348i \(0.338711\pi\)
−0.999857 + 0.0168929i \(0.994623\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 14.0000 24.2487i 0.652045 1.12938i −0.330581 0.943778i \(-0.607245\pi\)
0.982626 0.185597i \(-0.0594220\pi\)
\(462\) 0 0
\(463\) 6.00000 + 10.3923i 0.278844 + 0.482971i 0.971098 0.238683i \(-0.0767155\pi\)
−0.692254 + 0.721654i \(0.743382\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 0 0
\(469\) 8.00000 0.369406
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5.00000 + 8.66025i 0.229900 + 0.398199i
\(474\) 0 0
\(475\) −1.00000 + 1.73205i −0.0458831 + 0.0794719i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6.00000 10.3923i 0.274147 0.474837i −0.695773 0.718262i \(-0.744938\pi\)
0.969920 + 0.243426i \(0.0782712\pi\)
\(480\) 0 0
\(481\) 18.0000 + 31.1769i 0.820729 + 1.42154i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.00000 −0.181631
\(486\) 0 0
\(487\) −16.0000 −0.725029 −0.362515 0.931978i \(-0.618082\pi\)
−0.362515 + 0.931978i \(0.618082\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 8.00000 + 13.8564i 0.361035 + 0.625331i 0.988131 0.153611i \(-0.0490902\pi\)
−0.627096 + 0.778942i \(0.715757\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 2.00000 + 3.46410i 0.0895323 + 0.155074i 0.907314 0.420455i \(-0.138129\pi\)
−0.817781 + 0.575529i \(0.804796\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 20.0000 0.891756 0.445878 0.895094i \(-0.352892\pi\)
0.445878 + 0.895094i \(0.352892\pi\)
\(504\) 0 0
\(505\) 16.0000 0.711991
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7.00000 12.1244i −0.310270 0.537403i 0.668151 0.744026i \(-0.267086\pi\)
−0.978421 + 0.206623i \(0.933753\pi\)
\(510\) 0 0
\(511\) −6.00000 + 10.3923i −0.265424 + 0.459728i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 12.0000 20.7846i 0.528783 0.915879i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −42.0000 −1.84005 −0.920027 0.391856i \(-0.871833\pi\)
−0.920027 + 0.391856i \(0.871833\pi\)
\(522\) 0 0
\(523\) −22.0000 −0.961993 −0.480996 0.876723i \(-0.659725\pi\)
−0.480996 + 0.876723i \(0.659725\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −20.5000 + 35.5070i −0.891304 + 1.54378i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −16.0000 27.7128i −0.691740 1.19813i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3.00000 0.129219
\(540\) 0 0
\(541\) −26.0000 −1.11783 −0.558914 0.829226i \(-0.688782\pi\)
−0.558914 + 0.829226i \(0.688782\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 18.0000 + 31.1769i 0.771035 + 1.33547i
\(546\) 0 0
\(547\) 11.0000 19.0526i 0.470326 0.814629i −0.529098 0.848561i \(-0.677470\pi\)
0.999424 + 0.0339321i \(0.0108030\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −2.00000 3.46410i −0.0850487 0.147309i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12.0000 0.508456 0.254228 0.967144i \(-0.418179\pi\)
0.254228 + 0.967144i \(0.418179\pi\)
\(558\) 0 0
\(559\) 60.0000 2.53773
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.00000 3.46410i −0.0842900 0.145994i 0.820798 0.571218i \(-0.193529\pi\)
−0.905088 + 0.425223i \(0.860196\pi\)
\(564\) 0 0
\(565\) 10.0000 17.3205i 0.420703 0.728679i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 10.0000 17.3205i 0.419222 0.726113i −0.576640 0.816999i \(-0.695636\pi\)
0.995861 + 0.0908852i \(0.0289696\pi\)
\(570\) 0 0
\(571\) −17.0000 29.4449i −0.711428 1.23223i −0.964321 0.264735i \(-0.914716\pi\)
0.252893 0.967494i \(-0.418618\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.00000 0.333623
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −16.0000 27.7128i −0.663792 1.14972i
\(582\) 0 0
\(583\) 7.00000 12.1244i 0.289910 0.502140i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6.00000 10.3923i 0.247647 0.428936i −0.715226 0.698893i \(-0.753676\pi\)
0.962872 + 0.269957i \(0.0870095\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 24.0000 0.985562 0.492781 0.870153i \(-0.335980\pi\)
0.492781 + 0.870153i \(0.335980\pi\)
\(594\) 0 0
\(595\) −16.0000 −0.655936
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(600\) 0 0
\(601\) 7.00000 12.1244i 0.285536 0.494563i −0.687203 0.726465i \(-0.741162\pi\)
0.972739 + 0.231903i \(0.0744951\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.00000 + 1.73205i −0.0406558 + 0.0704179i
\(606\) 0 0
\(607\) −17.0000 29.4449i −0.690009 1.19513i −0.971834 0.235665i \(-0.924273\pi\)
0.281826 0.959466i \(-0.409060\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 42.0000 1.69636 0.848182 0.529705i \(-0.177697\pi\)
0.848182 + 0.529705i \(0.177697\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −19.0000 32.9090i −0.764911 1.32487i −0.940294 0.340365i \(-0.889449\pi\)
0.175382 0.984500i \(-0.443884\pi\)
\(618\) 0 0
\(619\) −16.0000 + 27.7128i −0.643094 + 1.11387i 0.341644 + 0.939829i \(0.389016\pi\)
−0.984738 + 0.174042i \(0.944317\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 14.0000 24.2487i 0.560898 0.971504i
\(624\) 0 0
\(625\) 9.50000 + 16.4545i 0.380000 + 0.658179i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 24.0000 0.956943
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 6.00000 + 10.3923i 0.238103 + 0.412406i
\(636\) 0 0
\(637\) 9.00000 15.5885i 0.356593 0.617637i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 3.00000 5.19615i 0.118493 0.205236i −0.800678 0.599095i \(-0.795527\pi\)
0.919171 + 0.393860i \(0.128860\pi\)
\(642\) 0 0
\(643\) −16.0000 27.7128i −0.630978 1.09289i −0.987352 0.158543i \(-0.949320\pi\)
0.356374 0.934344i \(-0.384013\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.00000 0.314512 0.157256 0.987558i \(-0.449735\pi\)
0.157256 + 0.987558i \(0.449735\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 21.0000 + 36.3731i 0.821794 + 1.42339i 0.904345 + 0.426801i \(0.140360\pi\)
−0.0825519 + 0.996587i \(0.526307\pi\)
\(654\) 0 0
\(655\) −4.00000 + 6.92820i −0.156293 + 0.270707i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 6.00000 10.3923i 0.233727 0.404827i −0.725175 0.688565i \(-0.758241\pi\)
0.958902 + 0.283738i \(0.0915745\pi\)
\(660\) 0 0
\(661\) 9.00000 + 15.5885i 0.350059 + 0.606321i 0.986260 0.165203i \(-0.0528281\pi\)
−0.636200 + 0.771524i \(0.719495\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8.00000 −0.310227
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −7.00000 12.1244i −0.270232 0.468056i
\(672\) 0 0
\(673\) −13.0000 + 22.5167i −0.501113 + 0.867953i 0.498886 + 0.866668i \(0.333743\pi\)
−0.999999 + 0.00128586i \(0.999591\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 16.0000 27.7128i 0.614930 1.06509i −0.375467 0.926836i \(-0.622518\pi\)
0.990397 0.138254i \(-0.0441491\pi\)
\(678\) 0 0
\(679\) 2.00000 + 3.46410i 0.0767530 + 0.132940i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 0 0
\(685\) 28.0000 1.06983
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −42.0000 72.7461i −1.60007 2.77141i
\(690\) 0 0
\(691\) −12.0000 + 20.7846i −0.456502 + 0.790684i −0.998773 0.0495194i \(-0.984231\pi\)
0.542272 + 0.840203i \(0.317564\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −14.0000 + 24.2487i −0.531050 + 0.919806i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −12.0000 −0.453234 −0.226617 0.973984i \(-0.572767\pi\)
−0.226617 + 0.973984i \(0.572767\pi\)
\(702\) 0 0
\(703\) 12.0000 0.452589
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8.00000 13.8564i −0.300871 0.521124i
\(708\) 0 0
\(709\) −9.00000 + 15.5885i −0.338002 + 0.585437i −0.984057 0.177854i \(-0.943084\pi\)
0.646055 + 0.763291i \(0.276418\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 6.00000 + 10.3923i 0.224387 + 0.388650i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −24.0000 −0.893807
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 24.0000 41.5692i 0.890111 1.54172i 0.0503692 0.998731i \(-0.483960\pi\)
0.839742 0.542986i \(-0.182706\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 20.0000 34.6410i 0.739727 1.28124i
\(732\) 0 0
\(733\) 17.0000 + 29.4449i 0.627909 + 1.08757i 0.987971 + 0.154642i \(0.0494225\pi\)
−0.360061 + 0.932929i \(0.617244\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.00000 −0.147342
\(738\) 0 0
\(739\) 26.0000 0.956425 0.478213 0.878244i \(-0.341285\pi\)
0.478213 + 0.878244i \(0.341285\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 4.00000 + 6.92820i 0.146746 + 0.254171i 0.930023 0.367502i \(-0.119787\pi\)
−0.783277 + 0.621673i \(0.786453\pi\)
\(744\) 0 0
\(745\) 4.00000 6.92820i 0.146549 0.253830i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −16.0000 + 27.7128i −0.584627 + 1.01260i
\(750\) 0 0
\(751\) 20.0000 + 34.6410i 0.729810 + 1.26407i 0.956963 + 0.290209i \(0.0937250\pi\)
−0.227153 + 0.973859i \(0.572942\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 20.0000 0.727875
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −18.0000 31.1769i −0.652499 1.13016i −0.982514 0.186187i \(-0.940387\pi\)
0.330015 0.943976i \(-0.392946\pi\)
\(762\) 0 0
\(763\) 18.0000 31.1769i 0.651644 1.12868i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 36.0000 62.3538i 1.29988 2.25147i
\(768\) 0 0
\(769\) −17.0000 29.4449i −0.613036 1.06181i −0.990726 0.135877i \(-0.956615\pi\)
0.377690 0.925932i \(-0.376718\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −18.0000 −0.647415 −0.323708 0.946157i \(-0.604929\pi\)
−0.323708 + 0.946157i \(0.604929\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 10.0000 17.3205i 0.356915 0.618195i
\(786\) 0 0
\(787\) 19.0000 + 32.9090i 0.677277 + 1.17308i 0.975798 + 0.218675i \(0.0701734\pi\)
−0.298521 + 0.954403i \(0.596493\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −20.0000 −0.711118
\(792\) 0 0
\(793\) −84.0000 −2.98293
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.00000 + 5.19615i 0.106265 + 0.184057i 0.914255 0.405140i \(-0.132777\pi\)
−0.807989 + 0.589197i \(0.799444\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.00000 5.19615i 0.105868 0.183368i
\(804\) 0 0
\(805\) 16.0000 + 27.7128i 0.563926 + 0.976748i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −44.0000 −1.54696 −0.773479 0.633822i \(-0.781485\pi\)
−0.773479 + 0.633822i \(0.781485\pi\)
\(810\) 0 0
\(811\) 38.0000 1.33436 0.667180 0.744896i \(-0.267501\pi\)
0.667180 + 0.744896i \(0.267501\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −16.0000 27.7128i −0.560456 0.970737i
\(816\) 0 0
\(817\) 10.0000 17.3205i 0.349856 0.605968i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −20.0000 + 34.6410i −0.698005 + 1.20898i 0.271152 + 0.962536i \(0.412595\pi\)
−0.969157 + 0.246443i \(0.920738\pi\)
\(822\) 0 0
\(823\) 14.0000 + 24.2487i 0.488009 + 0.845257i 0.999905 0.0137907i \(-0.00438987\pi\)
−0.511896 + 0.859048i \(0.671057\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −16.0000 −0.556375 −0.278187 0.960527i \(-0.589734\pi\)
−0.278187 + 0.960527i \(0.589734\pi\)
\(828\) 0 0
\(829\) −14.0000 −0.486240 −0.243120 0.969996i \(-0.578171\pi\)
−0.243120 + 0.969996i \(0.578171\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −6.00000 10.3923i −0.207888 0.360072i
\(834\) 0 0
\(835\) 12.0000 20.7846i 0.415277 0.719281i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 12.0000 20.7846i 0.414286 0.717564i −0.581067 0.813856i \(-0.697365\pi\)
0.995353 + 0.0962912i \(0.0306980\pi\)
\(840\) 0 0
\(841\) 14.5000 + 25.1147i 0.500000 + 0.866025i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 46.0000 1.58245
\(846\) 0 0
\(847\) 2.00000 0.0687208
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −24.0000 41.5692i −0.822709 1.42497i
\(852\) 0 0
\(853\) −9.00000 + 15.5885i −0.308154 + 0.533739i −0.977959 0.208799i \(-0.933045\pi\)
0.669804 + 0.742538i \(0.266378\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −22.0000 + 38.1051i −0.751506 + 1.30165i 0.195587 + 0.980686i \(0.437339\pi\)
−0.947093 + 0.320960i \(0.895995\pi\)
\(858\) 0 0
\(859\) −20.0000 34.6410i −0.682391 1.18194i −0.974249 0.225475i \(-0.927607\pi\)
0.291858 0.956462i \(-0.405727\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 8.00000 0.272323 0.136162 0.990687i \(-0.456523\pi\)
0.136162 + 0.990687i \(0.456523\pi\)
\(864\) 0 0
\(865\) 16.0000 0.544016
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.00000 + 1.73205i 0.0339227 + 0.0587558i
\(870\) 0 0
\(871\) −12.0000 + 20.7846i −0.406604 + 0.704260i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 12.0000 20.7846i 0.405674 0.702648i
\(876\) 0 0
\(877\) −9.00000 15.5885i −0.303908 0.526385i 0.673109 0.739543i \(-0.264958\pi\)
−0.977018 + 0.213158i \(0.931625\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2.00000 −0.0673817 −0.0336909 0.999432i \(-0.510726\pi\)
−0.0336909 + 0.999432i \(0.510726\pi\)
\(882\) 0 0
\(883\) −44.0000 −1.48072 −0.740359 0.672212i \(-0.765344\pi\)
−0.740359 + 0.672212i \(0.765344\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(888\) 0 0
\(889\) 6.00000 10.3923i 0.201234 0.348547i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 4.00000 + 6.92820i 0.133705 + 0.231584i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −56.0000 −1.86563
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −22.0000 38.1051i −0.731305 1.26666i
\(906\) 0 0
\(907\) −8.00000 + 13.8564i −0.265636 + 0.460094i −0.967730 0.251990i \(-0.918915\pi\)
0.702094 + 0.712084i \(0.252248\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 24.0000 41.5692i 0.795155 1.37725i −0.127585 0.991828i \(-0.540723\pi\)
0.922740 0.385422i \(-0.125944\pi\)
\(912\) 0 0
\(913\) 8.00000 + 13.8564i 0.264761 + 0.458580i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 8.00000 0.264183
\(918\) 0 0
\(919\) −34.0000 −1.12156 −0.560778 0.827966i \(-0.689498\pi\)
−0.560778 + 0.827966i \(0.689498\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −3.00000 + 5.19615i −0.0986394 + 0.170848i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 21.0000 36.3731i 0.688988 1.19336i −0.283178 0.959067i \(-0.591389\pi\)
0.972166 0.234294i \(-0.0752779\pi\)
\(930\) 0 0
\(931\) −3.00000 5.19615i −0.0983210 0.170297i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 8.00000 0.261628
\(936\) 0 0
\(937\) −38.0000 −1.24141 −0.620703 0.784046i \(-0.713153\pi\)
−0.620703 + 0.784046i \(0.713153\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6.00000 + 10.3923i −0.194974 + 0.337705i −0.946892 0.321552i \(-0.895796\pi\)
0.751918 + 0.659256i \(0.229129\pi\)
\(948\) 0 0
\(949\) −18.0000 31.1769i −0.584305 1.01205i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 12.0000 0.388718 0.194359 0.980930i \(-0.437737\pi\)
0.194359 + 0.980930i \(0.437737\pi\)
\(954\) 0 0
\(955\) 48.0000 1.55324
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −14.0000 24.2487i −0.452084 0.783032i
\(960\) 0 0
\(961\) 15.5000 26.8468i 0.500000 0.866025i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −10.0000 + 17.3205i −0.321911 + 0.557567i
\(966\) 0 0
\(967\) −17.0000 29.4449i −0.546683 0.946883i −0.998499 0.0547717i \(-0.982557\pi\)
0.451816 0.892111i \(-0.350776\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 60.0000 1.92549 0.962746 0.270408i \(-0.0871586\pi\)
0.962746 + 0.270408i \(0.0871586\pi\)
\(972\) 0 0
\(973\) 28.0000 0.897639
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 5.00000 + 8.66025i 0.159964 + 0.277066i 0.934856 0.355028i \(-0.115529\pi\)
−0.774891 + 0.632094i \(0.782195\pi\)
\(978\) 0 0
\(979\) −7.00000 + 12.1244i −0.223721 + 0.387496i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(984\) 0 0
\(985\) −16.0000 27.7128i −0.509802 0.883004i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −80.0000 −2.54385
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −8.00000 13.8564i −0.253617 0.439278i
\(996\) 0 0
\(997\) −5.00000 + 8.66025i −0.158352 + 0.274273i −0.934274 0.356555i \(-0.883951\pi\)
0.775923 + 0.630828i \(0.217285\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3564.2.i.b.1189.1 2
3.2 odd 2 3564.2.i.g.1189.1 2
9.2 odd 6 396.2.a.b.1.1 1
9.4 even 3 inner 3564.2.i.b.2377.1 2
9.5 odd 6 3564.2.i.g.2377.1 2
9.7 even 3 132.2.a.a.1.1 1
36.7 odd 6 528.2.a.h.1.1 1
36.11 even 6 1584.2.a.c.1.1 1
45.2 even 12 9900.2.c.k.5149.2 2
45.7 odd 12 3300.2.c.c.1849.2 2
45.29 odd 6 9900.2.a.g.1.1 1
45.34 even 6 3300.2.a.k.1.1 1
45.38 even 12 9900.2.c.k.5149.1 2
45.43 odd 12 3300.2.c.c.1849.1 2
63.34 odd 6 6468.2.a.l.1.1 1
72.11 even 6 6336.2.a.bz.1.1 1
72.29 odd 6 6336.2.a.cf.1.1 1
72.43 odd 6 2112.2.a.b.1.1 1
72.61 even 6 2112.2.a.t.1.1 1
99.7 odd 30 1452.2.i.l.1237.1 4
99.16 even 15 1452.2.i.k.1213.1 4
99.25 even 15 1452.2.i.k.493.1 4
99.43 odd 6 1452.2.a.c.1.1 1
99.52 odd 30 1452.2.i.l.493.1 4
99.61 odd 30 1452.2.i.l.1213.1 4
99.65 even 6 4356.2.a.c.1.1 1
99.70 even 15 1452.2.i.k.1237.1 4
99.79 odd 30 1452.2.i.l.565.1 4
99.97 even 15 1452.2.i.k.565.1 4
396.43 even 6 5808.2.a.bf.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.2.a.a.1.1 1 9.7 even 3
396.2.a.b.1.1 1 9.2 odd 6
528.2.a.h.1.1 1 36.7 odd 6
1452.2.a.c.1.1 1 99.43 odd 6
1452.2.i.k.493.1 4 99.25 even 15
1452.2.i.k.565.1 4 99.97 even 15
1452.2.i.k.1213.1 4 99.16 even 15
1452.2.i.k.1237.1 4 99.70 even 15
1452.2.i.l.493.1 4 99.52 odd 30
1452.2.i.l.565.1 4 99.79 odd 30
1452.2.i.l.1213.1 4 99.61 odd 30
1452.2.i.l.1237.1 4 99.7 odd 30
1584.2.a.c.1.1 1 36.11 even 6
2112.2.a.b.1.1 1 72.43 odd 6
2112.2.a.t.1.1 1 72.61 even 6
3300.2.a.k.1.1 1 45.34 even 6
3300.2.c.c.1849.1 2 45.43 odd 12
3300.2.c.c.1849.2 2 45.7 odd 12
3564.2.i.b.1189.1 2 1.1 even 1 trivial
3564.2.i.b.2377.1 2 9.4 even 3 inner
3564.2.i.g.1189.1 2 3.2 odd 2
3564.2.i.g.2377.1 2 9.5 odd 6
4356.2.a.c.1.1 1 99.65 even 6
5808.2.a.bf.1.1 1 396.43 even 6
6336.2.a.bz.1.1 1 72.11 even 6
6336.2.a.cf.1.1 1 72.29 odd 6
6468.2.a.l.1.1 1 63.34 odd 6
9900.2.a.g.1.1 1 45.29 odd 6
9900.2.c.k.5149.1 2 45.38 even 12
9900.2.c.k.5149.2 2 45.2 even 12