Properties

Label 357.2.a.e
Level $357$
Weight $2$
Character orbit 357.a
Self dual yes
Analytic conductor $2.851$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [357,2,Mod(1,357)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(357, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("357.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 357 = 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 357.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.85065935216\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 1) q^{2} + q^{3} + ( - 2 \beta + 2) q^{4} + ( - \beta - 2) q^{5} + (\beta - 1) q^{6} - q^{7} + (2 \beta - 6) q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta - 1) q^{2} + q^{3} + ( - 2 \beta + 2) q^{4} + ( - \beta - 2) q^{5} + (\beta - 1) q^{6} - q^{7} + (2 \beta - 6) q^{8} + q^{9} + ( - \beta - 1) q^{10} - 5 q^{11} + ( - 2 \beta + 2) q^{12} + (3 \beta - 2) q^{13} + ( - \beta + 1) q^{14} + ( - \beta - 2) q^{15} + ( - 4 \beta + 8) q^{16} + q^{17} + (\beta - 1) q^{18} + ( - 3 \beta - 2) q^{19} + (2 \beta + 2) q^{20} - q^{21} + ( - 5 \beta + 5) q^{22} - 3 q^{23} + (2 \beta - 6) q^{24} + (4 \beta + 2) q^{25} + ( - 5 \beta + 11) q^{26} + q^{27} + (2 \beta - 2) q^{28} + 4 q^{29} + ( - \beta - 1) q^{30} + ( - \beta - 3) q^{31} + (8 \beta - 8) q^{32} - 5 q^{33} + (\beta - 1) q^{34} + (\beta + 2) q^{35} + ( - 2 \beta + 2) q^{36} + (\beta + 3) q^{37} + (\beta - 7) q^{38} + (3 \beta - 2) q^{39} + (2 \beta + 6) q^{40} + ( - \beta - 10) q^{41} + ( - \beta + 1) q^{42} + (6 \beta - 1) q^{43} + (10 \beta - 10) q^{44} + ( - \beta - 2) q^{45} + ( - 3 \beta + 3) q^{46} + (\beta + 3) q^{47} + ( - 4 \beta + 8) q^{48} + q^{49} + ( - 2 \beta + 10) q^{50} + q^{51} + (10 \beta - 22) q^{52} + ( - 5 \beta + 3) q^{53} + (\beta - 1) q^{54} + (5 \beta + 10) q^{55} + ( - 2 \beta + 6) q^{56} + ( - 3 \beta - 2) q^{57} + (4 \beta - 4) q^{58} + (3 \beta - 3) q^{59} + (2 \beta + 2) q^{60} + ( - \beta - 5) q^{61} - 2 \beta q^{62} - q^{63} + ( - 8 \beta + 16) q^{64} + ( - 4 \beta - 5) q^{65} + ( - 5 \beta + 5) q^{66} + ( - 2 \beta - 8) q^{67} + ( - 2 \beta + 2) q^{68} - 3 q^{69} + (\beta + 1) q^{70} - 2 \beta q^{71} + (2 \beta - 6) q^{72} - 2 \beta q^{73} + 2 \beta q^{74} + (4 \beta + 2) q^{75} + ( - 2 \beta + 14) q^{76} + 5 q^{77} + ( - 5 \beta + 11) q^{78} + ( - 3 \beta + 5) q^{79} - 4 q^{80} + q^{81} + ( - 9 \beta + 7) q^{82} + ( - 4 \beta - 6) q^{83} + (2 \beta - 2) q^{84} + ( - \beta - 2) q^{85} + ( - 7 \beta + 19) q^{86} + 4 q^{87} + ( - 10 \beta + 30) q^{88} + ( - 6 \beta - 2) q^{89} + ( - \beta - 1) q^{90} + ( - 3 \beta + 2) q^{91} + (6 \beta - 6) q^{92} + ( - \beta - 3) q^{93} + 2 \beta q^{94} + (8 \beta + 13) q^{95} + (8 \beta - 8) q^{96} + 8 \beta q^{97} + (\beta - 1) q^{98} - 5 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{3} + 4 q^{4} - 4 q^{5} - 2 q^{6} - 2 q^{7} - 12 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{3} + 4 q^{4} - 4 q^{5} - 2 q^{6} - 2 q^{7} - 12 q^{8} + 2 q^{9} - 2 q^{10} - 10 q^{11} + 4 q^{12} - 4 q^{13} + 2 q^{14} - 4 q^{15} + 16 q^{16} + 2 q^{17} - 2 q^{18} - 4 q^{19} + 4 q^{20} - 2 q^{21} + 10 q^{22} - 6 q^{23} - 12 q^{24} + 4 q^{25} + 22 q^{26} + 2 q^{27} - 4 q^{28} + 8 q^{29} - 2 q^{30} - 6 q^{31} - 16 q^{32} - 10 q^{33} - 2 q^{34} + 4 q^{35} + 4 q^{36} + 6 q^{37} - 14 q^{38} - 4 q^{39} + 12 q^{40} - 20 q^{41} + 2 q^{42} - 2 q^{43} - 20 q^{44} - 4 q^{45} + 6 q^{46} + 6 q^{47} + 16 q^{48} + 2 q^{49} + 20 q^{50} + 2 q^{51} - 44 q^{52} + 6 q^{53} - 2 q^{54} + 20 q^{55} + 12 q^{56} - 4 q^{57} - 8 q^{58} - 6 q^{59} + 4 q^{60} - 10 q^{61} - 2 q^{63} + 32 q^{64} - 10 q^{65} + 10 q^{66} - 16 q^{67} + 4 q^{68} - 6 q^{69} + 2 q^{70} - 12 q^{72} + 4 q^{75} + 28 q^{76} + 10 q^{77} + 22 q^{78} + 10 q^{79} - 8 q^{80} + 2 q^{81} + 14 q^{82} - 12 q^{83} - 4 q^{84} - 4 q^{85} + 38 q^{86} + 8 q^{87} + 60 q^{88} - 4 q^{89} - 2 q^{90} + 4 q^{91} - 12 q^{92} - 6 q^{93} + 26 q^{95} - 16 q^{96} - 2 q^{98} - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
−2.73205 1.00000 5.46410 −0.267949 −2.73205 −1.00000 −9.46410 1.00000 0.732051
1.2 0.732051 1.00000 −1.46410 −3.73205 0.732051 −1.00000 −2.53590 1.00000 −2.73205
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 357.2.a.e 2
3.b odd 2 1 1071.2.a.f 2
4.b odd 2 1 5712.2.a.bc 2
5.b even 2 1 8925.2.a.bl 2
7.b odd 2 1 2499.2.a.n 2
17.b even 2 1 6069.2.a.f 2
21.c even 2 1 7497.2.a.y 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
357.2.a.e 2 1.a even 1 1 trivial
1071.2.a.f 2 3.b odd 2 1
2499.2.a.n 2 7.b odd 2 1
5712.2.a.bc 2 4.b odd 2 1
6069.2.a.f 2 17.b even 2 1
7497.2.a.y 2 21.c even 2 1
8925.2.a.bl 2 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(357))\):

\( T_{2}^{2} + 2T_{2} - 2 \) Copy content Toggle raw display
\( T_{11} + 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2T - 2 \) Copy content Toggle raw display
$3$ \( (T - 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 4T + 1 \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( (T + 5)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4T - 23 \) Copy content Toggle raw display
$17$ \( (T - 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 4T - 23 \) Copy content Toggle raw display
$23$ \( (T + 3)^{2} \) Copy content Toggle raw display
$29$ \( (T - 4)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 6T + 6 \) Copy content Toggle raw display
$37$ \( T^{2} - 6T + 6 \) Copy content Toggle raw display
$41$ \( T^{2} + 20T + 97 \) Copy content Toggle raw display
$43$ \( T^{2} + 2T - 107 \) Copy content Toggle raw display
$47$ \( T^{2} - 6T + 6 \) Copy content Toggle raw display
$53$ \( T^{2} - 6T - 66 \) Copy content Toggle raw display
$59$ \( T^{2} + 6T - 18 \) Copy content Toggle raw display
$61$ \( T^{2} + 10T + 22 \) Copy content Toggle raw display
$67$ \( T^{2} + 16T + 52 \) Copy content Toggle raw display
$71$ \( T^{2} - 12 \) Copy content Toggle raw display
$73$ \( T^{2} - 12 \) Copy content Toggle raw display
$79$ \( T^{2} - 10T - 2 \) Copy content Toggle raw display
$83$ \( T^{2} + 12T - 12 \) Copy content Toggle raw display
$89$ \( T^{2} + 4T - 104 \) Copy content Toggle raw display
$97$ \( T^{2} - 192 \) Copy content Toggle raw display
show more
show less