Properties

Label 36.4.e.a.25.2
Level $36$
Weight $4$
Character 36.25
Analytic conductor $2.124$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [36,4,Mod(13,36)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(36, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("36.13");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 36 = 2^{2} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 36.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.12406876021\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.6831243.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 13x^{4} + 49x^{2} + 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 25.2
Root \(2.13353i\) of defining polynomial
Character \(\chi\) \(=\) 36.25
Dual form 36.4.e.a.13.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.51979 - 4.54430i) q^{3} +(-6.37096 - 11.0348i) q^{5} +(7.02674 - 12.1707i) q^{7} +(-14.3013 + 22.9014i) q^{9} +(21.2745 - 36.8486i) q^{11} +(36.2316 + 62.7550i) q^{13} +(-34.0920 + 56.7570i) q^{15} -59.6114 q^{17} +105.570 q^{19} +(-73.0131 - 1.26403i) q^{21} +(0.112590 + 0.195011i) q^{23} +(-18.6781 + 32.3515i) q^{25} +(140.107 + 7.28259i) q^{27} +(112.855 - 195.470i) q^{29} +(-100.597 - 174.239i) q^{31} +(-221.058 - 3.82705i) q^{33} -179.068 q^{35} -152.926 q^{37} +(193.881 - 322.777i) q^{39} +(244.824 + 424.047i) q^{41} +(3.79372 - 6.57091i) q^{43} +(343.825 + 11.9085i) q^{45} +(-186.696 + 323.366i) q^{47} +(72.7498 + 126.006i) q^{49} +(150.208 + 270.892i) q^{51} -43.6780 q^{53} -542.157 q^{55} +(-266.015 - 479.743i) q^{57} +(335.949 + 581.881i) q^{59} +(-37.0177 + 64.1165i) q^{61} +(178.234 + 334.978i) q^{63} +(461.660 - 799.619i) q^{65} +(-210.436 - 364.485i) q^{67} +(0.602487 - 1.00303i) q^{69} -730.840 q^{71} +473.927 q^{73} +(194.080 + 3.35999i) q^{75} +(-298.982 - 517.851i) q^{77} +(264.811 - 458.666i) q^{79} +(-319.946 - 655.038i) q^{81} +(-13.0767 + 22.6495i) q^{83} +(379.781 + 657.801i) q^{85} +(-1172.65 - 20.3013i) q^{87} +415.949 q^{89} +1018.36 q^{91} +(-538.311 + 896.189i) q^{93} +(-672.583 - 1164.95i) q^{95} +(-463.743 + 803.226i) q^{97} +(539.630 + 1014.20i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{3} + 6 q^{5} - 6 q^{7} + 39 q^{9} + 51 q^{11} + 12 q^{13} - 180 q^{15} - 222 q^{17} + 30 q^{19} - 120 q^{21} + 210 q^{23} - 3 q^{25} + 648 q^{27} + 456 q^{29} + 48 q^{31} - 603 q^{33} - 1104 q^{35}+ \cdots - 1854 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/36\mathbb{Z}\right)^\times\).

\(n\) \(19\) \(29\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.51979 4.54430i −0.484934 0.874551i
\(4\) 0 0
\(5\) −6.37096 11.0348i −0.569836 0.986984i −0.996582 0.0826127i \(-0.973674\pi\)
0.426746 0.904371i \(-0.359660\pi\)
\(6\) 0 0
\(7\) 7.02674 12.1707i 0.379408 0.657155i −0.611568 0.791192i \(-0.709461\pi\)
0.990976 + 0.134037i \(0.0427942\pi\)
\(8\) 0 0
\(9\) −14.3013 + 22.9014i −0.529677 + 0.848199i
\(10\) 0 0
\(11\) 21.2745 36.8486i 0.583138 1.01002i −0.411967 0.911199i \(-0.635158\pi\)
0.995105 0.0988256i \(-0.0315086\pi\)
\(12\) 0 0
\(13\) 36.2316 + 62.7550i 0.772988 + 1.33885i 0.935918 + 0.352217i \(0.114572\pi\)
−0.162930 + 0.986638i \(0.552095\pi\)
\(14\) 0 0
\(15\) −34.0920 + 56.7570i −0.586835 + 0.976972i
\(16\) 0 0
\(17\) −59.6114 −0.850464 −0.425232 0.905084i \(-0.639807\pi\)
−0.425232 + 0.905084i \(0.639807\pi\)
\(18\) 0 0
\(19\) 105.570 1.27471 0.637354 0.770571i \(-0.280029\pi\)
0.637354 + 0.770571i \(0.280029\pi\)
\(20\) 0 0
\(21\) −73.0131 1.26403i −0.758703 0.0131350i
\(22\) 0 0
\(23\) 0.112590 + 0.195011i 0.00102072 + 0.00176794i 0.866535 0.499116i \(-0.166342\pi\)
−0.865515 + 0.500884i \(0.833008\pi\)
\(24\) 0 0
\(25\) −18.6781 + 32.3515i −0.149425 + 0.258812i
\(26\) 0 0
\(27\) 140.107 + 7.28259i 0.998652 + 0.0519087i
\(28\) 0 0
\(29\) 112.855 195.470i 0.722642 1.25165i −0.237296 0.971437i \(-0.576261\pi\)
0.959937 0.280214i \(-0.0904056\pi\)
\(30\) 0 0
\(31\) −100.597 174.239i −0.582831 1.00949i −0.995142 0.0984492i \(-0.968612\pi\)
0.412312 0.911043i \(-0.364722\pi\)
\(32\) 0 0
\(33\) −221.058 3.82705i −1.16610 0.0201880i
\(34\) 0 0
\(35\) −179.068 −0.864802
\(36\) 0 0
\(37\) −152.926 −0.679485 −0.339743 0.940518i \(-0.610340\pi\)
−0.339743 + 0.940518i \(0.610340\pi\)
\(38\) 0 0
\(39\) 193.881 322.777i 0.796047 1.32527i
\(40\) 0 0
\(41\) 244.824 + 424.047i 0.932563 + 1.61525i 0.778923 + 0.627119i \(0.215766\pi\)
0.153639 + 0.988127i \(0.450901\pi\)
\(42\) 0 0
\(43\) 3.79372 6.57091i 0.0134543 0.0233036i −0.859220 0.511607i \(-0.829051\pi\)
0.872674 + 0.488303i \(0.162384\pi\)
\(44\) 0 0
\(45\) 343.825 + 11.9085i 1.13899 + 0.0394491i
\(46\) 0 0
\(47\) −186.696 + 323.366i −0.579412 + 1.00357i 0.416135 + 0.909303i \(0.363384\pi\)
−0.995547 + 0.0942681i \(0.969949\pi\)
\(48\) 0 0
\(49\) 72.7498 + 126.006i 0.212098 + 0.367365i
\(50\) 0 0
\(51\) 150.208 + 270.892i 0.412419 + 0.743773i
\(52\) 0 0
\(53\) −43.6780 −0.113201 −0.0566003 0.998397i \(-0.518026\pi\)
−0.0566003 + 0.998397i \(0.518026\pi\)
\(54\) 0 0
\(55\) −542.157 −1.32917
\(56\) 0 0
\(57\) −266.015 479.743i −0.618150 1.11480i
\(58\) 0 0
\(59\) 335.949 + 581.881i 0.741303 + 1.28397i 0.951902 + 0.306402i \(0.0991251\pi\)
−0.210599 + 0.977572i \(0.567542\pi\)
\(60\) 0 0
\(61\) −37.0177 + 64.1165i −0.0776988 + 0.134578i −0.902257 0.431199i \(-0.858091\pi\)
0.824558 + 0.565778i \(0.191424\pi\)
\(62\) 0 0
\(63\) 178.234 + 334.978i 0.356434 + 0.669894i
\(64\) 0 0
\(65\) 461.660 799.619i 0.880952 1.52585i
\(66\) 0 0
\(67\) −210.436 364.485i −0.383713 0.664611i 0.607876 0.794032i \(-0.292022\pi\)
−0.991590 + 0.129421i \(0.958688\pi\)
\(68\) 0 0
\(69\) 0.602487 1.00303i 0.00105117 0.00175001i
\(70\) 0 0
\(71\) −730.840 −1.22162 −0.610808 0.791778i \(-0.709155\pi\)
−0.610808 + 0.791778i \(0.709155\pi\)
\(72\) 0 0
\(73\) 473.927 0.759849 0.379925 0.925017i \(-0.375950\pi\)
0.379925 + 0.925017i \(0.375950\pi\)
\(74\) 0 0
\(75\) 194.080 + 3.35999i 0.298805 + 0.00517304i
\(76\) 0 0
\(77\) −298.982 517.851i −0.442495 0.766424i
\(78\) 0 0
\(79\) 264.811 458.666i 0.377134 0.653215i −0.613510 0.789687i \(-0.710243\pi\)
0.990644 + 0.136472i \(0.0435764\pi\)
\(80\) 0 0
\(81\) −319.946 655.038i −0.438884 0.898544i
\(82\) 0 0
\(83\) −13.0767 + 22.6495i −0.0172934 + 0.0299531i −0.874543 0.484949i \(-0.838838\pi\)
0.857249 + 0.514902i \(0.172172\pi\)
\(84\) 0 0
\(85\) 379.781 + 657.801i 0.484624 + 0.839394i
\(86\) 0 0
\(87\) −1172.65 20.3013i −1.44507 0.0250176i
\(88\) 0 0
\(89\) 415.949 0.495399 0.247700 0.968837i \(-0.420325\pi\)
0.247700 + 0.968837i \(0.420325\pi\)
\(90\) 0 0
\(91\) 1018.36 1.17311
\(92\) 0 0
\(93\) −538.311 + 896.189i −0.600217 + 0.999252i
\(94\) 0 0
\(95\) −672.583 1164.95i −0.726374 1.25812i
\(96\) 0 0
\(97\) −463.743 + 803.226i −0.485422 + 0.840776i −0.999860 0.0167522i \(-0.994667\pi\)
0.514438 + 0.857528i \(0.328001\pi\)
\(98\) 0 0
\(99\) 539.630 + 1014.20i 0.547827 + 1.02960i
\(100\) 0 0
\(101\) 45.0590 78.0445i 0.0443915 0.0768883i −0.842976 0.537951i \(-0.819198\pi\)
0.887367 + 0.461063i \(0.152532\pi\)
\(102\) 0 0
\(103\) 162.826 + 282.023i 0.155765 + 0.269792i 0.933337 0.359001i \(-0.116883\pi\)
−0.777573 + 0.628793i \(0.783549\pi\)
\(104\) 0 0
\(105\) 451.215 + 813.740i 0.419372 + 0.756313i
\(106\) 0 0
\(107\) 1073.49 0.969888 0.484944 0.874545i \(-0.338840\pi\)
0.484944 + 0.874545i \(0.338840\pi\)
\(108\) 0 0
\(109\) 601.488 0.528552 0.264276 0.964447i \(-0.414867\pi\)
0.264276 + 0.964447i \(0.414867\pi\)
\(110\) 0 0
\(111\) 385.343 + 694.944i 0.329506 + 0.594244i
\(112\) 0 0
\(113\) 210.019 + 363.764i 0.174840 + 0.302832i 0.940106 0.340882i \(-0.110726\pi\)
−0.765266 + 0.643715i \(0.777392\pi\)
\(114\) 0 0
\(115\) 1.43461 2.48482i 0.00116329 0.00201487i
\(116\) 0 0
\(117\) −1955.34 67.7234i −1.54505 0.0535131i
\(118\) 0 0
\(119\) −418.874 + 725.511i −0.322673 + 0.558886i
\(120\) 0 0
\(121\) −239.713 415.194i −0.180100 0.311942i
\(122\) 0 0
\(123\) 1310.09 2181.06i 0.960383 1.59886i
\(124\) 0 0
\(125\) −1116.75 −0.799080
\(126\) 0 0
\(127\) −980.264 −0.684916 −0.342458 0.939533i \(-0.611259\pi\)
−0.342458 + 0.939533i \(0.611259\pi\)
\(128\) 0 0
\(129\) −39.4195 0.682447i −0.0269046 0.000465784i
\(130\) 0 0
\(131\) −677.695 1173.80i −0.451988 0.782866i 0.546521 0.837445i \(-0.315952\pi\)
−0.998509 + 0.0545787i \(0.982618\pi\)
\(132\) 0 0
\(133\) 741.815 1284.86i 0.483635 0.837681i
\(134\) 0 0
\(135\) −812.253 1592.45i −0.517834 1.01523i
\(136\) 0 0
\(137\) −453.261 + 785.071i −0.282662 + 0.489585i −0.972040 0.234817i \(-0.924551\pi\)
0.689378 + 0.724402i \(0.257884\pi\)
\(138\) 0 0
\(139\) 409.209 + 708.771i 0.249703 + 0.432498i 0.963443 0.267912i \(-0.0863338\pi\)
−0.713741 + 0.700410i \(0.753000\pi\)
\(140\) 0 0
\(141\) 1939.91 + 33.5845i 1.15865 + 0.0200590i
\(142\) 0 0
\(143\) 3083.25 1.80303
\(144\) 0 0
\(145\) −2875.97 −1.64715
\(146\) 0 0
\(147\) 389.296 648.106i 0.218426 0.363639i
\(148\) 0 0
\(149\) 579.748 + 1004.15i 0.318757 + 0.552103i 0.980229 0.197867i \(-0.0634013\pi\)
−0.661472 + 0.749970i \(0.730068\pi\)
\(150\) 0 0
\(151\) 318.987 552.501i 0.171912 0.297761i −0.767176 0.641437i \(-0.778339\pi\)
0.939088 + 0.343676i \(0.111672\pi\)
\(152\) 0 0
\(153\) 852.519 1365.18i 0.450471 0.721363i
\(154\) 0 0
\(155\) −1281.80 + 2220.14i −0.664235 + 1.15049i
\(156\) 0 0
\(157\) −1645.86 2850.71i −0.836649 1.44912i −0.892680 0.450690i \(-0.851178\pi\)
0.0560311 0.998429i \(-0.482155\pi\)
\(158\) 0 0
\(159\) 110.059 + 198.486i 0.0548949 + 0.0989997i
\(160\) 0 0
\(161\) 3.16456 0.00154908
\(162\) 0 0
\(163\) −1197.14 −0.575258 −0.287629 0.957742i \(-0.592867\pi\)
−0.287629 + 0.957742i \(0.592867\pi\)
\(164\) 0 0
\(165\) 1366.12 + 2463.72i 0.644561 + 1.16243i
\(166\) 0 0
\(167\) −419.419 726.455i −0.194345 0.336615i 0.752341 0.658774i \(-0.228925\pi\)
−0.946686 + 0.322159i \(0.895591\pi\)
\(168\) 0 0
\(169\) −1526.96 + 2644.77i −0.695021 + 1.20381i
\(170\) 0 0
\(171\) −1509.79 + 2417.70i −0.675184 + 1.08121i
\(172\) 0 0
\(173\) −1153.59 + 1998.08i −0.506970 + 0.878098i 0.492997 + 0.870031i \(0.335901\pi\)
−0.999967 + 0.00806725i \(0.997432\pi\)
\(174\) 0 0
\(175\) 262.493 + 454.651i 0.113386 + 0.196391i
\(176\) 0 0
\(177\) 1797.72 2992.87i 0.763417 1.27095i
\(178\) 0 0
\(179\) 3114.47 1.30048 0.650241 0.759728i \(-0.274668\pi\)
0.650241 + 0.759728i \(0.274668\pi\)
\(180\) 0 0
\(181\) 3902.75 1.60270 0.801350 0.598195i \(-0.204115\pi\)
0.801350 + 0.598195i \(0.204115\pi\)
\(182\) 0 0
\(183\) 384.641 + 6.65907i 0.155374 + 0.00268990i
\(184\) 0 0
\(185\) 974.288 + 1687.52i 0.387195 + 0.670641i
\(186\) 0 0
\(187\) −1268.20 + 2196.60i −0.495938 + 0.858989i
\(188\) 0 0
\(189\) 1073.13 1654.02i 0.413009 0.636574i
\(190\) 0 0
\(191\) −52.8697 + 91.5730i −0.0200289 + 0.0346911i −0.875866 0.482554i \(-0.839709\pi\)
0.855837 + 0.517245i \(0.173042\pi\)
\(192\) 0 0
\(193\) 792.685 + 1372.97i 0.295641 + 0.512065i 0.975134 0.221617i \(-0.0711334\pi\)
−0.679493 + 0.733682i \(0.737800\pi\)
\(194\) 0 0
\(195\) −4796.99 83.0475i −1.76164 0.0304982i
\(196\) 0 0
\(197\) −3905.37 −1.41242 −0.706208 0.708005i \(-0.749595\pi\)
−0.706208 + 0.708005i \(0.749595\pi\)
\(198\) 0 0
\(199\) 1538.77 0.548143 0.274072 0.961709i \(-0.411629\pi\)
0.274072 + 0.961709i \(0.411629\pi\)
\(200\) 0 0
\(201\) −1126.07 + 1874.71i −0.395160 + 0.657869i
\(202\) 0 0
\(203\) −1586.00 2747.04i −0.548353 0.949775i
\(204\) 0 0
\(205\) 3119.52 5403.17i 1.06281 1.84085i
\(206\) 0 0
\(207\) −6.07621 0.210451i −0.00204022 7.06634e-5i
\(208\) 0 0
\(209\) 2245.96 3890.11i 0.743331 1.28749i
\(210\) 0 0
\(211\) −470.733 815.334i −0.153586 0.266019i 0.778957 0.627077i \(-0.215749\pi\)
−0.932543 + 0.361058i \(0.882416\pi\)
\(212\) 0 0
\(213\) 1841.57 + 3321.16i 0.592404 + 1.06837i
\(214\) 0 0
\(215\) −96.6784 −0.0306670
\(216\) 0 0
\(217\) −2827.48 −0.884523
\(218\) 0 0
\(219\) −1194.20 2153.67i −0.368477 0.664527i
\(220\) 0 0
\(221\) −2159.82 3740.91i −0.657398 1.13865i
\(222\) 0 0
\(223\) −1660.78 + 2876.56i −0.498719 + 0.863807i −0.999999 0.00147850i \(-0.999529\pi\)
0.501280 + 0.865285i \(0.332863\pi\)
\(224\) 0 0
\(225\) −473.772 890.423i −0.140377 0.263829i
\(226\) 0 0
\(227\) 2105.92 3647.56i 0.615749 1.06651i −0.374504 0.927225i \(-0.622187\pi\)
0.990253 0.139283i \(-0.0444797\pi\)
\(228\) 0 0
\(229\) 177.072 + 306.698i 0.0510973 + 0.0885031i 0.890443 0.455095i \(-0.150395\pi\)
−0.839345 + 0.543598i \(0.817061\pi\)
\(230\) 0 0
\(231\) −1599.90 + 2663.54i −0.455695 + 0.758649i
\(232\) 0 0
\(233\) 868.789 0.244276 0.122138 0.992513i \(-0.461025\pi\)
0.122138 + 0.992513i \(0.461025\pi\)
\(234\) 0 0
\(235\) 4757.72 1.32068
\(236\) 0 0
\(237\) −2751.58 47.6365i −0.754154 0.0130562i
\(238\) 0 0
\(239\) 602.177 + 1043.00i 0.162977 + 0.282285i 0.935935 0.352172i \(-0.114557\pi\)
−0.772958 + 0.634457i \(0.781224\pi\)
\(240\) 0 0
\(241\) 2543.70 4405.82i 0.679893 1.17761i −0.295120 0.955460i \(-0.595360\pi\)
0.975013 0.222149i \(-0.0713072\pi\)
\(242\) 0 0
\(243\) −2170.49 + 3104.49i −0.572992 + 0.819561i
\(244\) 0 0
\(245\) 926.971 1605.56i 0.241722 0.418676i
\(246\) 0 0
\(247\) 3824.98 + 6625.06i 0.985335 + 1.70665i
\(248\) 0 0
\(249\) 135.877 + 2.35235i 0.0345816 + 0.000598691i
\(250\) 0 0
\(251\) −5463.91 −1.37402 −0.687010 0.726648i \(-0.741077\pi\)
−0.687010 + 0.726648i \(0.741077\pi\)
\(252\) 0 0
\(253\) 9.58119 0.00238089
\(254\) 0 0
\(255\) 2032.27 3383.36i 0.499082 0.830880i
\(256\) 0 0
\(257\) 3701.06 + 6410.43i 0.898311 + 1.55592i 0.829653 + 0.558279i \(0.188538\pi\)
0.0686576 + 0.997640i \(0.478128\pi\)
\(258\) 0 0
\(259\) −1074.58 + 1861.22i −0.257803 + 0.446527i
\(260\) 0 0
\(261\) 2862.57 + 5380.01i 0.678883 + 1.27592i
\(262\) 0 0
\(263\) 100.015 173.232i 0.0234495 0.0406156i −0.854063 0.520170i \(-0.825868\pi\)
0.877512 + 0.479555i \(0.159202\pi\)
\(264\) 0 0
\(265\) 278.270 + 481.979i 0.0645057 + 0.111727i
\(266\) 0 0
\(267\) −1048.11 1890.20i −0.240236 0.433252i
\(268\) 0 0
\(269\) −5493.50 −1.24515 −0.622574 0.782561i \(-0.713913\pi\)
−0.622574 + 0.782561i \(0.713913\pi\)
\(270\) 0 0
\(271\) −1861.89 −0.417350 −0.208675 0.977985i \(-0.566915\pi\)
−0.208675 + 0.977985i \(0.566915\pi\)
\(272\) 0 0
\(273\) −2566.06 4627.74i −0.568883 1.02595i
\(274\) 0 0
\(275\) 794.738 + 1376.53i 0.174271 + 0.301846i
\(276\) 0 0
\(277\) −2819.52 + 4883.55i −0.611582 + 1.05929i 0.379391 + 0.925236i \(0.376133\pi\)
−0.990974 + 0.134055i \(0.957200\pi\)
\(278\) 0 0
\(279\) 5428.98 + 188.034i 1.16496 + 0.0403487i
\(280\) 0 0
\(281\) −1279.02 + 2215.33i −0.271530 + 0.470303i −0.969254 0.246063i \(-0.920863\pi\)
0.697724 + 0.716367i \(0.254196\pi\)
\(282\) 0 0
\(283\) −3733.97 6467.43i −0.784317 1.35848i −0.929406 0.369058i \(-0.879680\pi\)
0.145089 0.989419i \(-0.453653\pi\)
\(284\) 0 0
\(285\) −3599.10 + 5991.85i −0.748043 + 1.24536i
\(286\) 0 0
\(287\) 6881.26 1.41529
\(288\) 0 0
\(289\) −1359.48 −0.276712
\(290\) 0 0
\(291\) 4818.63 + 83.4221i 0.970699 + 0.0168051i
\(292\) 0 0
\(293\) 1780.66 + 3084.19i 0.355041 + 0.614950i 0.987125 0.159950i \(-0.0511334\pi\)
−0.632084 + 0.774900i \(0.717800\pi\)
\(294\) 0 0
\(295\) 4280.64 7414.28i 0.844842 1.46331i
\(296\) 0 0
\(297\) 3249.07 5007.81i 0.634781 0.978393i
\(298\) 0 0
\(299\) −8.15863 + 14.1312i −0.00157801 + 0.00273320i
\(300\) 0 0
\(301\) −53.3149 92.3442i −0.0102094 0.0176832i
\(302\) 0 0
\(303\) −468.197 8.10561i −0.0887696 0.00153682i
\(304\) 0 0
\(305\) 943.352 0.177102
\(306\) 0 0
\(307\) −6101.93 −1.13438 −0.567192 0.823586i \(-0.691970\pi\)
−0.567192 + 0.823586i \(0.691970\pi\)
\(308\) 0 0
\(309\) 871.310 1450.57i 0.160411 0.267055i
\(310\) 0 0
\(311\) −185.618 321.499i −0.0338438 0.0586191i 0.848607 0.529023i \(-0.177442\pi\)
−0.882451 + 0.470404i \(0.844108\pi\)
\(312\) 0 0
\(313\) −4660.55 + 8072.31i −0.841629 + 1.45774i 0.0468881 + 0.998900i \(0.485070\pi\)
−0.888517 + 0.458844i \(0.848264\pi\)
\(314\) 0 0
\(315\) 2560.91 4100.91i 0.458066 0.733524i
\(316\) 0 0
\(317\) 3191.79 5528.33i 0.565516 0.979502i −0.431486 0.902120i \(-0.642010\pi\)
0.997001 0.0773824i \(-0.0246562\pi\)
\(318\) 0 0
\(319\) −4801.87 8317.08i −0.842799 1.45977i
\(320\) 0 0
\(321\) −2704.97 4878.25i −0.470332 0.848216i
\(322\) 0 0
\(323\) −6293.19 −1.08409
\(324\) 0 0
\(325\) −2706.96 −0.462015
\(326\) 0 0
\(327\) −1515.63 2733.34i −0.256313 0.462245i
\(328\) 0 0
\(329\) 2623.73 + 4544.43i 0.439668 + 0.761527i
\(330\) 0 0
\(331\) 1264.71 2190.54i 0.210014 0.363755i −0.741704 0.670727i \(-0.765982\pi\)
0.951719 + 0.306971i \(0.0993156\pi\)
\(332\) 0 0
\(333\) 2187.05 3502.23i 0.359908 0.576339i
\(334\) 0 0
\(335\) −2681.35 + 4644.24i −0.437307 + 0.757438i
\(336\) 0 0
\(337\) −1799.91 3117.53i −0.290941 0.503924i 0.683092 0.730333i \(-0.260635\pi\)
−0.974032 + 0.226408i \(0.927302\pi\)
\(338\) 0 0
\(339\) 1123.85 1871.00i 0.180056 0.299760i
\(340\) 0 0
\(341\) −8560.62 −1.35948
\(342\) 0 0
\(343\) 6865.12 1.08070
\(344\) 0 0
\(345\) −14.9067 0.258070i −0.00232623 4.02726e-5i
\(346\) 0 0
\(347\) 5686.60 + 9849.48i 0.879748 + 1.52377i 0.851617 + 0.524165i \(0.175622\pi\)
0.0281313 + 0.999604i \(0.491044\pi\)
\(348\) 0 0
\(349\) 894.476 1549.28i 0.137193 0.237624i −0.789240 0.614084i \(-0.789525\pi\)
0.926433 + 0.376460i \(0.122859\pi\)
\(350\) 0 0
\(351\) 4619.28 + 9056.27i 0.702448 + 1.37717i
\(352\) 0 0
\(353\) 555.184 961.608i 0.0837096 0.144989i −0.821131 0.570740i \(-0.806657\pi\)
0.904841 + 0.425750i \(0.139990\pi\)
\(354\) 0 0
\(355\) 4656.15 + 8064.69i 0.696121 + 1.20572i
\(356\) 0 0
\(357\) 4352.41 + 75.3507i 0.645249 + 0.0111708i
\(358\) 0 0
\(359\) 2250.71 0.330886 0.165443 0.986219i \(-0.447095\pi\)
0.165443 + 0.986219i \(0.447095\pi\)
\(360\) 0 0
\(361\) 4286.07 0.624883
\(362\) 0 0
\(363\) −1282.74 + 2135.53i −0.185472 + 0.308777i
\(364\) 0 0
\(365\) −3019.37 5229.70i −0.432989 0.749959i
\(366\) 0 0
\(367\) −1253.69 + 2171.45i −0.178316 + 0.308852i −0.941304 0.337560i \(-0.890398\pi\)
0.762988 + 0.646413i \(0.223732\pi\)
\(368\) 0 0
\(369\) −13212.6 457.620i −1.86401 0.0645603i
\(370\) 0 0
\(371\) −306.914 + 531.591i −0.0429493 + 0.0743903i
\(372\) 0 0
\(373\) 2482.71 + 4300.17i 0.344637 + 0.596929i 0.985288 0.170903i \(-0.0546686\pi\)
−0.640651 + 0.767833i \(0.721335\pi\)
\(374\) 0 0
\(375\) 2813.97 + 5074.84i 0.387501 + 0.698836i
\(376\) 0 0
\(377\) 16355.6 2.23437
\(378\) 0 0
\(379\) −13541.7 −1.83534 −0.917668 0.397349i \(-0.869930\pi\)
−0.917668 + 0.397349i \(0.869930\pi\)
\(380\) 0 0
\(381\) 2470.06 + 4454.61i 0.332139 + 0.598994i
\(382\) 0 0
\(383\) −4175.04 7231.38i −0.557009 0.964768i −0.997744 0.0671311i \(-0.978615\pi\)
0.440735 0.897637i \(-0.354718\pi\)
\(384\) 0 0
\(385\) −3809.60 + 6598.41i −0.504299 + 0.873471i
\(386\) 0 0
\(387\) 96.2278 + 180.854i 0.0126396 + 0.0237553i
\(388\) 0 0
\(389\) 1162.31 2013.18i 0.151495 0.262396i −0.780283 0.625427i \(-0.784925\pi\)
0.931777 + 0.363031i \(0.118258\pi\)
\(390\) 0 0
\(391\) −6.71164 11.6249i −0.000868087 0.00150357i
\(392\) 0 0
\(393\) −3626.45 + 6037.38i −0.465472 + 0.774925i
\(394\) 0 0
\(395\) −6748.39 −0.859617
\(396\) 0 0
\(397\) 13253.5 1.67550 0.837749 0.546056i \(-0.183871\pi\)
0.837749 + 0.546056i \(0.183871\pi\)
\(398\) 0 0
\(399\) −7708.01 133.444i −0.967126 0.0167433i
\(400\) 0 0
\(401\) −7790.28 13493.2i −0.970144 1.68034i −0.695108 0.718906i \(-0.744643\pi\)
−0.275037 0.961434i \(-0.588690\pi\)
\(402\) 0 0
\(403\) 7289.58 12625.9i 0.901042 1.56065i
\(404\) 0 0
\(405\) −5189.87 + 7703.77i −0.636757 + 0.945194i
\(406\) 0 0
\(407\) −3253.44 + 5635.13i −0.396234 + 0.686297i
\(408\) 0 0
\(409\) 6119.59 + 10599.4i 0.739840 + 1.28144i 0.952567 + 0.304328i \(0.0984320\pi\)
−0.212728 + 0.977112i \(0.568235\pi\)
\(410\) 0 0
\(411\) 4709.72 + 81.5366i 0.565239 + 0.00978565i
\(412\) 0 0
\(413\) 9442.52 1.12503
\(414\) 0 0
\(415\) 333.244 0.0394176
\(416\) 0 0
\(417\) 2189.74 3645.52i 0.257152 0.428110i
\(418\) 0 0
\(419\) −3196.50 5536.50i −0.372695 0.645526i 0.617284 0.786740i \(-0.288233\pi\)
−0.989979 + 0.141214i \(0.954900\pi\)
\(420\) 0 0
\(421\) 7916.31 13711.5i 0.916431 1.58730i 0.111638 0.993749i \(-0.464390\pi\)
0.804793 0.593556i \(-0.202276\pi\)
\(422\) 0 0
\(423\) −4735.55 8900.15i −0.544327 1.02303i
\(424\) 0 0
\(425\) 1113.43 1928.52i 0.127081 0.220110i
\(426\) 0 0
\(427\) 520.227 + 901.060i 0.0589592 + 0.102120i
\(428\) 0 0
\(429\) −7769.14 14011.2i −0.874353 1.57684i
\(430\) 0 0
\(431\) −9339.01 −1.04372 −0.521861 0.853030i \(-0.674762\pi\)
−0.521861 + 0.853030i \(0.674762\pi\)
\(432\) 0 0
\(433\) −3379.19 −0.375043 −0.187522 0.982260i \(-0.560045\pi\)
−0.187522 + 0.982260i \(0.560045\pi\)
\(434\) 0 0
\(435\) 7246.85 + 13069.3i 0.798758 + 1.44051i
\(436\) 0 0
\(437\) 11.8861 + 20.5874i 0.00130112 + 0.00225361i
\(438\) 0 0
\(439\) −7273.52 + 12598.1i −0.790766 + 1.36965i 0.134728 + 0.990883i \(0.456984\pi\)
−0.925493 + 0.378764i \(0.876349\pi\)
\(440\) 0 0
\(441\) −3926.13 135.982i −0.423943 0.0146833i
\(442\) 0 0
\(443\) 2951.00 5111.28i 0.316492 0.548181i −0.663261 0.748388i \(-0.730828\pi\)
0.979754 + 0.200207i \(0.0641615\pi\)
\(444\) 0 0
\(445\) −2650.00 4589.93i −0.282296 0.488951i
\(446\) 0 0
\(447\) 3102.33 5164.80i 0.328266 0.546503i
\(448\) 0 0
\(449\) 2448.48 0.257352 0.128676 0.991687i \(-0.458927\pi\)
0.128676 + 0.991687i \(0.458927\pi\)
\(450\) 0 0
\(451\) 20834.1 2.17525
\(452\) 0 0
\(453\) −3314.51 57.3821i −0.343773 0.00595154i
\(454\) 0 0
\(455\) −6487.93 11237.4i −0.668481 1.15784i
\(456\) 0 0
\(457\) −2236.87 + 3874.38i −0.228964 + 0.396577i −0.957501 0.288429i \(-0.906867\pi\)
0.728537 + 0.685006i \(0.240200\pi\)
\(458\) 0 0
\(459\) −8351.97 434.125i −0.849317 0.0441464i
\(460\) 0 0
\(461\) −251.107 + 434.929i −0.0253692 + 0.0439407i −0.878431 0.477869i \(-0.841409\pi\)
0.853062 + 0.521809i \(0.174743\pi\)
\(462\) 0 0
\(463\) −3543.37 6137.30i −0.355668 0.616036i 0.631564 0.775324i \(-0.282413\pi\)
−0.987232 + 0.159288i \(0.949080\pi\)
\(464\) 0 0
\(465\) 13318.8 + 230.581i 1.32827 + 0.0229956i
\(466\) 0 0
\(467\) 8057.18 0.798376 0.399188 0.916869i \(-0.369292\pi\)
0.399188 + 0.916869i \(0.369292\pi\)
\(468\) 0 0
\(469\) −5914.71 −0.582336
\(470\) 0 0
\(471\) −8807.27 + 14662.5i −0.861608 + 1.43442i
\(472\) 0 0
\(473\) −161.419 279.586i −0.0156915 0.0271784i
\(474\) 0 0
\(475\) −1971.85 + 3415.35i −0.190473 + 0.329910i
\(476\) 0 0
\(477\) 624.651 1000.29i 0.0599598 0.0960167i
\(478\) 0 0
\(479\) −8580.44 + 14861.8i −0.818477 + 1.41764i 0.0883271 + 0.996092i \(0.471848\pi\)
−0.906804 + 0.421552i \(0.861485\pi\)
\(480\) 0 0
\(481\) −5540.77 9596.90i −0.525234 0.909732i
\(482\) 0 0
\(483\) −7.97404 14.3807i −0.000751203 0.00135475i
\(484\) 0 0
\(485\) 11817.9 1.10644
\(486\) 0 0
\(487\) −9909.84 −0.922090 −0.461045 0.887377i \(-0.652525\pi\)
−0.461045 + 0.887377i \(0.652525\pi\)
\(488\) 0 0
\(489\) 3016.54 + 5440.15i 0.278963 + 0.503093i
\(490\) 0 0
\(491\) 9744.27 + 16877.6i 0.895627 + 1.55127i 0.833026 + 0.553233i \(0.186606\pi\)
0.0626007 + 0.998039i \(0.480061\pi\)
\(492\) 0 0
\(493\) −6727.43 + 11652.2i −0.614580 + 1.06448i
\(494\) 0 0
\(495\) 7753.54 12416.1i 0.704032 1.12740i
\(496\) 0 0
\(497\) −5135.43 + 8894.82i −0.463492 + 0.802791i
\(498\) 0 0
\(499\) 462.728 + 801.468i 0.0415121 + 0.0719011i 0.886035 0.463618i \(-0.153449\pi\)
−0.844523 + 0.535520i \(0.820116\pi\)
\(500\) 0 0
\(501\) −2244.38 + 3736.48i −0.200143 + 0.333201i
\(502\) 0 0
\(503\) 8723.45 0.773279 0.386640 0.922231i \(-0.373636\pi\)
0.386640 + 0.922231i \(0.373636\pi\)
\(504\) 0 0
\(505\) −1148.28 −0.101183
\(506\) 0 0
\(507\) 15866.3 + 274.683i 1.38983 + 0.0240614i
\(508\) 0 0
\(509\) −1524.35 2640.25i −0.132742 0.229916i 0.791991 0.610533i \(-0.209045\pi\)
−0.924733 + 0.380617i \(0.875712\pi\)
\(510\) 0 0
\(511\) 3330.17 5768.02i 0.288293 0.499339i
\(512\) 0 0
\(513\) 14791.1 + 768.824i 1.27299 + 0.0661685i
\(514\) 0 0
\(515\) 2074.72 3593.52i 0.177520 0.307474i
\(516\) 0 0
\(517\) 7943.73 + 13758.9i 0.675754 + 1.17044i
\(518\) 0 0
\(519\) 11986.7 + 207.518i 1.01379 + 0.0175511i
\(520\) 0 0
\(521\) −15593.0 −1.31121 −0.655607 0.755103i \(-0.727587\pi\)
−0.655607 + 0.755103i \(0.727587\pi\)
\(522\) 0 0
\(523\) −9052.67 −0.756875 −0.378438 0.925627i \(-0.623539\pi\)
−0.378438 + 0.925627i \(0.623539\pi\)
\(524\) 0 0
\(525\) 1404.64 2338.47i 0.116769 0.194399i
\(526\) 0 0
\(527\) 5996.72 + 10386.6i 0.495676 + 0.858536i
\(528\) 0 0
\(529\) 6083.47 10536.9i 0.499998 0.866022i
\(530\) 0 0
\(531\) −18130.4 627.949i −1.48172 0.0513196i
\(532\) 0 0
\(533\) −17740.7 + 30727.9i −1.44172 + 2.49713i
\(534\) 0 0
\(535\) −6839.14 11845.7i −0.552677 0.957264i
\(536\) 0 0
\(537\) −7847.81 14153.1i −0.630648 1.13734i
\(538\) 0 0
\(539\) 6190.87 0.494730
\(540\) 0 0
\(541\) −11742.8 −0.933200 −0.466600 0.884469i \(-0.654521\pi\)
−0.466600 + 0.884469i \(0.654521\pi\)
\(542\) 0 0
\(543\) −9834.11 17735.2i −0.777205 1.40164i
\(544\) 0 0
\(545\) −3832.05 6637.31i −0.301187 0.521672i
\(546\) 0 0
\(547\) −1973.46 + 3418.12i −0.154257 + 0.267182i −0.932788 0.360424i \(-0.882632\pi\)
0.778531 + 0.627606i \(0.215965\pi\)
\(548\) 0 0
\(549\) −938.956 1764.70i −0.0729939 0.137187i
\(550\) 0 0
\(551\) 11914.1 20635.8i 0.921158 1.59549i
\(552\) 0 0
\(553\) −3721.52 6445.86i −0.286175 0.495670i
\(554\) 0 0
\(555\) 5213.57 8679.64i 0.398746 0.663839i
\(556\) 0 0
\(557\) 3129.69 0.238078 0.119039 0.992890i \(-0.462019\pi\)
0.119039 + 0.992890i \(0.462019\pi\)
\(558\) 0 0
\(559\) 549.810 0.0416001
\(560\) 0 0
\(561\) 13177.6 + 228.136i 0.991726 + 0.0171692i
\(562\) 0 0
\(563\) 96.0178 + 166.308i 0.00718769 + 0.0124494i 0.869597 0.493762i \(-0.164379\pi\)
−0.862409 + 0.506212i \(0.831045\pi\)
\(564\) 0 0
\(565\) 2676.05 4635.05i 0.199260 0.345129i
\(566\) 0 0
\(567\) −10220.4 708.824i −0.756999 0.0525006i
\(568\) 0 0
\(569\) −1630.51 + 2824.12i −0.120131 + 0.208073i −0.919819 0.392343i \(-0.871665\pi\)
0.799688 + 0.600415i \(0.204998\pi\)
\(570\) 0 0
\(571\) 4707.22 + 8153.15i 0.344993 + 0.597546i 0.985353 0.170530i \(-0.0545479\pi\)
−0.640359 + 0.768075i \(0.721215\pi\)
\(572\) 0 0
\(573\) 549.356 + 9.51067i 0.0400518 + 0.000693392i
\(574\) 0 0
\(575\) −8.41187 −0.000610086
\(576\) 0 0
\(577\) −9739.86 −0.702731 −0.351366 0.936238i \(-0.614283\pi\)
−0.351366 + 0.936238i \(0.614283\pi\)
\(578\) 0 0
\(579\) 4241.79 7061.80i 0.304461 0.506871i
\(580\) 0 0
\(581\) 183.773 + 318.304i 0.0131225 + 0.0227289i
\(582\) 0 0
\(583\) −929.229 + 1609.47i −0.0660116 + 0.114335i
\(584\) 0 0
\(585\) 11710.0 + 22008.2i 0.827608 + 1.55543i
\(586\) 0 0
\(587\) 12702.8 22002.0i 0.893190 1.54705i 0.0571605 0.998365i \(-0.481795\pi\)
0.836029 0.548685i \(-0.184871\pi\)
\(588\) 0 0
\(589\) −10620.0 18394.5i −0.742939 1.28681i
\(590\) 0 0
\(591\) 9840.71 + 17747.1i 0.684929 + 1.23523i
\(592\) 0 0
\(593\) 2751.26 0.190524 0.0952620 0.995452i \(-0.469631\pi\)
0.0952620 + 0.995452i \(0.469631\pi\)
\(594\) 0 0
\(595\) 10674.5 0.735482
\(596\) 0 0
\(597\) −3877.38 6992.63i −0.265814 0.479379i
\(598\) 0 0
\(599\) −1658.11 2871.93i −0.113103 0.195900i 0.803917 0.594742i \(-0.202746\pi\)
−0.917020 + 0.398842i \(0.869412\pi\)
\(600\) 0 0
\(601\) 3959.84 6858.65i 0.268761 0.465508i −0.699781 0.714357i \(-0.746719\pi\)
0.968542 + 0.248850i \(0.0800525\pi\)
\(602\) 0 0
\(603\) 11356.7 + 393.342i 0.766967 + 0.0265640i
\(604\) 0 0
\(605\) −3054.40 + 5290.37i −0.205254 + 0.355511i
\(606\) 0 0
\(607\) 4737.24 + 8205.13i 0.316768 + 0.548659i 0.979812 0.199922i \(-0.0640688\pi\)
−0.663043 + 0.748581i \(0.730736\pi\)
\(608\) 0 0
\(609\) −8486.96 + 14129.2i −0.564711 + 0.940141i
\(610\) 0 0
\(611\) −27057.2 −1.79151
\(612\) 0 0
\(613\) −3165.90 −0.208596 −0.104298 0.994546i \(-0.533260\pi\)
−0.104298 + 0.994546i \(0.533260\pi\)
\(614\) 0 0
\(615\) −32414.2 561.168i −2.12531 0.0367942i
\(616\) 0 0
\(617\) 315.172 + 545.894i 0.0205646 + 0.0356189i 0.876125 0.482085i \(-0.160120\pi\)
−0.855560 + 0.517704i \(0.826787\pi\)
\(618\) 0 0
\(619\) −586.272 + 1015.45i −0.0380683 + 0.0659362i −0.884432 0.466669i \(-0.845454\pi\)
0.846364 + 0.532606i \(0.178787\pi\)
\(620\) 0 0
\(621\) 14.3544 + 28.1424i 0.000927574 + 0.00181854i
\(622\) 0 0
\(623\) 2922.77 5062.39i 0.187959 0.325554i
\(624\) 0 0
\(625\) 9449.52 + 16367.1i 0.604769 + 1.04749i
\(626\) 0 0
\(627\) −23337.2 404.023i −1.48644 0.0257338i
\(628\) 0 0
\(629\) 9116.16 0.577878
\(630\) 0 0
\(631\) 17925.9 1.13093 0.565465 0.824772i \(-0.308697\pi\)
0.565465 + 0.824772i \(0.308697\pi\)
\(632\) 0 0
\(633\) −2518.97 + 4193.63i −0.158168 + 0.263320i
\(634\) 0 0
\(635\) 6245.22 + 10817.0i 0.390290 + 0.676001i
\(636\) 0 0
\(637\) −5271.68 + 9130.82i −0.327899 + 0.567938i
\(638\) 0 0
\(639\) 10452.0 16737.3i 0.647063 1.03617i
\(640\) 0 0
\(641\) 3348.43 5799.65i 0.206326 0.357367i −0.744228 0.667925i \(-0.767183\pi\)
0.950554 + 0.310558i \(0.100516\pi\)
\(642\) 0 0
\(643\) 14845.5 + 25713.2i 0.910498 + 1.57703i 0.813362 + 0.581758i \(0.197635\pi\)
0.0971358 + 0.995271i \(0.469032\pi\)
\(644\) 0 0
\(645\) 243.609 + 439.335i 0.0148715 + 0.0268199i
\(646\) 0 0
\(647\) −12607.6 −0.766084 −0.383042 0.923731i \(-0.625124\pi\)
−0.383042 + 0.923731i \(0.625124\pi\)
\(648\) 0 0
\(649\) 28588.7 1.72913
\(650\) 0 0
\(651\) 7124.65 + 12848.9i 0.428936 + 0.773560i
\(652\) 0 0
\(653\) 469.730 + 813.596i 0.0281500 + 0.0487573i 0.879757 0.475423i \(-0.157705\pi\)
−0.851607 + 0.524180i \(0.824372\pi\)
\(654\) 0 0
\(655\) −8635.12 + 14956.5i −0.515118 + 0.892210i
\(656\) 0 0
\(657\) −6777.77 + 10853.6i −0.402475 + 0.644504i
\(658\) 0 0
\(659\) 6941.60 12023.2i 0.410328 0.710709i −0.584597 0.811324i \(-0.698747\pi\)
0.994926 + 0.100614i \(0.0320808\pi\)
\(660\) 0 0
\(661\) −4072.30 7053.42i −0.239628 0.415047i 0.720980 0.692956i \(-0.243692\pi\)
−0.960608 + 0.277909i \(0.910359\pi\)
\(662\) 0 0
\(663\) −11557.5 + 19241.2i −0.677009 + 1.12710i
\(664\) 0 0
\(665\) −18904.3 −1.10237
\(666\) 0 0
\(667\) 50.8252 0.00295047
\(668\) 0 0
\(669\) 17256.8 + 298.757i 0.997289 + 0.0172655i
\(670\) 0 0
\(671\) 1575.07 + 2728.10i 0.0906182 + 0.156955i
\(672\) 0 0
\(673\) 14461.2 25047.6i 0.828290 1.43464i −0.0710895 0.997470i \(-0.522648\pi\)
0.899379 0.437170i \(-0.144019\pi\)
\(674\) 0 0
\(675\) −2852.54 + 4396.64i −0.162658 + 0.250706i
\(676\) 0 0
\(677\) 13590.4 23539.3i 0.771524 1.33632i −0.165203 0.986260i \(-0.552828\pi\)
0.936727 0.350060i \(-0.113839\pi\)
\(678\) 0 0
\(679\) 6517.20 + 11288.1i 0.368346 + 0.637995i
\(680\) 0 0
\(681\) −21882.1 378.832i −1.23131 0.0213170i
\(682\) 0 0
\(683\) −7985.87 −0.447395 −0.223697 0.974659i \(-0.571813\pi\)
−0.223697 + 0.974659i \(0.571813\pi\)
\(684\) 0 0
\(685\) 11550.8 0.644283
\(686\) 0 0
\(687\) 947.543 1577.49i 0.0526216 0.0876053i
\(688\) 0 0
\(689\) −1582.52 2741.01i −0.0875027 0.151559i
\(690\) 0 0
\(691\) −4625.03 + 8010.78i −0.254623 + 0.441020i −0.964793 0.263010i \(-0.915285\pi\)
0.710170 + 0.704030i \(0.248618\pi\)
\(692\) 0 0
\(693\) 16135.3 + 558.850i 0.884459 + 0.0306334i
\(694\) 0 0
\(695\) 5214.11 9031.10i 0.284579 0.492905i
\(696\) 0 0
\(697\) −14594.3 25278.0i −0.793111 1.37371i
\(698\) 0 0
\(699\) −2189.17 3948.03i −0.118458 0.213631i
\(700\) 0 0
\(701\) −10267.4 −0.553201 −0.276601 0.960985i \(-0.589208\pi\)
−0.276601 + 0.960985i \(0.589208\pi\)
\(702\) 0 0
\(703\) −16144.5 −0.866146
\(704\) 0 0
\(705\) −11988.5 21620.5i −0.640442 1.15500i
\(706\) 0 0
\(707\) −633.236 1096.80i −0.0336850 0.0583441i
\(708\) 0 0
\(709\) −6979.33 + 12088.6i −0.369696 + 0.640332i −0.989518 0.144410i \(-0.953871\pi\)
0.619822 + 0.784742i \(0.287205\pi\)
\(710\) 0 0
\(711\) 6716.95 + 12624.0i 0.354297 + 0.665877i
\(712\) 0 0
\(713\) 22.6524 39.2351i 0.00118982 0.00206082i
\(714\) 0 0
\(715\) −19643.2 34023.0i −1.02743 1.77957i
\(716\) 0 0
\(717\) 3222.35 5364.62i 0.167839 0.279422i
\(718\) 0 0
\(719\) 26373.7 1.36798 0.683988 0.729493i \(-0.260244\pi\)
0.683988 + 0.729493i \(0.260244\pi\)
\(720\) 0 0
\(721\) 4576.55 0.236394
\(722\) 0 0
\(723\) −26431.0 457.584i −1.35958 0.0235376i
\(724\) 0 0
\(725\) 4215.83 + 7302.04i 0.215962 + 0.374056i
\(726\) 0 0
\(727\) 4396.92 7615.69i 0.224309 0.388515i −0.731803 0.681516i \(-0.761321\pi\)
0.956112 + 0.293002i \(0.0946541\pi\)
\(728\) 0 0
\(729\) 19576.9 + 2040.68i 0.994611 + 0.103677i
\(730\) 0 0
\(731\) −226.149 + 391.701i −0.0114424 + 0.0198189i
\(732\) 0 0
\(733\) 5337.00 + 9243.95i 0.268931 + 0.465802i 0.968586 0.248678i \(-0.0799963\pi\)
−0.699655 + 0.714481i \(0.746663\pi\)
\(734\) 0 0
\(735\) −9631.92 166.752i −0.483372 0.00836834i
\(736\) 0 0
\(737\) −17907.7 −0.895031
\(738\) 0 0
\(739\) −12678.1 −0.631084 −0.315542 0.948912i \(-0.602186\pi\)
−0.315542 + 0.948912i \(0.602186\pi\)
\(740\) 0 0
\(741\) 20468.1 34075.6i 1.01473 1.68934i
\(742\) 0 0
\(743\) −11055.6 19148.9i −0.545884 0.945499i −0.998551 0.0538194i \(-0.982860\pi\)
0.452666 0.891680i \(-0.350473\pi\)
\(744\) 0 0
\(745\) 7387.10 12794.8i 0.363278 0.629216i
\(746\) 0 0
\(747\) −331.691 623.391i −0.0162462 0.0305337i
\(748\) 0 0
\(749\) 7543.12 13065.1i 0.367984 0.637366i
\(750\) 0 0
\(751\) 11075.5 + 19183.4i 0.538151 + 0.932105i 0.999004 + 0.0446283i \(0.0142104\pi\)
−0.460853 + 0.887477i \(0.652456\pi\)
\(752\) 0 0
\(753\) 13767.9 + 24829.6i 0.666309 + 1.20165i
\(754\) 0 0
\(755\) −8129.00 −0.391847
\(756\) 0 0
\(757\) −25282.2 −1.21387 −0.606933 0.794753i \(-0.707601\pi\)
−0.606933 + 0.794753i \(0.707601\pi\)
\(758\) 0 0
\(759\) −24.1426 43.5398i −0.00115457 0.00208221i
\(760\) 0 0
\(761\) 5064.47 + 8771.91i 0.241244 + 0.417847i 0.961069 0.276309i \(-0.0891112\pi\)
−0.719825 + 0.694156i \(0.755778\pi\)
\(762\) 0 0
\(763\) 4226.50 7320.52i 0.200537 0.347340i
\(764\) 0 0
\(765\) −20495.9 709.879i −0.968668 0.0335500i
\(766\) 0 0
\(767\) −24344.0 + 42165.0i −1.14604 + 1.98499i
\(768\) 0 0
\(769\) 12617.2 + 21853.7i 0.591663 + 1.02479i 0.994009 + 0.109303i \(0.0348618\pi\)
−0.402345 + 0.915488i \(0.631805\pi\)
\(770\) 0 0
\(771\) 19805.0 32971.7i 0.925109 1.54014i
\(772\) 0 0
\(773\) 30384.6 1.41379 0.706895 0.707319i \(-0.250096\pi\)
0.706895 + 0.707319i \(0.250096\pi\)
\(774\) 0 0
\(775\) 7515.85 0.348358
\(776\) 0 0
\(777\) 11165.6 + 193.304i 0.515528 + 0.00892503i
\(778\) 0 0
\(779\) 25846.1 + 44766.8i 1.18875 + 2.05897i
\(780\) 0 0
\(781\) −15548.3 + 26930.4i −0.712371 + 1.23386i
\(782\) 0 0
\(783\) 17235.3 26564.9i 0.786639 1.21245i
\(784\) 0 0
\(785\) −20971.4 + 36323.5i −0.953505 + 1.65152i
\(786\) 0 0
\(787\) −15072.3 26106.0i −0.682682 1.18244i −0.974159 0.225862i \(-0.927480\pi\)
0.291478 0.956578i \(-0.405853\pi\)
\(788\) 0 0
\(789\) −1039.23 17.9916i −0.0468919 0.000811811i
\(790\) 0 0
\(791\) 5903.01 0.265344
\(792\) 0 0
\(793\) −5364.84 −0.240241
\(794\) 0 0
\(795\) 1489.07 2479.03i 0.0664300 0.110594i
\(796\) 0 0
\(797\) 8064.02 + 13967.3i 0.358397 + 0.620761i 0.987693 0.156404i \(-0.0499902\pi\)
−0.629296 + 0.777165i \(0.716657\pi\)
\(798\) 0 0
\(799\) 11129.2 19276.3i 0.492769 0.853501i
\(800\) 0 0
\(801\) −5948.61 + 9525.82i −0.262402 + 0.420197i
\(802\) 0 0
\(803\) 10082.6 17463.6i 0.443097 0.767466i
\(804\) 0 0
\(805\) −20.1613 34.9203i −0.000882722 0.00152892i
\(806\) 0 0
\(807\) 13842.5 + 24964.1i 0.603815 + 1.08895i
\(808\) 0 0
\(809\) −23446.4 −1.01895 −0.509475 0.860485i \(-0.670160\pi\)
−0.509475 + 0.860485i \(0.670160\pi\)
\(810\) 0 0
\(811\) −37762.1 −1.63503 −0.817513 0.575910i \(-0.804648\pi\)
−0.817513 + 0.575910i \(0.804648\pi\)
\(812\) 0 0
\(813\) 4691.58 + 8460.99i 0.202387 + 0.364994i
\(814\) 0 0
\(815\) 7626.92 + 13210.2i 0.327803 + 0.567771i
\(816\) 0 0
\(817\) 400.503 693.692i 0.0171504 0.0297053i
\(818\) 0 0
\(819\) −14563.9 + 23321.9i −0.621371 + 0.995033i
\(820\) 0 0
\(821\) 5942.36 10292.5i 0.252606 0.437527i −0.711636 0.702548i \(-0.752046\pi\)
0.964243 + 0.265021i \(0.0853789\pi\)
\(822\) 0 0
\(823\) 4532.02 + 7849.70i 0.191952 + 0.332471i 0.945897 0.324467i \(-0.105185\pi\)
−0.753945 + 0.656937i \(0.771852\pi\)
\(824\) 0 0
\(825\) 4252.77 7080.09i 0.179470 0.298784i
\(826\) 0 0
\(827\) −36451.4 −1.53270 −0.766348 0.642426i \(-0.777928\pi\)
−0.766348 + 0.642426i \(0.777928\pi\)
\(828\) 0 0
\(829\) −15293.4 −0.640725 −0.320362 0.947295i \(-0.603805\pi\)
−0.320362 + 0.947295i \(0.603805\pi\)
\(830\) 0 0
\(831\) 29296.9 + 507.199i 1.22298 + 0.0211727i
\(832\) 0 0
\(833\) −4336.71 7511.41i −0.180382 0.312431i
\(834\) 0 0
\(835\) −5344.20 + 9256.42i −0.221489 + 0.383631i
\(836\) 0 0
\(837\) −12825.4 25144.7i −0.529643 1.03839i
\(838\) 0 0
\(839\) 176.769 306.174i 0.00727385 0.0125987i −0.862366 0.506286i \(-0.831018\pi\)
0.869639 + 0.493687i \(0.164351\pi\)
\(840\) 0 0
\(841\) −13277.9 22998.0i −0.544422 0.942966i
\(842\) 0 0
\(843\) 13290.0 + 230.081i 0.542978 + 0.00940026i
\(844\) 0 0
\(845\) 38912.8 1.58419
\(846\) 0 0
\(847\) −6737.59 −0.273325
\(848\) 0 0
\(849\) −19981.1 + 33264.9i −0.807714 + 1.34470i
\(850\) 0 0
\(851\) −17.2180 29.8224i −0.000693566 0.00120129i
\(852\) 0 0
\(853\) −12846.3 + 22250.5i −0.515651 + 0.893134i 0.484184 + 0.874966i \(0.339117\pi\)
−0.999835 + 0.0181675i \(0.994217\pi\)
\(854\) 0 0
\(855\) 36297.7 + 1257.18i 1.45188 + 0.0502861i
\(856\) 0 0
\(857\) 6508.98 11273.9i 0.259443 0.449368i −0.706650 0.707563i \(-0.749794\pi\)
0.966093 + 0.258195i \(0.0831278\pi\)
\(858\) 0 0
\(859\) 1066.04 + 1846.43i 0.0423431 + 0.0733404i 0.886420 0.462881i \(-0.153184\pi\)
−0.844077 + 0.536222i \(0.819851\pi\)
\(860\) 0 0
\(861\) −17339.3 31270.5i −0.686322 1.23774i
\(862\) 0 0
\(863\) 39300.5 1.55018 0.775090 0.631851i \(-0.217705\pi\)
0.775090 + 0.631851i \(0.217705\pi\)
\(864\) 0 0
\(865\) 29397.9 1.15556
\(866\) 0 0
\(867\) 3425.62 + 6177.90i 0.134187 + 0.241998i
\(868\) 0 0
\(869\) −11267.5 19515.8i −0.439842 0.761828i
\(870\) 0 0
\(871\) 15248.8 26411.8i 0.593212 1.02747i
\(872\) 0 0
\(873\) −11762.9 22107.5i −0.456028 0.857074i
\(874\) 0 0
\(875\) −7847.11 + 13591.6i −0.303178 + 0.525119i
\(876\) 0 0
\(877\) 5304.23 + 9187.20i 0.204232 + 0.353740i 0.949888 0.312591i \(-0.101197\pi\)
−0.745656 + 0.666331i \(0.767864\pi\)
\(878\) 0 0
\(879\) 9528.59 15863.4i 0.365633 0.608712i
\(880\) 0 0
\(881\) 41310.4 1.57978 0.789888 0.613251i \(-0.210139\pi\)
0.789888 + 0.613251i \(0.210139\pi\)
\(882\) 0 0
\(883\) 47180.5 1.79813 0.899066 0.437814i \(-0.144247\pi\)
0.899066 + 0.437814i \(0.144247\pi\)
\(884\) 0 0
\(885\) −44479.0 770.039i −1.68943 0.0292481i
\(886\) 0 0
\(887\) −24888.8 43108.7i −0.942148 1.63185i −0.761363 0.648325i \(-0.775470\pi\)
−0.180785 0.983523i \(-0.557864\pi\)
\(888\) 0 0
\(889\) −6888.06 + 11930.5i −0.259863 + 0.450096i
\(890\) 0 0
\(891\) −30944.0 2146.07i −1.16348 0.0806916i
\(892\) 0 0
\(893\) −19709.5 + 34137.9i −0.738582 + 1.27926i
\(894\) 0 0
\(895\) −19842.1 34367.6i −0.741060 1.28355i
\(896\) 0 0
\(897\) 84.7742 + 1.46765i 0.00315555 + 5.46302e-5i
\(898\) 0 0
\(899\) −45411.4 −1.68471
\(900\) 0 0
\(901\) 2603.70 0.0962730
\(902\) 0 0
\(903\) −285.297 + 474.967i −0.0105139 + 0.0175038i
\(904\) 0 0
\(905\) −24864.2 43066.1i −0.913276 1.58184i
\(906\) 0 0
\(907\) −518.253 + 897.641i −0.0189728 + 0.0328618i −0.875356 0.483479i \(-0.839373\pi\)
0.856383 + 0.516341i \(0.172706\pi\)
\(908\) 0 0
\(909\) 1142.92 + 2148.05i 0.0417034 + 0.0783788i
\(910\) 0 0
\(911\) −12390.5 + 21460.9i −0.450620 + 0.780496i −0.998425 0.0561098i \(-0.982130\pi\)
0.547805 + 0.836606i \(0.315464\pi\)
\(912\) 0 0
\(913\) 556.401 + 963.715i 0.0201689 + 0.0349335i
\(914\) 0 0
\(915\) −2377.05 4286.87i −0.0858829 0.154885i
\(916\) 0 0
\(917\) −19047.9 −0.685953
\(918\) 0 0
\(919\) 25210.4 0.904912 0.452456 0.891787i \(-0.350548\pi\)
0.452456 + 0.891787i \(0.350548\pi\)
\(920\) 0 0
\(921\) 15375.6 + 27729.0i 0.550102 + 0.992076i
\(922\) 0 0
\(923\) −26479.5 45863.9i −0.944295 1.63557i
\(924\) 0 0
\(925\) 2856.38 4947.40i 0.101532 0.175859i
\(926\) 0 0
\(927\) −8787.35 304.351i −0.311342 0.0107834i
\(928\) 0 0
\(929\) 13939.3 24143.5i 0.492285 0.852663i −0.507675 0.861548i \(-0.669495\pi\)
0.999961 + 0.00888567i \(0.00282843\pi\)
\(930\) 0 0
\(931\) 7680.21 + 13302.5i 0.270364 + 0.468284i
\(932\) 0 0
\(933\) −993.270 + 1653.61i −0.0348534 + 0.0580245i
\(934\) 0 0
\(935\) 32318.7 1.13041
\(936\) 0 0
\(937\) 5091.76 0.177525 0.0887623 0.996053i \(-0.471709\pi\)
0.0887623 + 0.996053i \(0.471709\pi\)
\(938\) 0 0
\(939\) 48426.6 + 838.381i 1.68301 + 0.0291369i
\(940\) 0 0
\(941\) 21549.7 + 37325.2i 0.746547 + 1.29306i 0.949469 + 0.313862i \(0.101623\pi\)
−0.202922 + 0.979195i \(0.565044\pi\)
\(942\) 0 0
\(943\) −55.1294 + 95.4869i −0.00190377 + 0.00329743i
\(944\) 0 0
\(945\) −25088.7 1304.08i −0.863636 0.0448907i
\(946\) 0 0
\(947\) 12342.8 21378.4i 0.423536 0.733586i −0.572747 0.819732i \(-0.694122\pi\)
0.996282 + 0.0861469i \(0.0274554\pi\)
\(948\) 0 0
\(949\) 17171.2 + 29741.3i 0.587354 + 1.01733i
\(950\) 0 0
\(951\) −33165.0 574.167i −1.13086 0.0195779i
\(952\) 0 0
\(953\) 9714.42 0.330200 0.165100 0.986277i \(-0.447205\pi\)
0.165100 + 0.986277i \(0.447205\pi\)
\(954\) 0 0
\(955\) 1347.32 0.0456527
\(956\) 0 0
\(957\) −25695.6 + 42778.4i −0.867941 + 1.44496i
\(958\) 0 0
\(959\) 6369.90 + 11033.0i 0.214489 + 0.371505i
\(960\) 0 0
\(961\) −5344.00 + 9256.07i −0.179383 + 0.310700i
\(962\) 0 0
\(963\) −15352.3 + 24584.4i −0.513728 + 0.822658i
\(964\) 0 0
\(965\) 10100.3 17494.3i 0.336934 0.583586i
\(966\) 0 0
\(967\) 17184.1 + 29763.7i 0.571461 + 0.989799i 0.996416 + 0.0845849i \(0.0269564\pi\)
−0.424955 + 0.905214i \(0.639710\pi\)
\(968\) 0 0
\(969\) 15857.5 + 28598.1i 0.525714 + 0.948095i
\(970\) 0 0
\(971\) 31313.7 1.03492 0.517458 0.855708i \(-0.326878\pi\)
0.517458 + 0.855708i \(0.326878\pi\)
\(972\) 0 0
\(973\) 11501.6 0.378957
\(974\) 0 0
\(975\) 6820.97 + 12301.2i 0.224047 + 0.404056i
\(976\) 0 0
\(977\) −12699.1 21995.4i −0.415844 0.720263i 0.579673 0.814849i \(-0.303180\pi\)
−0.995517 + 0.0945867i \(0.969847\pi\)
\(978\) 0 0
\(979\) 8849.14 15327.2i 0.288886 0.500366i
\(980\) 0 0
\(981\) −8602.06 + 13774.9i −0.279962 + 0.448317i
\(982\) 0 0
\(983\) −24447.1 + 42343.7i −0.793227 + 1.37391i 0.130732 + 0.991418i \(0.458267\pi\)
−0.923959 + 0.382492i \(0.875066\pi\)
\(984\) 0 0
\(985\) 24880.9 + 43095.0i 0.804844 + 1.39403i
\(986\) 0 0
\(987\) 14040.0 23374.0i 0.452784 0.753802i
\(988\) 0 0
\(989\) 1.70854 5.49325e−5
\(990\) 0 0
\(991\) −46870.9 −1.50242 −0.751212 0.660061i \(-0.770530\pi\)
−0.751212 + 0.660061i \(0.770530\pi\)
\(992\) 0 0
\(993\) −13141.3 227.507i −0.419966 0.00727061i
\(994\) 0 0
\(995\) −9803.43 16980.0i −0.312352 0.541009i
\(996\) 0 0
\(997\) 15704.1 27200.3i 0.498851 0.864035i −0.501148 0.865362i \(-0.667089\pi\)
0.999999 + 0.00132618i \(0.000422137\pi\)
\(998\) 0 0
\(999\) −21426.1 1113.70i −0.678569 0.0352712i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 36.4.e.a.25.2 yes 6
3.2 odd 2 108.4.e.a.73.3 6
4.3 odd 2 144.4.i.d.97.2 6
9.2 odd 6 324.4.a.d.1.1 3
9.4 even 3 inner 36.4.e.a.13.2 6
9.5 odd 6 108.4.e.a.37.3 6
9.7 even 3 324.4.a.c.1.3 3
12.11 even 2 432.4.i.d.289.3 6
36.7 odd 6 1296.4.a.v.1.3 3
36.11 even 6 1296.4.a.w.1.1 3
36.23 even 6 432.4.i.d.145.3 6
36.31 odd 6 144.4.i.d.49.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
36.4.e.a.13.2 6 9.4 even 3 inner
36.4.e.a.25.2 yes 6 1.1 even 1 trivial
108.4.e.a.37.3 6 9.5 odd 6
108.4.e.a.73.3 6 3.2 odd 2
144.4.i.d.49.2 6 36.31 odd 6
144.4.i.d.97.2 6 4.3 odd 2
324.4.a.c.1.3 3 9.7 even 3
324.4.a.d.1.1 3 9.2 odd 6
432.4.i.d.145.3 6 36.23 even 6
432.4.i.d.289.3 6 12.11 even 2
1296.4.a.v.1.3 3 36.7 odd 6
1296.4.a.w.1.1 3 36.11 even 6