Properties

Label 36.8.a.b
Level 3636
Weight 88
Character orbit 36.a
Self dual yes
Analytic conductor 11.24611.246
Analytic rank 11
Dimension 11
CM discriminant -3
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [36,8,Mod(1,36)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(36, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("36.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 36=2232 36 = 2^{2} \cdot 3^{2}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 36.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 11.245860917411.2458609174
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: N(U(1))N(\mathrm{U}(1))

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q508q714614q1357448q1978125q25+178916q31+279710q37+1035224q43565479q493535546q61385072q676274810q73+8763044q79+7423912q91++12245198q97+O(q100) q - 508 q^{7} - 14614 q^{13} - 57448 q^{19} - 78125 q^{25} + 178916 q^{31} + 279710 q^{37} + 1035224 q^{43} - 565479 q^{49} - 3535546 q^{61} - 385072 q^{67} - 6274810 q^{73} + 8763044 q^{79} + 7423912 q^{91}+ \cdots + 12245198 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 0 0 0 0 −508.000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 36.8.a.b 1
3.b odd 2 1 CM 36.8.a.b 1
4.b odd 2 1 144.8.a.e 1
8.b even 2 1 576.8.a.q 1
8.d odd 2 1 576.8.a.r 1
9.c even 3 2 324.8.e.c 2
9.d odd 6 2 324.8.e.c 2
12.b even 2 1 144.8.a.e 1
24.f even 2 1 576.8.a.r 1
24.h odd 2 1 576.8.a.q 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
36.8.a.b 1 1.a even 1 1 trivial
36.8.a.b 1 3.b odd 2 1 CM
144.8.a.e 1 4.b odd 2 1
144.8.a.e 1 12.b even 2 1
324.8.e.c 2 9.c even 3 2
324.8.e.c 2 9.d odd 6 2
576.8.a.q 1 8.b even 2 1
576.8.a.q 1 24.h odd 2 1
576.8.a.r 1 8.d odd 2 1
576.8.a.r 1 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5 T_{5} acting on S8new(Γ0(36))S_{8}^{\mathrm{new}}(\Gamma_0(36)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T+508 T + 508 Copy content Toggle raw display
1111 T T Copy content Toggle raw display
1313 T+14614 T + 14614 Copy content Toggle raw display
1717 T T Copy content Toggle raw display
1919 T+57448 T + 57448 Copy content Toggle raw display
2323 T T Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T178916 T - 178916 Copy content Toggle raw display
3737 T279710 T - 279710 Copy content Toggle raw display
4141 T T Copy content Toggle raw display
4343 T1035224 T - 1035224 Copy content Toggle raw display
4747 T T Copy content Toggle raw display
5353 T T Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T+3535546 T + 3535546 Copy content Toggle raw display
6767 T+385072 T + 385072 Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T+6274810 T + 6274810 Copy content Toggle raw display
7979 T8763044 T - 8763044 Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T12245198 T - 12245198 Copy content Toggle raw display
show more
show less