Properties

Label 36.8.a.b
Level $36$
Weight $8$
Character orbit 36.a
Self dual yes
Analytic conductor $11.246$
Analytic rank $1$
Dimension $1$
CM discriminant -3
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [36,8,Mod(1,36)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(36, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("36.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 36 = 2^{2} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 36.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.2458609174\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 508 q^{7} - 14614 q^{13} - 57448 q^{19} - 78125 q^{25} + 178916 q^{31} + 279710 q^{37} + 1035224 q^{43} - 565479 q^{49} - 3535546 q^{61} - 385072 q^{67} - 6274810 q^{73} + 8763044 q^{79} + 7423912 q^{91}+ \cdots + 12245198 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 0 0 −508.000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 36.8.a.b 1
3.b odd 2 1 CM 36.8.a.b 1
4.b odd 2 1 144.8.a.e 1
8.b even 2 1 576.8.a.q 1
8.d odd 2 1 576.8.a.r 1
9.c even 3 2 324.8.e.c 2
9.d odd 6 2 324.8.e.c 2
12.b even 2 1 144.8.a.e 1
24.f even 2 1 576.8.a.r 1
24.h odd 2 1 576.8.a.q 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
36.8.a.b 1 1.a even 1 1 trivial
36.8.a.b 1 3.b odd 2 1 CM
144.8.a.e 1 4.b odd 2 1
144.8.a.e 1 12.b even 2 1
324.8.e.c 2 9.c even 3 2
324.8.e.c 2 9.d odd 6 2
576.8.a.q 1 8.b even 2 1
576.8.a.q 1 24.h odd 2 1
576.8.a.r 1 8.d odd 2 1
576.8.a.r 1 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(36))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 508 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 14614 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T + 57448 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T - 178916 \) Copy content Toggle raw display
$37$ \( T - 279710 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T - 1035224 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T + 3535546 \) Copy content Toggle raw display
$67$ \( T + 385072 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T + 6274810 \) Copy content Toggle raw display
$79$ \( T - 8763044 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T - 12245198 \) Copy content Toggle raw display
show more
show less