Properties

Label 36.9.d.c.19.2
Level $36$
Weight $9$
Character 36.19
Analytic conductor $14.666$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [36,9,Mod(19,36)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(36, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("36.19");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 36 = 2^{2} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 36.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.6656299622\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} - 40x^{6} - 395x^{5} + 403x^{4} + 8998x^{3} + 74584x^{2} + 217224x + 269328 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{26}\cdot 3^{10} \)
Twist minimal: no (minimal twist has level 12)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.2
Root \(-3.64622 - 4.31154i\) of defining polynomial
Character \(\chi\) \(=\) 36.19
Dual form 36.9.d.c.19.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-13.6476 + 8.35123i) q^{2} +(116.514 - 227.948i) q^{4} -904.196 q^{5} -888.085i q^{7} +(313.513 + 4083.98i) q^{8} +(12340.1 - 7551.15i) q^{10} -14451.0i q^{11} -11609.0 q^{13} +(7416.60 + 12120.2i) q^{14} +(-38385.0 - 53118.4i) q^{16} +128520. q^{17} +225611. i q^{19} +(-105352. + 206110. i) q^{20} +(120684. + 197222. i) q^{22} +441698. i q^{23} +426946. q^{25} +(158435. - 96949.7i) q^{26} +(-202438. - 103474. i) q^{28} -115149. q^{29} -201879. i q^{31} +(967466. + 404376. i) q^{32} +(-1.75398e6 + 1.07330e6i) q^{34} +803004. i q^{35} +2.01233e6 q^{37} +(-1.88413e6 - 3.07905e6i) q^{38} +(-283478. - 3.69272e6i) q^{40} +2.61903e6 q^{41} +1.75420e6i q^{43} +(-3.29409e6 - 1.68375e6i) q^{44} +(-3.68872e6 - 6.02811e6i) q^{46} -4.81199e6i q^{47} +4.97611e6 q^{49} +(-5.82679e6 + 3.56553e6i) q^{50} +(-1.35261e6 + 2.64626e6i) q^{52} -1.23892e6 q^{53} +1.30666e7i q^{55} +(3.62693e6 - 278427. i) q^{56} +(1.57150e6 - 961634. i) q^{58} +1.14062e6i q^{59} -4.60247e6 q^{61} +(1.68594e6 + 2.75517e6i) q^{62} +(-1.65806e7 + 2.56077e6i) q^{64} +1.04968e7 q^{65} -2.33742e7i q^{67} +(1.49743e7 - 2.92958e7i) q^{68} +(-6.70607e6 - 1.09591e7i) q^{70} +3.21271e7i q^{71} +4.89485e7 q^{73} +(-2.74635e7 + 1.68054e7i) q^{74} +(5.14277e7 + 2.62868e7i) q^{76} -1.28338e7 q^{77} +4.23230e6i q^{79} +(3.47076e7 + 4.80294e7i) q^{80} +(-3.57434e7 + 2.18721e7i) q^{82} +1.99136e7i q^{83} -1.16207e8 q^{85} +(-1.46497e7 - 2.39407e7i) q^{86} +(5.90178e7 - 4.53060e6i) q^{88} -8.45908e6 q^{89} +1.03098e7i q^{91} +(1.00684e8 + 5.14639e7i) q^{92} +(4.01860e7 + 6.56721e7i) q^{94} -2.03997e8i q^{95} -8.74596e7 q^{97} +(-6.79119e7 + 4.15566e7i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{2} - 52 q^{4} + 336 q^{5} + 12960 q^{8} + 36628 q^{10} - 2864 q^{13} - 52728 q^{14} + 99440 q^{16} + 193200 q^{17} - 335592 q^{20} - 556968 q^{22} - 579048 q^{25} - 21564 q^{26} - 594672 q^{28}+ \cdots - 691081830 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/36\mathbb{Z}\right)^\times\).

\(n\) \(19\) \(29\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −13.6476 + 8.35123i −0.852975 + 0.521952i
\(3\) 0 0
\(4\) 116.514 227.948i 0.455133 0.890424i
\(5\) −904.196 −1.44671 −0.723357 0.690474i \(-0.757402\pi\)
−0.723357 + 0.690474i \(0.757402\pi\)
\(6\) 0 0
\(7\) 888.085i 0.369881i −0.982750 0.184941i \(-0.940791\pi\)
0.982750 0.184941i \(-0.0592093\pi\)
\(8\) 313.513 + 4083.98i 0.0765414 + 0.997066i
\(9\) 0 0
\(10\) 12340.1 7551.15i 1.23401 0.755115i
\(11\) 14451.0i 0.987026i −0.869739 0.493513i \(-0.835713\pi\)
0.869739 0.493513i \(-0.164287\pi\)
\(12\) 0 0
\(13\) −11609.0 −0.406465 −0.203232 0.979131i \(-0.565145\pi\)
−0.203232 + 0.979131i \(0.565145\pi\)
\(14\) 7416.60 + 12120.2i 0.193060 + 0.315500i
\(15\) 0 0
\(16\) −38385.0 53118.4i −0.585708 0.810522i
\(17\) 128520. 1.53877 0.769385 0.638786i \(-0.220563\pi\)
0.769385 + 0.638786i \(0.220563\pi\)
\(18\) 0 0
\(19\) 225611.i 1.73120i 0.500740 + 0.865598i \(0.333061\pi\)
−0.500740 + 0.865598i \(0.666939\pi\)
\(20\) −105352. + 206110.i −0.658447 + 1.28819i
\(21\) 0 0
\(22\) 120684. + 197222.i 0.515180 + 0.841908i
\(23\) 441698.i 1.57839i 0.614144 + 0.789194i \(0.289501\pi\)
−0.614144 + 0.789194i \(0.710499\pi\)
\(24\) 0 0
\(25\) 426946. 1.09298
\(26\) 158435. 96949.7i 0.346704 0.212155i
\(27\) 0 0
\(28\) −202438. 103474.i −0.329351 0.168345i
\(29\) −115149. −0.162805 −0.0814024 0.996681i \(-0.525940\pi\)
−0.0814024 + 0.996681i \(0.525940\pi\)
\(30\) 0 0
\(31\) 201879.i 0.218597i −0.994009 0.109299i \(-0.965139\pi\)
0.994009 0.109299i \(-0.0348605\pi\)
\(32\) 967466. + 404376.i 0.922648 + 0.385643i
\(33\) 0 0
\(34\) −1.75398e6 + 1.07330e6i −1.31253 + 0.803163i
\(35\) 803004.i 0.535113i
\(36\) 0 0
\(37\) 2.01233e6 1.07372 0.536861 0.843671i \(-0.319610\pi\)
0.536861 + 0.843671i \(0.319610\pi\)
\(38\) −1.88413e6 3.07905e6i −0.903600 1.47667i
\(39\) 0 0
\(40\) −283478. 3.69272e6i −0.110733 1.44247i
\(41\) 2.61903e6 0.926839 0.463420 0.886139i \(-0.346622\pi\)
0.463420 + 0.886139i \(0.346622\pi\)
\(42\) 0 0
\(43\) 1.75420e6i 0.513105i 0.966530 + 0.256552i \(0.0825866\pi\)
−0.966530 + 0.256552i \(0.917413\pi\)
\(44\) −3.29409e6 1.68375e6i −0.878871 0.449228i
\(45\) 0 0
\(46\) −3.68872e6 6.02811e6i −0.823842 1.34633i
\(47\) 4.81199e6i 0.986128i −0.869993 0.493064i \(-0.835877\pi\)
0.869993 0.493064i \(-0.164123\pi\)
\(48\) 0 0
\(49\) 4.97611e6 0.863188
\(50\) −5.82679e6 + 3.56553e6i −0.932287 + 0.570484i
\(51\) 0 0
\(52\) −1.35261e6 + 2.64626e6i −0.184995 + 0.361926i
\(53\) −1.23892e6 −0.157014 −0.0785071 0.996914i \(-0.525015\pi\)
−0.0785071 + 0.996914i \(0.525015\pi\)
\(54\) 0 0
\(55\) 1.30666e7i 1.42794i
\(56\) 3.62693e6 278427.i 0.368796 0.0283112i
\(57\) 0 0
\(58\) 1.57150e6 961634.i 0.138868 0.0849763i
\(59\) 1.14062e6i 0.0941311i 0.998892 + 0.0470655i \(0.0149870\pi\)
−0.998892 + 0.0470655i \(0.985013\pi\)
\(60\) 0 0
\(61\) −4.60247e6 −0.332408 −0.166204 0.986091i \(-0.553151\pi\)
−0.166204 + 0.986091i \(0.553151\pi\)
\(62\) 1.68594e6 + 2.75517e6i 0.114097 + 0.186458i
\(63\) 0 0
\(64\) −1.65806e7 + 2.56077e6i −0.988283 + 0.152634i
\(65\) 1.04968e7 0.588038
\(66\) 0 0
\(67\) 2.33742e7i 1.15995i −0.814635 0.579974i \(-0.803063\pi\)
0.814635 0.579974i \(-0.196937\pi\)
\(68\) 1.49743e7 2.92958e7i 0.700344 1.37016i
\(69\) 0 0
\(70\) −6.70607e6 1.09591e7i −0.279303 0.456438i
\(71\) 3.21271e7i 1.26426i 0.774861 + 0.632132i \(0.217820\pi\)
−0.774861 + 0.632132i \(0.782180\pi\)
\(72\) 0 0
\(73\) 4.89485e7 1.72365 0.861823 0.507209i \(-0.169323\pi\)
0.861823 + 0.507209i \(0.169323\pi\)
\(74\) −2.74635e7 + 1.68054e7i −0.915858 + 0.560431i
\(75\) 0 0
\(76\) 5.14277e7 + 2.62868e7i 1.54150 + 0.787924i
\(77\) −1.28338e7 −0.365082
\(78\) 0 0
\(79\) 4.23230e6i 0.108660i 0.998523 + 0.0543298i \(0.0173022\pi\)
−0.998523 + 0.0543298i \(0.982698\pi\)
\(80\) 3.47076e7 + 4.80294e7i 0.847353 + 1.17259i
\(81\) 0 0
\(82\) −3.57434e7 + 2.18721e7i −0.790571 + 0.483765i
\(83\) 1.99136e7i 0.419602i 0.977744 + 0.209801i \(0.0672815\pi\)
−0.977744 + 0.209801i \(0.932718\pi\)
\(84\) 0 0
\(85\) −1.16207e8 −2.22616
\(86\) −1.46497e7 2.39407e7i −0.267816 0.437665i
\(87\) 0 0
\(88\) 5.90178e7 4.53060e6i 0.984130 0.0755483i
\(89\) −8.45908e6 −0.134823 −0.0674114 0.997725i \(-0.521474\pi\)
−0.0674114 + 0.997725i \(0.521474\pi\)
\(90\) 0 0
\(91\) 1.03098e7i 0.150344i
\(92\) 1.00684e8 + 5.14639e7i 1.40543 + 0.718376i
\(93\) 0 0
\(94\) 4.01860e7 + 6.56721e7i 0.514711 + 0.841142i
\(95\) 2.03997e8i 2.50455i
\(96\) 0 0
\(97\) −8.74596e7 −0.987917 −0.493959 0.869485i \(-0.664451\pi\)
−0.493959 + 0.869485i \(0.664451\pi\)
\(98\) −6.79119e7 + 4.15566e7i −0.736278 + 0.450542i
\(99\) 0 0
\(100\) 4.97452e7 9.73217e7i 0.497452 0.973217i
\(101\) −5.47619e7 −0.526251 −0.263126 0.964762i \(-0.584753\pi\)
−0.263126 + 0.964762i \(0.584753\pi\)
\(102\) 0 0
\(103\) 9.79588e6i 0.0870351i −0.999053 0.0435175i \(-0.986144\pi\)
0.999053 0.0435175i \(-0.0138564\pi\)
\(104\) −3.63959e6 4.74111e7i −0.0311114 0.405272i
\(105\) 0 0
\(106\) 1.69082e7 1.03465e7i 0.133929 0.0819538i
\(107\) 1.14346e8i 0.872340i 0.899864 + 0.436170i \(0.143665\pi\)
−0.899864 + 0.436170i \(0.856335\pi\)
\(108\) 0 0
\(109\) 4.18346e7 0.296367 0.148183 0.988960i \(-0.452657\pi\)
0.148183 + 0.988960i \(0.452657\pi\)
\(110\) −1.09122e8 1.78327e8i −0.745318 1.21800i
\(111\) 0 0
\(112\) −4.71736e7 + 3.40891e7i −0.299797 + 0.216643i
\(113\) −5.24115e7 −0.321449 −0.160725 0.986999i \(-0.551383\pi\)
−0.160725 + 0.986999i \(0.551383\pi\)
\(114\) 0 0
\(115\) 3.99381e8i 2.28348i
\(116\) −1.34164e7 + 2.62480e7i −0.0740978 + 0.144965i
\(117\) 0 0
\(118\) −9.52558e6 1.55667e7i −0.0491319 0.0802915i
\(119\) 1.14136e8i 0.569162i
\(120\) 0 0
\(121\) 5.52626e6 0.0257804
\(122\) 6.28126e7 3.84363e7i 0.283536 0.173501i
\(123\) 0 0
\(124\) −4.60181e7 2.35218e7i −0.194644 0.0994909i
\(125\) −3.28415e7 −0.134519
\(126\) 0 0
\(127\) 3.58172e8i 1.37682i 0.725323 + 0.688409i \(0.241690\pi\)
−0.725323 + 0.688409i \(0.758310\pi\)
\(128\) 2.04900e8 1.73417e8i 0.763313 0.646029i
\(129\) 0 0
\(130\) −1.43257e8 + 8.76616e7i −0.501582 + 0.306928i
\(131\) 3.12310e8i 1.06048i 0.847848 + 0.530239i \(0.177898\pi\)
−0.847848 + 0.530239i \(0.822102\pi\)
\(132\) 0 0
\(133\) 2.00362e8 0.640337
\(134\) 1.95204e8 + 3.19002e8i 0.605437 + 0.989406i
\(135\) 0 0
\(136\) 4.02926e7 + 5.24872e8i 0.117779 + 1.53426i
\(137\) 2.02321e8 0.574327 0.287163 0.957882i \(-0.407288\pi\)
0.287163 + 0.957882i \(0.407288\pi\)
\(138\) 0 0
\(139\) 3.56101e8i 0.953924i 0.878924 + 0.476962i \(0.158262\pi\)
−0.878924 + 0.476962i \(0.841738\pi\)
\(140\) 1.83043e8 + 9.35611e7i 0.476477 + 0.243547i
\(141\) 0 0
\(142\) −2.68300e8 4.38457e8i −0.659885 1.07839i
\(143\) 1.67763e8i 0.401191i
\(144\) 0 0
\(145\) 1.04117e8 0.235532
\(146\) −6.68030e8 + 4.08780e8i −1.47023 + 0.899660i
\(147\) 0 0
\(148\) 2.34464e8 4.58707e8i 0.488686 0.956068i
\(149\) 4.69207e8 0.951961 0.475981 0.879456i \(-0.342093\pi\)
0.475981 + 0.879456i \(0.342093\pi\)
\(150\) 0 0
\(151\) 4.96132e8i 0.954309i 0.878819 + 0.477155i \(0.158332\pi\)
−0.878819 + 0.477155i \(0.841668\pi\)
\(152\) −9.21392e8 + 7.07321e7i −1.72612 + 0.132508i
\(153\) 0 0
\(154\) 1.75150e8 1.07178e8i 0.311406 0.190555i
\(155\) 1.82539e8i 0.316248i
\(156\) 0 0
\(157\) 9.86054e8 1.62294 0.811469 0.584395i \(-0.198668\pi\)
0.811469 + 0.584395i \(0.198668\pi\)
\(158\) −3.53449e7 5.77607e7i −0.0567150 0.0926839i
\(159\) 0 0
\(160\) −8.74780e8 3.65636e8i −1.33481 0.557916i
\(161\) 3.92265e8 0.583816
\(162\) 0 0
\(163\) 1.41749e8i 0.200803i −0.994947 0.100402i \(-0.967987\pi\)
0.994947 0.100402i \(-0.0320128\pi\)
\(164\) 3.05153e8 5.97003e8i 0.421835 0.825279i
\(165\) 0 0
\(166\) −1.66303e8 2.71773e8i −0.219012 0.357910i
\(167\) 6.26762e8i 0.805818i −0.915240 0.402909i \(-0.867999\pi\)
0.915240 0.402909i \(-0.132001\pi\)
\(168\) 0 0
\(169\) −6.80961e8 −0.834787
\(170\) 1.58595e9 9.70471e8i 1.89886 1.16195i
\(171\) 0 0
\(172\) 3.99868e8 + 2.04389e8i 0.456880 + 0.233531i
\(173\) −3.25845e8 −0.363770 −0.181885 0.983320i \(-0.558220\pi\)
−0.181885 + 0.983320i \(0.558220\pi\)
\(174\) 0 0
\(175\) 3.79165e8i 0.404274i
\(176\) −7.67616e8 + 5.54703e8i −0.800006 + 0.578109i
\(177\) 0 0
\(178\) 1.15446e8 7.06437e7i 0.115000 0.0703710i
\(179\) 4.96016e8i 0.483152i −0.970382 0.241576i \(-0.922336\pi\)
0.970382 0.241576i \(-0.0776642\pi\)
\(180\) 0 0
\(181\) −5.63606e8 −0.525123 −0.262562 0.964915i \(-0.584567\pi\)
−0.262562 + 0.964915i \(0.584567\pi\)
\(182\) −8.60996e7 1.40704e8i −0.0784722 0.128239i
\(183\) 0 0
\(184\) −1.80389e9 + 1.38478e8i −1.57376 + 0.120812i
\(185\) −1.81954e9 −1.55337
\(186\) 0 0
\(187\) 1.85724e9i 1.51880i
\(188\) −1.09689e9 5.60664e8i −0.878072 0.448819i
\(189\) 0 0
\(190\) 1.70362e9 + 2.78407e9i 1.30725 + 2.13631i
\(191\) 8.54684e8i 0.642203i 0.947045 + 0.321101i \(0.104053\pi\)
−0.947045 + 0.321101i \(0.895947\pi\)
\(192\) 0 0
\(193\) 1.02603e9 0.739489 0.369745 0.929133i \(-0.379445\pi\)
0.369745 + 0.929133i \(0.379445\pi\)
\(194\) 1.19361e9 7.30395e8i 0.842669 0.515645i
\(195\) 0 0
\(196\) 5.79786e8 1.13430e9i 0.392865 0.768603i
\(197\) −8.44577e8 −0.560756 −0.280378 0.959890i \(-0.590460\pi\)
−0.280378 + 0.959890i \(0.590460\pi\)
\(198\) 0 0
\(199\) 7.72569e8i 0.492635i 0.969189 + 0.246317i \(0.0792206\pi\)
−0.969189 + 0.246317i \(0.920779\pi\)
\(200\) 1.33853e8 + 1.74364e9i 0.0836584 + 1.08978i
\(201\) 0 0
\(202\) 7.47369e8 4.57329e8i 0.448879 0.274678i
\(203\) 1.02262e8i 0.0602185i
\(204\) 0 0
\(205\) −2.36811e9 −1.34087
\(206\) 8.18076e7 + 1.33690e8i 0.0454281 + 0.0742388i
\(207\) 0 0
\(208\) 4.45613e8 + 6.16653e8i 0.238070 + 0.329448i
\(209\) 3.26032e9 1.70873
\(210\) 0 0
\(211\) 2.19966e9i 1.10975i 0.831934 + 0.554875i \(0.187234\pi\)
−0.831934 + 0.554875i \(0.812766\pi\)
\(212\) −1.44351e8 + 2.82409e8i −0.0714623 + 0.139809i
\(213\) 0 0
\(214\) −9.54930e8 1.56055e9i −0.455320 0.744085i
\(215\) 1.58614e9i 0.742316i
\(216\) 0 0
\(217\) −1.79286e8 −0.0808551
\(218\) −5.70942e8 + 3.49370e8i −0.252794 + 0.154689i
\(219\) 0 0
\(220\) 2.97851e9 + 1.52244e9i 1.27148 + 0.649904i
\(221\) −1.49199e9 −0.625455
\(222\) 0 0
\(223\) 4.61916e9i 1.86786i −0.357459 0.933929i \(-0.616357\pi\)
0.357459 0.933929i \(-0.383643\pi\)
\(224\) 3.59121e8 8.59193e8i 0.142642 0.341270i
\(225\) 0 0
\(226\) 7.15291e8 4.37700e8i 0.274188 0.167781i
\(227\) 1.24196e9i 0.467738i −0.972268 0.233869i \(-0.924861\pi\)
0.972268 0.233869i \(-0.0751388\pi\)
\(228\) 0 0
\(229\) −4.83925e9 −1.75969 −0.879845 0.475260i \(-0.842354\pi\)
−0.879845 + 0.475260i \(0.842354\pi\)
\(230\) 3.33532e9 + 5.45060e9i 1.19186 + 1.94775i
\(231\) 0 0
\(232\) −3.61007e7 4.70266e8i −0.0124613 0.162327i
\(233\) 1.26420e9 0.428936 0.214468 0.976731i \(-0.431198\pi\)
0.214468 + 0.976731i \(0.431198\pi\)
\(234\) 0 0
\(235\) 4.35098e9i 1.42665i
\(236\) 2.60003e8 + 1.32898e8i 0.0838165 + 0.0428421i
\(237\) 0 0
\(238\) 9.53178e8 + 1.55769e9i 0.297075 + 0.485481i
\(239\) 3.45214e9i 1.05803i 0.848613 + 0.529014i \(0.177438\pi\)
−0.848613 + 0.529014i \(0.822562\pi\)
\(240\) 0 0
\(241\) 2.81376e9 0.834101 0.417050 0.908883i \(-0.363064\pi\)
0.417050 + 0.908883i \(0.363064\pi\)
\(242\) −7.54201e7 + 4.61510e7i −0.0219900 + 0.0134561i
\(243\) 0 0
\(244\) −5.36252e8 + 1.04913e9i −0.151290 + 0.295984i
\(245\) −4.49938e9 −1.24879
\(246\) 0 0
\(247\) 2.61913e9i 0.703670i
\(248\) 8.24472e8 6.32919e7i 0.217956 0.0167317i
\(249\) 0 0
\(250\) 4.48208e8 2.74267e8i 0.114741 0.0702124i
\(251\) 1.02698e9i 0.258741i −0.991596 0.129371i \(-0.958704\pi\)
0.991596 0.129371i \(-0.0412957\pi\)
\(252\) 0 0
\(253\) 6.38299e9 1.55791
\(254\) −2.99117e9 4.88818e9i −0.718632 1.17439i
\(255\) 0 0
\(256\) −1.34815e9 + 4.07790e9i −0.313891 + 0.949459i
\(257\) 1.80098e9 0.412834 0.206417 0.978464i \(-0.433820\pi\)
0.206417 + 0.978464i \(0.433820\pi\)
\(258\) 0 0
\(259\) 1.78712e9i 0.397150i
\(260\) 1.22303e9 2.39274e9i 0.267635 0.523603i
\(261\) 0 0
\(262\) −2.60818e9 4.26229e9i −0.553518 0.904561i
\(263\) 6.59493e9i 1.37844i 0.724554 + 0.689219i \(0.242046\pi\)
−0.724554 + 0.689219i \(0.757954\pi\)
\(264\) 0 0
\(265\) 1.12022e9 0.227155
\(266\) −2.73446e9 + 1.67327e9i −0.546191 + 0.334225i
\(267\) 0 0
\(268\) −5.32812e9 2.72343e9i −1.03284 0.527930i
\(269\) 7.85945e8 0.150101 0.0750504 0.997180i \(-0.476088\pi\)
0.0750504 + 0.997180i \(0.476088\pi\)
\(270\) 0 0
\(271\) 4.85570e9i 0.900274i 0.892959 + 0.450137i \(0.148625\pi\)
−0.892959 + 0.450137i \(0.851375\pi\)
\(272\) −4.93322e9 6.82675e9i −0.901270 1.24721i
\(273\) 0 0
\(274\) −2.76120e9 + 1.68963e9i −0.489886 + 0.299771i
\(275\) 6.16982e9i 1.07880i
\(276\) 0 0
\(277\) −5.59523e9 −0.950383 −0.475191 0.879882i \(-0.657621\pi\)
−0.475191 + 0.879882i \(0.657621\pi\)
\(278\) −2.97388e9 4.85992e9i −0.497902 0.813674i
\(279\) 0 0
\(280\) −3.27945e9 + 2.51752e8i −0.533543 + 0.0409583i
\(281\) 9.77267e9 1.56743 0.783715 0.621121i \(-0.213322\pi\)
0.783715 + 0.621121i \(0.213322\pi\)
\(282\) 0 0
\(283\) 1.39134e9i 0.216915i 0.994101 + 0.108457i \(0.0345911\pi\)
−0.994101 + 0.108457i \(0.965409\pi\)
\(284\) 7.32332e9 + 3.74325e9i 1.12573 + 0.575408i
\(285\) 0 0
\(286\) −1.40102e9 2.28956e9i −0.209402 0.342206i
\(287\) 2.32592e9i 0.342821i
\(288\) 0 0
\(289\) 9.54152e9 1.36781
\(290\) −1.42095e9 + 8.69506e8i −0.200903 + 0.122936i
\(291\) 0 0
\(292\) 5.70319e9 1.11577e10i 0.784488 1.53478i
\(293\) −1.31910e10 −1.78981 −0.894904 0.446258i \(-0.852756\pi\)
−0.894904 + 0.446258i \(0.852756\pi\)
\(294\) 0 0
\(295\) 1.03134e9i 0.136181i
\(296\) 6.30892e8 + 8.21832e9i 0.0821842 + 1.07057i
\(297\) 0 0
\(298\) −6.40355e9 + 3.91845e9i −0.811999 + 0.496878i
\(299\) 5.12768e9i 0.641559i
\(300\) 0 0
\(301\) 1.55788e9 0.189788
\(302\) −4.14331e9 6.77100e9i −0.498103 0.814002i
\(303\) 0 0
\(304\) 1.19841e10 8.66008e9i 1.40317 1.01398i
\(305\) 4.16154e9 0.480899
\(306\) 0 0
\(307\) 1.03003e9i 0.115957i 0.998318 + 0.0579784i \(0.0184654\pi\)
−0.998318 + 0.0579784i \(0.981535\pi\)
\(308\) −1.49531e9 + 2.92544e9i −0.166161 + 0.325078i
\(309\) 0 0
\(310\) −1.52442e9 2.49121e9i −0.165066 0.269752i
\(311\) 1.03275e10i 1.10396i −0.833857 0.551981i \(-0.813872\pi\)
0.833857 0.551981i \(-0.186128\pi\)
\(312\) 0 0
\(313\) −1.75059e9 −0.182393 −0.0911963 0.995833i \(-0.529069\pi\)
−0.0911963 + 0.995833i \(0.529069\pi\)
\(314\) −1.34573e10 + 8.23476e9i −1.38433 + 0.847096i
\(315\) 0 0
\(316\) 9.64746e8 + 4.93122e8i 0.0967530 + 0.0494545i
\(317\) 1.25238e10 1.24022 0.620109 0.784515i \(-0.287088\pi\)
0.620109 + 0.784515i \(0.287088\pi\)
\(318\) 0 0
\(319\) 1.66402e9i 0.160693i
\(320\) 1.49922e10 2.31544e9i 1.42976 0.220817i
\(321\) 0 0
\(322\) −5.35348e9 + 3.27590e9i −0.497981 + 0.304724i
\(323\) 2.89954e10i 2.66391i
\(324\) 0 0
\(325\) −4.95643e9 −0.444259
\(326\) 1.18378e9 + 1.93454e9i 0.104810 + 0.171280i
\(327\) 0 0
\(328\) 8.21100e8 + 1.06961e10i 0.0709415 + 0.924120i
\(329\) −4.27346e9 −0.364750
\(330\) 0 0
\(331\) 1.79988e10i 1.49945i 0.661750 + 0.749725i \(0.269814\pi\)
−0.661750 + 0.749725i \(0.730186\pi\)
\(332\) 4.53927e9 + 2.32021e9i 0.373623 + 0.190974i
\(333\) 0 0
\(334\) 5.23424e9 + 8.55380e9i 0.420598 + 0.687343i
\(335\) 2.11349e10i 1.67811i
\(336\) 0 0
\(337\) 4.52797e9 0.351062 0.175531 0.984474i \(-0.443836\pi\)
0.175531 + 0.984474i \(0.443836\pi\)
\(338\) 9.29348e9 5.68686e9i 0.712052 0.435718i
\(339\) 0 0
\(340\) −1.35397e10 + 2.64892e10i −1.01320 + 1.98223i
\(341\) −2.91737e9 −0.215761
\(342\) 0 0
\(343\) 9.53884e9i 0.689159i
\(344\) −7.16414e9 + 5.49966e8i −0.511599 + 0.0392737i
\(345\) 0 0
\(346\) 4.44701e9 2.72121e9i 0.310287 0.189871i
\(347\) 2.28528e10i 1.57624i −0.615522 0.788119i \(-0.711055\pi\)
0.615522 0.788119i \(-0.288945\pi\)
\(348\) 0 0
\(349\) 7.23857e9 0.487922 0.243961 0.969785i \(-0.421553\pi\)
0.243961 + 0.969785i \(0.421553\pi\)
\(350\) 3.16649e9 + 5.17469e9i 0.211011 + 0.344835i
\(351\) 0 0
\(352\) 5.84366e9 1.39809e10i 0.380640 0.910677i
\(353\) 9.02641e9 0.581321 0.290661 0.956826i \(-0.406125\pi\)
0.290661 + 0.956826i \(0.406125\pi\)
\(354\) 0 0
\(355\) 2.90492e10i 1.82903i
\(356\) −9.85601e8 + 1.92823e9i −0.0613622 + 0.120049i
\(357\) 0 0
\(358\) 4.14234e9 + 6.76942e9i 0.252182 + 0.412116i
\(359\) 8.94260e9i 0.538377i −0.963088 0.269188i \(-0.913245\pi\)
0.963088 0.269188i \(-0.0867554\pi\)
\(360\) 0 0
\(361\) −3.39168e10 −1.99704
\(362\) 7.69187e9 4.70680e9i 0.447917 0.274089i
\(363\) 0 0
\(364\) 2.35011e9 + 1.20124e9i 0.133870 + 0.0684263i
\(365\) −4.42591e10 −2.49362
\(366\) 0 0
\(367\) 9.34134e9i 0.514926i −0.966288 0.257463i \(-0.917113\pi\)
0.966288 0.257463i \(-0.0828866\pi\)
\(368\) 2.34622e10 1.69546e10i 1.27932 0.924475i
\(369\) 0 0
\(370\) 2.48324e10 1.51954e10i 1.32499 0.810784i
\(371\) 1.10026e9i 0.0580766i
\(372\) 0 0
\(373\) −8.10234e9 −0.418577 −0.209288 0.977854i \(-0.567115\pi\)
−0.209288 + 0.977854i \(0.567115\pi\)
\(374\) 1.55102e10 + 2.53469e10i 0.792743 + 1.29550i
\(375\) 0 0
\(376\) 1.96521e10 1.50862e9i 0.983235 0.0754796i
\(377\) 1.33677e9 0.0661744
\(378\) 0 0
\(379\) 2.76442e10i 1.33982i −0.742440 0.669912i \(-0.766332\pi\)
0.742440 0.669912i \(-0.233668\pi\)
\(380\) −4.65007e10 2.37685e10i −2.23011 1.13990i
\(381\) 0 0
\(382\) −7.13766e9 1.16644e10i −0.335199 0.547783i
\(383\) 3.04532e10i 1.41526i −0.706581 0.707632i \(-0.749763\pi\)
0.706581 0.707632i \(-0.250237\pi\)
\(384\) 0 0
\(385\) 1.16042e10 0.528170
\(386\) −1.40029e10 + 8.56863e9i −0.630766 + 0.385978i
\(387\) 0 0
\(388\) −1.01903e10 + 1.99363e10i −0.449633 + 0.879665i
\(389\) 1.61385e9 0.0704799 0.0352399 0.999379i \(-0.488780\pi\)
0.0352399 + 0.999379i \(0.488780\pi\)
\(390\) 0 0
\(391\) 5.67668e10i 2.42877i
\(392\) 1.56008e9 + 2.03223e10i 0.0660696 + 0.860656i
\(393\) 0 0
\(394\) 1.15264e10 7.05325e9i 0.478311 0.292688i
\(395\) 3.82683e9i 0.157199i
\(396\) 0 0
\(397\) −3.65388e10 −1.47093 −0.735465 0.677563i \(-0.763036\pi\)
−0.735465 + 0.677563i \(0.763036\pi\)
\(398\) −6.45190e9 1.05437e10i −0.257132 0.420205i
\(399\) 0 0
\(400\) −1.63883e10 2.26787e10i −0.640169 0.885886i
\(401\) 2.62838e10 1.01651 0.508253 0.861208i \(-0.330292\pi\)
0.508253 + 0.861208i \(0.330292\pi\)
\(402\) 0 0
\(403\) 2.34362e9i 0.0888521i
\(404\) −6.38053e9 + 1.24829e10i −0.239514 + 0.468586i
\(405\) 0 0
\(406\) −8.54013e8 1.39563e9i −0.0314312 0.0513649i
\(407\) 2.90802e10i 1.05979i
\(408\) 0 0
\(409\) 1.69888e10 0.607114 0.303557 0.952813i \(-0.401826\pi\)
0.303557 + 0.952813i \(0.401826\pi\)
\(410\) 3.23191e10 1.97767e10i 1.14373 0.699870i
\(411\) 0 0
\(412\) −2.23295e9 1.14136e9i −0.0774981 0.0396125i
\(413\) 1.01297e9 0.0348173
\(414\) 0 0
\(415\) 1.80058e10i 0.607044i
\(416\) −1.12314e10 4.69442e9i −0.375024 0.156750i
\(417\) 0 0
\(418\) −4.44955e10 + 2.72276e10i −1.45751 + 0.891877i
\(419\) 4.79547e10i 1.55588i 0.628340 + 0.777939i \(0.283735\pi\)
−0.628340 + 0.777939i \(0.716265\pi\)
\(420\) 0 0
\(421\) 3.01561e9 0.0959947 0.0479973 0.998847i \(-0.484716\pi\)
0.0479973 + 0.998847i \(0.484716\pi\)
\(422\) −1.83698e10 3.00201e10i −0.579236 0.946589i
\(423\) 0 0
\(424\) −3.88417e8 5.05972e9i −0.0120181 0.156554i
\(425\) 5.48709e10 1.68185
\(426\) 0 0
\(427\) 4.08738e9i 0.122952i
\(428\) 2.60650e10 + 1.33229e10i 0.776753 + 0.397031i
\(429\) 0 0
\(430\) 1.32462e10 + 2.16471e10i 0.387453 + 0.633177i
\(431\) 1.51705e10i 0.439634i 0.975541 + 0.219817i \(0.0705461\pi\)
−0.975541 + 0.219817i \(0.929454\pi\)
\(432\) 0 0
\(433\) 5.75689e10 1.63771 0.818853 0.574003i \(-0.194610\pi\)
0.818853 + 0.574003i \(0.194610\pi\)
\(434\) 2.44682e9 1.49726e9i 0.0689674 0.0422025i
\(435\) 0 0
\(436\) 4.87432e9 9.53614e9i 0.134886 0.263892i
\(437\) −9.96519e10 −2.73250
\(438\) 0 0
\(439\) 5.52060e10i 1.48638i 0.669083 + 0.743188i \(0.266687\pi\)
−0.669083 + 0.743188i \(0.733313\pi\)
\(440\) −5.33637e10 + 4.09655e9i −1.42376 + 0.109297i
\(441\) 0 0
\(442\) 2.03621e10 1.24599e10i 0.533498 0.326457i
\(443\) 6.97437e10i 1.81088i 0.424473 + 0.905441i \(0.360460\pi\)
−0.424473 + 0.905441i \(0.639540\pi\)
\(444\) 0 0
\(445\) 7.64867e9 0.195050
\(446\) 3.85757e10 + 6.30405e10i 0.974932 + 1.59324i
\(447\) 0 0
\(448\) 2.27418e9 + 1.47250e10i 0.0564563 + 0.365547i
\(449\) 1.47127e10 0.361998 0.180999 0.983483i \(-0.442067\pi\)
0.180999 + 0.983483i \(0.442067\pi\)
\(450\) 0 0
\(451\) 3.78477e10i 0.914814i
\(452\) −6.10667e9 + 1.19471e10i −0.146302 + 0.286226i
\(453\) 0 0
\(454\) 1.03719e10 + 1.69497e10i 0.244137 + 0.398969i
\(455\) 9.32210e9i 0.217504i
\(456\) 0 0
\(457\) 6.37221e10 1.46092 0.730458 0.682957i \(-0.239306\pi\)
0.730458 + 0.682957i \(0.239306\pi\)
\(458\) 6.60442e10 4.04137e10i 1.50097 0.918473i
\(459\) 0 0
\(460\) −9.10384e10 4.65335e10i −2.03326 1.03928i
\(461\) 3.93282e10 0.870763 0.435382 0.900246i \(-0.356613\pi\)
0.435382 + 0.900246i \(0.356613\pi\)
\(462\) 0 0
\(463\) 6.91241e10i 1.50420i −0.659049 0.752100i \(-0.729041\pi\)
0.659049 0.752100i \(-0.270959\pi\)
\(464\) 4.41999e9 + 6.11652e9i 0.0953562 + 0.131957i
\(465\) 0 0
\(466\) −1.72533e10 + 1.05576e10i −0.365872 + 0.223884i
\(467\) 4.48917e10i 0.943840i −0.881641 0.471920i \(-0.843561\pi\)
0.881641 0.471920i \(-0.156439\pi\)
\(468\) 0 0
\(469\) −2.07583e10 −0.429043
\(470\) −3.63361e10 5.93805e10i −0.744640 1.21689i
\(471\) 0 0
\(472\) −4.65827e9 + 3.57600e8i −0.0938549 + 0.00720492i
\(473\) 2.53501e10 0.506447
\(474\) 0 0
\(475\) 9.63238e10i 1.89217i
\(476\) −2.60172e10 1.32985e10i −0.506795 0.259044i
\(477\) 0 0
\(478\) −2.88296e10 4.71135e10i −0.552240 0.902471i
\(479\) 7.56518e10i 1.43707i 0.695492 + 0.718533i \(0.255186\pi\)
−0.695492 + 0.718533i \(0.744814\pi\)
\(480\) 0 0
\(481\) −2.33612e10 −0.436430
\(482\) −3.84010e10 + 2.34983e10i −0.711467 + 0.435360i
\(483\) 0 0
\(484\) 6.43886e8 1.25970e9i 0.0117335 0.0229555i
\(485\) 7.90806e10 1.42923
\(486\) 0 0
\(487\) 5.39416e10i 0.958977i 0.877548 + 0.479489i \(0.159178\pi\)
−0.877548 + 0.479489i \(0.840822\pi\)
\(488\) −1.44294e9 1.87964e10i −0.0254430 0.331433i
\(489\) 0 0
\(490\) 6.14057e10 3.75753e10i 1.06518 0.651806i
\(491\) 9.67425e10i 1.66453i −0.554379 0.832264i \(-0.687044\pi\)
0.554379 0.832264i \(-0.312956\pi\)
\(492\) 0 0
\(493\) −1.47989e10 −0.250519
\(494\) 2.18729e10 + 3.57448e10i 0.367282 + 0.600213i
\(495\) 0 0
\(496\) −1.07235e10 + 7.74914e9i −0.177178 + 0.128034i
\(497\) 2.85316e10 0.467628
\(498\) 0 0
\(499\) 1.21097e10i 0.195313i 0.995220 + 0.0976566i \(0.0311347\pi\)
−0.995220 + 0.0976566i \(0.968865\pi\)
\(500\) −3.82650e9 + 7.48618e9i −0.0612240 + 0.119779i
\(501\) 0 0
\(502\) 8.57651e9 + 1.40158e10i 0.135050 + 0.220700i
\(503\) 2.13349e10i 0.333286i −0.986017 0.166643i \(-0.946707\pi\)
0.986017 0.166643i \(-0.0532928\pi\)
\(504\) 0 0
\(505\) 4.95155e10 0.761335
\(506\) −8.71125e10 + 5.33058e10i −1.32886 + 0.813153i
\(507\) 0 0
\(508\) 8.16447e10 + 4.17320e10i 1.22595 + 0.626635i
\(509\) −1.22126e11 −1.81944 −0.909721 0.415221i \(-0.863704\pi\)
−0.909721 + 0.415221i \(0.863704\pi\)
\(510\) 0 0
\(511\) 4.34705e10i 0.637545i
\(512\) −1.56564e10 6.69122e10i −0.227830 0.973701i
\(513\) 0 0
\(514\) −2.45790e10 + 1.50404e10i −0.352137 + 0.215480i
\(515\) 8.85740e9i 0.125915i
\(516\) 0 0
\(517\) −6.95383e10 −0.973333
\(518\) 1.49246e10 + 2.43899e10i 0.207293 + 0.338759i
\(519\) 0 0
\(520\) 3.29090e9 + 4.28690e10i 0.0450092 + 0.586313i
\(521\) −8.66914e10 −1.17659 −0.588295 0.808646i \(-0.700201\pi\)
−0.588295 + 0.808646i \(0.700201\pi\)
\(522\) 0 0
\(523\) 1.54184e10i 0.206078i 0.994677 + 0.103039i \(0.0328567\pi\)
−0.994677 + 0.103039i \(0.967143\pi\)
\(524\) 7.11907e10 + 3.63885e10i 0.944274 + 0.482658i
\(525\) 0 0
\(526\) −5.50757e10 9.00049e10i −0.719478 1.17577i
\(527\) 2.59454e10i 0.336371i
\(528\) 0 0
\(529\) −1.16786e11 −1.49131
\(530\) −1.52884e10 + 9.35525e9i −0.193757 + 0.118564i
\(531\) 0 0
\(532\) 2.33450e10 4.56722e10i 0.291438 0.570171i
\(533\) −3.04044e10 −0.376727
\(534\) 0 0
\(535\) 1.03391e11i 1.26203i
\(536\) 9.54600e10 7.32814e9i 1.15654 0.0887840i
\(537\) 0 0
\(538\) −1.07263e10 + 6.56361e9i −0.128032 + 0.0783454i
\(539\) 7.19099e10i 0.851988i
\(540\) 0 0
\(541\) 1.38070e10 0.161180 0.0805899 0.996747i \(-0.474320\pi\)
0.0805899 + 0.996747i \(0.474320\pi\)
\(542\) −4.05511e10 6.62687e10i −0.469900 0.767912i
\(543\) 0 0
\(544\) 1.24338e11 + 5.19703e10i 1.41974 + 0.593416i
\(545\) −3.78267e10 −0.428758
\(546\) 0 0
\(547\) 1.58922e11i 1.77514i −0.460670 0.887572i \(-0.652391\pi\)
0.460670 0.887572i \(-0.347609\pi\)
\(548\) 2.35732e10 4.61188e10i 0.261395 0.511394i
\(549\) 0 0
\(550\) 5.15256e10 + 8.42032e10i 0.563082 + 0.920191i
\(551\) 2.59788e10i 0.281847i
\(552\) 0 0
\(553\) 3.75864e9 0.0401911
\(554\) 7.63614e10 4.67270e10i 0.810653 0.496054i
\(555\) 0 0
\(556\) 8.11726e10 + 4.14907e10i 0.849397 + 0.434162i
\(557\) 2.99226e10 0.310870 0.155435 0.987846i \(-0.450322\pi\)
0.155435 + 0.987846i \(0.450322\pi\)
\(558\) 0 0
\(559\) 2.03646e10i 0.208559i
\(560\) 4.26542e10 3.08233e10i 0.433721 0.313420i
\(561\) 0 0
\(562\) −1.33374e11 + 8.16138e10i −1.33698 + 0.818123i
\(563\) 9.29383e10i 0.925042i 0.886608 + 0.462521i \(0.153055\pi\)
−0.886608 + 0.462521i \(0.846945\pi\)
\(564\) 0 0
\(565\) 4.73903e10 0.465046
\(566\) −1.16194e10 1.89885e10i −0.113219 0.185023i
\(567\) 0 0
\(568\) −1.31206e11 + 1.00723e10i −1.26055 + 0.0967685i
\(569\) 1.27626e11 1.21756 0.608778 0.793341i \(-0.291660\pi\)
0.608778 + 0.793341i \(0.291660\pi\)
\(570\) 0 0
\(571\) 6.17431e10i 0.580823i 0.956902 + 0.290412i \(0.0937923\pi\)
−0.956902 + 0.290412i \(0.906208\pi\)
\(572\) 3.82412e10 + 1.95467e10i 0.357230 + 0.182595i
\(573\) 0 0
\(574\) 1.94243e10 + 3.17432e10i 0.178936 + 0.292417i
\(575\) 1.88581e11i 1.72515i
\(576\) 0 0
\(577\) −1.29506e11 −1.16839 −0.584194 0.811614i \(-0.698589\pi\)
−0.584194 + 0.811614i \(0.698589\pi\)
\(578\) −1.30219e11 + 7.96834e10i −1.16671 + 0.713931i
\(579\) 0 0
\(580\) 1.21311e10 2.37333e10i 0.107198 0.209723i
\(581\) 1.76850e10 0.155203
\(582\) 0 0
\(583\) 1.79036e10i 0.154977i
\(584\) 1.53460e10 + 1.99905e11i 0.131930 + 1.71859i
\(585\) 0 0
\(586\) 1.80025e11 1.10161e11i 1.52666 0.934194i
\(587\) 1.10514e11i 0.930820i −0.885095 0.465410i \(-0.845907\pi\)
0.885095 0.465410i \(-0.154093\pi\)
\(588\) 0 0
\(589\) 4.55462e10 0.378435
\(590\) 8.61300e9 + 1.40754e10i 0.0710798 + 0.116159i
\(591\) 0 0
\(592\) −7.72432e10 1.06892e11i −0.628888 0.870275i
\(593\) −1.24751e11 −1.00884 −0.504422 0.863457i \(-0.668294\pi\)
−0.504422 + 0.863457i \(0.668294\pi\)
\(594\) 0 0
\(595\) 1.03202e11i 0.823415i
\(596\) 5.46692e10 1.06955e11i 0.433269 0.847649i
\(597\) 0 0
\(598\) 4.28224e10 + 6.99806e10i 0.334863 + 0.547234i
\(599\) 2.65710e10i 0.206396i 0.994661 + 0.103198i \(0.0329075\pi\)
−0.994661 + 0.103198i \(0.967092\pi\)
\(600\) 0 0
\(601\) −2.32310e9 −0.0178062 −0.00890308 0.999960i \(-0.502834\pi\)
−0.00890308 + 0.999960i \(0.502834\pi\)
\(602\) −2.12613e10 + 1.30102e10i −0.161884 + 0.0990601i
\(603\) 0 0
\(604\) 1.13092e11 + 5.78063e10i 0.849739 + 0.434337i
\(605\) −4.99682e9 −0.0372969
\(606\) 0 0
\(607\) 7.34244e10i 0.540861i 0.962739 + 0.270431i \(0.0871661\pi\)
−0.962739 + 0.270431i \(0.912834\pi\)
\(608\) −9.12318e10 + 2.18271e11i −0.667624 + 1.59728i
\(609\) 0 0
\(610\) −5.67950e10 + 3.47539e10i −0.410195 + 0.251006i
\(611\) 5.58626e10i 0.400826i
\(612\) 0 0
\(613\) 1.67042e11 1.18300 0.591499 0.806306i \(-0.298536\pi\)
0.591499 + 0.806306i \(0.298536\pi\)
\(614\) −8.60201e9 1.40574e10i −0.0605238 0.0989082i
\(615\) 0 0
\(616\) −4.02356e9 5.24129e10i −0.0279439 0.364011i
\(617\) −5.44122e8 −0.00375453 −0.00187727 0.999998i \(-0.500598\pi\)
−0.00187727 + 0.999998i \(0.500598\pi\)
\(618\) 0 0
\(619\) 1.21943e11i 0.830608i 0.909683 + 0.415304i \(0.136325\pi\)
−0.909683 + 0.415304i \(0.863675\pi\)
\(620\) 4.16094e10 + 2.12683e10i 0.281595 + 0.143935i
\(621\) 0 0
\(622\) 8.62474e10 + 1.40946e11i 0.576215 + 0.941652i
\(623\) 7.51239e9i 0.0498684i
\(624\) 0 0
\(625\) −1.37081e11 −0.898372
\(626\) 2.38914e10 1.46196e10i 0.155576 0.0952001i
\(627\) 0 0
\(628\) 1.14889e11 2.24769e11i 0.738652 1.44510i
\(629\) 2.58624e11 1.65221
\(630\) 0 0
\(631\) 8.33346e10i 0.525664i −0.964842 0.262832i \(-0.915344\pi\)
0.964842 0.262832i \(-0.0846564\pi\)
\(632\) −1.72846e10 + 1.32688e9i −0.108341 + 0.00831695i
\(633\) 0 0
\(634\) −1.70920e11 + 1.04589e11i −1.05788 + 0.647334i
\(635\) 3.23858e11i 1.99186i
\(636\) 0 0
\(637\) −5.77678e10 −0.350855
\(638\) −1.38966e10 2.27099e10i −0.0838738 0.137067i
\(639\) 0 0
\(640\) −1.85270e11 + 1.56803e11i −1.10430 + 0.934619i
\(641\) −1.00359e11 −0.594461 −0.297230 0.954806i \(-0.596063\pi\)
−0.297230 + 0.954806i \(0.596063\pi\)
\(642\) 0 0
\(643\) 1.93698e11i 1.13313i 0.824016 + 0.566566i \(0.191729\pi\)
−0.824016 + 0.566566i \(0.808271\pi\)
\(644\) 4.57044e10 8.94162e10i 0.265714 0.519844i
\(645\) 0 0
\(646\) −2.42148e11 3.95718e11i −1.39043 2.27225i
\(647\) 4.50875e10i 0.257299i −0.991690 0.128650i \(-0.958936\pi\)
0.991690 0.128650i \(-0.0410643\pi\)
\(648\) 0 0
\(649\) 1.64832e10 0.0929098
\(650\) 6.76434e10 4.13923e10i 0.378942 0.231882i
\(651\) 0 0
\(652\) −3.23116e10 1.65158e10i −0.178800 0.0913922i
\(653\) 1.52943e11 0.841156 0.420578 0.907256i \(-0.361827\pi\)
0.420578 + 0.907256i \(0.361827\pi\)
\(654\) 0 0
\(655\) 2.82390e11i 1.53421i
\(656\) −1.00531e11 1.39118e11i −0.542857 0.751223i
\(657\) 0 0
\(658\) 5.83224e10 3.56886e10i 0.311123 0.190382i
\(659\) 2.18458e11i 1.15831i 0.815217 + 0.579156i \(0.196618\pi\)
−0.815217 + 0.579156i \(0.803382\pi\)
\(660\) 0 0
\(661\) 3.70484e11 1.94073 0.970363 0.241654i \(-0.0776899\pi\)
0.970363 + 0.241654i \(0.0776899\pi\)
\(662\) −1.50312e11 2.45641e11i −0.782641 1.27899i
\(663\) 0 0
\(664\) −8.13268e10 + 6.24318e9i −0.418371 + 0.0321169i
\(665\) −1.81167e11 −0.926385
\(666\) 0 0
\(667\) 5.08609e10i 0.256969i
\(668\) −1.42870e11 7.30266e10i −0.717520 0.366754i
\(669\) 0 0
\(670\) −1.76502e11 2.88441e11i −0.875894 1.43139i
\(671\) 6.65105e10i 0.328095i
\(672\) 0 0
\(673\) 2.24080e11 1.09230 0.546150 0.837687i \(-0.316093\pi\)
0.546150 + 0.837687i \(0.316093\pi\)
\(674\) −6.17959e10 + 3.78141e10i −0.299447 + 0.183238i
\(675\) 0 0
\(676\) −7.93415e10 + 1.55224e11i −0.379939 + 0.743314i
\(677\) −1.16058e11 −0.552483 −0.276241 0.961088i \(-0.589089\pi\)
−0.276241 + 0.961088i \(0.589089\pi\)
\(678\) 0 0
\(679\) 7.76716e10i 0.365412i
\(680\) −3.64324e10 4.74587e11i −0.170393 2.21963i
\(681\) 0 0
\(682\) 3.98151e10 2.43636e10i 0.184039 0.112617i
\(683\) 2.91871e11i 1.34125i 0.741799 + 0.670623i \(0.233973\pi\)
−0.741799 + 0.670623i \(0.766027\pi\)
\(684\) 0 0
\(685\) −1.82938e11 −0.830887
\(686\) 7.96610e10 + 1.30182e11i 0.359708 + 0.587835i
\(687\) 0 0
\(688\) 9.31804e10 6.73350e10i 0.415882 0.300530i
\(689\) 1.43826e10 0.0638207
\(690\) 0 0
\(691\) 3.60245e11i 1.58011i −0.613039 0.790053i \(-0.710053\pi\)
0.613039 0.790053i \(-0.289947\pi\)
\(692\) −3.79655e10 + 7.42760e10i −0.165564 + 0.323910i
\(693\) 0 0
\(694\) 1.90849e11 + 3.11886e11i 0.822721 + 1.34449i
\(695\) 3.21985e11i 1.38006i
\(696\) 0 0
\(697\) 3.36596e11 1.42619
\(698\) −9.87890e10 + 6.04509e10i −0.416186 + 0.254672i
\(699\) 0 0
\(700\) −8.64300e10 4.41780e10i −0.359975 0.183998i
\(701\) 1.34090e11 0.555297 0.277648 0.960683i \(-0.410445\pi\)
0.277648 + 0.960683i \(0.410445\pi\)
\(702\) 0 0
\(703\) 4.54004e11i 1.85882i
\(704\) 3.70058e10 + 2.39607e11i 0.150653 + 0.975460i
\(705\) 0 0
\(706\) −1.23189e11 + 7.53816e10i −0.495853 + 0.303422i
\(707\) 4.86332e10i 0.194651i
\(708\) 0 0
\(709\) −3.08644e11 −1.22144 −0.610722 0.791845i \(-0.709121\pi\)
−0.610722 + 0.791845i \(0.709121\pi\)
\(710\) 2.42596e11 + 3.96452e11i 0.954665 + 1.56012i
\(711\) 0 0
\(712\) −2.65204e9 3.45468e10i −0.0103195 0.134427i
\(713\) 8.91696e10 0.345031
\(714\) 0 0
\(715\) 1.51690e11i 0.580409i
\(716\) −1.13066e11 5.77928e10i −0.430210 0.219898i
\(717\) 0 0
\(718\) 7.46817e10 + 1.22045e11i 0.281007 + 0.459222i
\(719\) 1.71505e11i 0.641743i −0.947123 0.320872i \(-0.896024\pi\)
0.947123 0.320872i \(-0.103976\pi\)
\(720\) 0 0
\(721\) −8.69957e9 −0.0321927
\(722\) 4.62883e11 2.83247e11i 1.70342 1.04236i
\(723\) 0 0
\(724\) −6.56680e10 + 1.28473e11i −0.239001 + 0.467582i
\(725\) −4.91623e10 −0.177943
\(726\) 0 0
\(727\) 3.25160e11i 1.16402i 0.813182 + 0.582009i \(0.197733\pi\)
−0.813182 + 0.582009i \(0.802267\pi\)
\(728\) −4.21051e10 + 3.23226e9i −0.149903 + 0.0115075i
\(729\) 0 0
\(730\) 6.04030e11 3.69618e11i 2.12700 1.30155i
\(731\) 2.25449e11i 0.789550i
\(732\) 0 0
\(733\) −2.93827e11 −1.01783 −0.508915 0.860817i \(-0.669953\pi\)
−0.508915 + 0.860817i \(0.669953\pi\)
\(734\) 7.80117e10 + 1.27487e11i 0.268767 + 0.439219i
\(735\) 0 0
\(736\) −1.78612e11 + 4.27328e11i −0.608695 + 1.45630i
\(737\) −3.37782e11 −1.14490
\(738\) 0 0
\(739\) 6.13111e10i 0.205571i 0.994704 + 0.102785i \(0.0327755\pi\)
−0.994704 + 0.102785i \(0.967225\pi\)
\(740\) −2.12002e11 + 4.14761e11i −0.706989 + 1.38316i
\(741\) 0 0
\(742\) −9.18855e9 1.50160e10i −0.0303132 0.0495379i
\(743\) 1.25399e11i 0.411471i 0.978608 + 0.205735i \(0.0659586\pi\)
−0.978608 + 0.205735i \(0.934041\pi\)
\(744\) 0 0
\(745\) −4.24255e11 −1.37722
\(746\) 1.10578e11 6.76645e10i 0.357036 0.218477i
\(747\) 0 0
\(748\) −4.23355e11 2.16395e11i −1.35238 0.691258i
\(749\) 1.01549e11 0.322663
\(750\) 0 0
\(751\) 7.03859e10i 0.221272i 0.993861 + 0.110636i \(0.0352887\pi\)
−0.993861 + 0.110636i \(0.964711\pi\)
\(752\) −2.55605e11 + 1.84708e11i −0.799278 + 0.577583i
\(753\) 0 0
\(754\) −1.82437e10 + 1.11636e10i −0.0564451 + 0.0345399i
\(755\) 4.48600e11i 1.38061i
\(756\) 0 0
\(757\) 2.29777e11 0.699717 0.349859 0.936802i \(-0.386230\pi\)
0.349859 + 0.936802i \(0.386230\pi\)
\(758\) 2.30863e11 + 3.77278e11i 0.699324 + 1.14284i
\(759\) 0 0
\(760\) 8.33120e11 6.39557e10i 2.49720 0.191701i
\(761\) 5.18557e11 1.54617 0.773086 0.634301i \(-0.218712\pi\)
0.773086 + 0.634301i \(0.218712\pi\)
\(762\) 0 0
\(763\) 3.71527e10i 0.109621i
\(764\) 1.94824e11 + 9.95826e10i 0.571833 + 0.292287i
\(765\) 0 0
\(766\) 2.54322e11 + 4.15613e11i 0.738700 + 1.20719i
\(767\) 1.32415e10i 0.0382610i
\(768\) 0 0
\(769\) −3.27159e11 −0.935521 −0.467761 0.883855i \(-0.654939\pi\)
−0.467761 + 0.883855i \(0.654939\pi\)
\(770\) −1.58370e11 + 9.69096e10i −0.450516 + 0.275679i
\(771\) 0 0
\(772\) 1.19547e11 2.33882e11i 0.336566 0.658459i
\(773\) 4.27537e11 1.19744 0.598722 0.800957i \(-0.295675\pi\)
0.598722 + 0.800957i \(0.295675\pi\)
\(774\) 0 0
\(775\) 8.61916e10i 0.238923i
\(776\) −2.74198e10 3.57184e11i −0.0756165 0.985019i
\(777\) 0 0
\(778\) −2.20252e10 + 1.34776e10i −0.0601176 + 0.0367871i
\(779\) 5.90881e11i 1.60454i
\(780\) 0 0
\(781\) 4.64270e11 1.24786
\(782\) −4.74072e11 7.74730e11i −1.26770 2.07168i
\(783\) 0 0
\(784\) −1.91008e11 2.64323e11i −0.505576 0.699633i
\(785\) −8.91586e11 −2.34793
\(786\) 0 0
\(787\) 6.74861e11i 1.75920i −0.475713 0.879601i \(-0.657810\pi\)
0.475713 0.879601i \(-0.342190\pi\)
\(788\) −9.84050e10 + 1.92520e11i −0.255219 + 0.499311i
\(789\) 0 0
\(790\) 3.19587e10 + 5.22270e10i 0.0820505 + 0.134087i
\(791\) 4.65459e10i 0.118898i
\(792\) 0 0
\(793\) 5.34302e10 0.135112
\(794\) 4.98666e11 3.05144e11i 1.25467 0.767754i
\(795\) 0 0
\(796\) 1.76106e11 + 9.00151e10i 0.438654 + 0.224214i
\(797\) 1.45915e11 0.361631 0.180816 0.983517i \(-0.442126\pi\)
0.180816 + 0.983517i \(0.442126\pi\)
\(798\) 0 0
\(799\) 6.18435e11i 1.51742i
\(800\) 4.13056e11 + 1.72647e11i 1.00844 + 0.421501i
\(801\) 0 0
\(802\) −3.58710e11 + 2.19502e11i −0.867054 + 0.530567i
\(803\) 7.07357e11i 1.70128i
\(804\) 0 0
\(805\) −3.54685e11 −0.844615
\(806\) −1.95721e10 3.19849e10i −0.0463765 0.0757886i
\(807\) 0 0
\(808\) −1.71686e10 2.23647e11i −0.0402800 0.524707i
\(809\) −8.40339e11 −1.96183 −0.980913 0.194448i \(-0.937709\pi\)
−0.980913 + 0.194448i \(0.937709\pi\)
\(810\) 0 0
\(811\) 4.58864e10i 0.106072i −0.998593 0.0530360i \(-0.983110\pi\)
0.998593 0.0530360i \(-0.0168898\pi\)
\(812\) 2.33105e10 + 1.19149e10i 0.0536200 + 0.0274074i
\(813\) 0 0
\(814\) 2.42856e11 + 3.96875e11i 0.553160 + 0.903976i
\(815\) 1.28169e11i 0.290505i
\(816\) 0 0
\(817\) −3.95768e11 −0.888284
\(818\) −2.31857e11 + 1.41878e11i −0.517853 + 0.316884i
\(819\) 0 0
\(820\) −2.75918e11 + 5.39808e11i −0.610274 + 1.19394i
\(821\) −6.15115e11 −1.35389 −0.676946 0.736033i \(-0.736697\pi\)
−0.676946 + 0.736033i \(0.736697\pi\)
\(822\) 0 0
\(823\) 2.81774e11i 0.614188i 0.951679 + 0.307094i \(0.0993566\pi\)
−0.951679 + 0.307094i \(0.900643\pi\)
\(824\) 4.00062e10 3.07114e9i 0.0867798 0.00666178i
\(825\) 0 0
\(826\) −1.38246e10 + 8.45953e9i −0.0296983 + 0.0181730i
\(827\) 3.61753e10i 0.0773375i −0.999252 0.0386688i \(-0.987688\pi\)
0.999252 0.0386688i \(-0.0123117\pi\)
\(828\) 0 0
\(829\) 3.05903e11 0.647687 0.323843 0.946111i \(-0.395025\pi\)
0.323843 + 0.946111i \(0.395025\pi\)
\(830\) 1.50371e11 + 2.45736e11i 0.316848 + 0.517793i
\(831\) 0 0
\(832\) 1.92485e11 2.97280e10i 0.401702 0.0620402i
\(833\) 6.39527e11 1.32825
\(834\) 0 0
\(835\) 5.66716e11i 1.16579i
\(836\) 3.79872e11 7.43184e11i 0.777701 1.52150i
\(837\) 0 0
\(838\) −4.00481e11 6.54467e11i −0.812093 1.32712i
\(839\) 3.84879e11i 0.776741i −0.921503 0.388370i \(-0.873038\pi\)
0.921503 0.388370i \(-0.126962\pi\)
\(840\) 0 0
\(841\) −4.86987e11 −0.973495
\(842\) −4.11559e10 + 2.51841e10i −0.0818810 + 0.0501046i
\(843\) 0 0
\(844\) 5.01409e11 + 2.56291e11i 0.988148 + 0.505084i
\(845\) 6.15723e11 1.20770
\(846\) 0 0
\(847\) 4.90779e9i 0.00953569i
\(848\) 4.75558e10 + 6.58092e10i 0.0919645 + 0.127263i
\(849\) 0 0
\(850\) −7.48857e11 + 4.58240e11i −1.43457 + 0.877843i
\(851\) 8.88840e11i 1.69475i
\(852\) 0 0
\(853\) 1.53208e11 0.289390 0.144695 0.989476i \(-0.453780\pi\)
0.144695 + 0.989476i \(0.453780\pi\)
\(854\) −3.41347e10 5.57830e10i −0.0641748 0.104875i
\(855\) 0 0
\(856\) −4.66987e11 + 3.58490e10i −0.869781 + 0.0667701i
\(857\) −1.07815e11 −0.199873 −0.0999365 0.994994i \(-0.531864\pi\)
−0.0999365 + 0.994994i \(0.531864\pi\)
\(858\) 0 0
\(859\) 1.94089e11i 0.356474i −0.983988 0.178237i \(-0.942961\pi\)
0.983988 0.178237i \(-0.0570394\pi\)
\(860\) −3.61559e11 1.84808e11i −0.660976 0.337852i
\(861\) 0 0
\(862\) −1.26693e11 2.07041e11i −0.229468 0.374997i
\(863\) 9.36925e11i 1.68913i −0.535457 0.844563i \(-0.679861\pi\)
0.535457 0.844563i \(-0.320139\pi\)
\(864\) 0 0
\(865\) 2.94628e11 0.526272
\(866\) −7.85677e11 + 4.80771e11i −1.39692 + 0.854804i
\(867\) 0 0
\(868\) −2.08893e10 + 4.08680e10i −0.0367998 + 0.0719953i
\(869\) 6.11611e10 0.107250
\(870\) 0 0
\(871\) 2.71352e11i 0.471478i
\(872\) 1.31157e10 + 1.70852e11i 0.0226843 + 0.295498i
\(873\) 0 0
\(874\) 1.36001e12 8.32216e11i 2.33075 1.42623i
\(875\) 2.91661e10i 0.0497560i
\(876\) 0 0
\(877\) 8.90245e11 1.50491 0.752456 0.658643i \(-0.228869\pi\)
0.752456 + 0.658643i \(0.228869\pi\)
\(878\) −4.61038e11 7.53430e11i −0.775816 1.26784i
\(879\) 0 0
\(880\) 6.94075e11 5.01561e11i 1.15738 0.836359i
\(881\) −2.69111e11 −0.446713 −0.223356 0.974737i \(-0.571701\pi\)
−0.223356 + 0.974737i \(0.571701\pi\)
\(882\) 0 0
\(883\) 4.13945e11i 0.680926i 0.940258 + 0.340463i \(0.110584\pi\)
−0.940258 + 0.340463i \(0.889416\pi\)
\(884\) −1.73837e11 + 3.40096e11i −0.284665 + 0.556920i
\(885\) 0 0
\(886\) −5.82446e11 9.51834e11i −0.945193 1.54464i
\(887\) 3.61899e11i 0.584645i 0.956320 + 0.292323i \(0.0944281\pi\)
−0.956320 + 0.292323i \(0.905572\pi\)
\(888\) 0 0
\(889\) 3.18087e11 0.509259
\(890\) −1.04386e11 + 6.38758e10i −0.166373 + 0.101807i
\(891\) 0 0
\(892\) −1.05293e12 5.38197e11i −1.66318 0.850123i
\(893\) 1.08564e12 1.70718
\(894\) 0 0
\(895\) 4.48496e11i 0.698982i
\(896\) −1.54009e11 1.81969e11i −0.238954 0.282335i
\(897\) 0 0
\(898\) −2.00793e11 + 1.22869e11i −0.308775 + 0.188945i
\(899\) 2.32462e10i 0.0355887i
\(900\) 0 0
\(901\) −1.59225e11 −0.241608
\(902\) 3.16074e11 + 5.16530e11i 0.477489 + 0.780313i
\(903\) 0 0
\(904\) −1.64317e10 2.14048e11i −0.0246042 0.320506i
\(905\) 5.09611e11 0.759704
\(906\) 0 0
\(907\) 2.54784e11i 0.376482i 0.982123 + 0.188241i \(0.0602785\pi\)
−0.982123 + 0.188241i \(0.939721\pi\)
\(908\) −2.83102e11 1.44705e11i −0.416485 0.212883i
\(909\) 0 0
\(910\) 7.78510e10 + 1.27224e11i 0.113527 + 0.185526i
\(911\) 4.42772e11i 0.642845i 0.946936 + 0.321422i \(0.104161\pi\)
−0.946936 + 0.321422i \(0.895839\pi\)
\(912\) 0 0
\(913\) 2.87772e11 0.414158
\(914\) −8.69654e11 + 5.32158e11i −1.24613 + 0.762528i
\(915\) 0 0
\(916\) −5.63840e11 + 1.10310e12i −0.800893 + 1.56687i
\(917\) 2.77358e11 0.392251
\(918\) 0 0
\(919\) 1.21088e12i 1.69761i −0.528708 0.848804i \(-0.677323\pi\)
0.528708 0.848804i \(-0.322677\pi\)
\(920\) 1.63107e12 1.25211e11i 2.27678 0.174780i
\(921\) 0 0
\(922\) −5.36735e11 + 3.28439e11i −0.742739 + 0.454496i
\(923\) 3.72964e11i 0.513879i
\(924\) 0 0
\(925\) 8.59156e11 1.17356
\(926\) 5.77271e11 + 9.43378e11i 0.785120 + 1.28304i
\(927\) 0 0
\(928\) −1.11403e11 4.65634e10i −0.150212 0.0627846i
\(929\) −1.00636e12 −1.35110 −0.675552 0.737313i \(-0.736095\pi\)
−0.675552 + 0.737313i \(0.736095\pi\)
\(930\) 0 0
\(931\) 1.12266e12i 1.49435i
\(932\) 1.47297e11 2.88173e11i 0.195223 0.381935i
\(933\) 0 0
\(934\) 3.74901e11 + 6.12663e11i 0.492639 + 0.805072i
\(935\) 1.67931e12i 2.19728i
\(936\) 0 0
\(937\) −9.83820e11 −1.27631 −0.638156 0.769907i \(-0.720303\pi\)
−0.638156 + 0.769907i \(0.720303\pi\)
\(938\) 2.83301e11 1.73357e11i 0.365963 0.223940i
\(939\) 0 0
\(940\) 9.91800e11 + 5.06950e11i 1.27032 + 0.649313i
\(941\) 5.99824e11 0.765007 0.382503 0.923954i \(-0.375062\pi\)
0.382503 + 0.923954i \(0.375062\pi\)
\(942\) 0 0
\(943\) 1.15682e12i 1.46291i
\(944\) 6.05879e10 4.37827e10i 0.0762953 0.0551334i
\(945\) 0 0
\(946\) −3.45967e11 + 2.11704e11i −0.431987 + 0.264341i
\(947\) 4.79898e11i 0.596690i −0.954458 0.298345i \(-0.903565\pi\)
0.954458 0.298345i \(-0.0964347\pi\)
\(948\) 0 0
\(949\) −5.68245e11 −0.700601
\(950\) −8.04422e11 1.31459e12i −0.987619 1.61397i
\(951\) 0 0
\(952\) 4.66131e11 3.57833e10i 0.567492 0.0435644i
\(953\) −3.29855e11 −0.399900 −0.199950 0.979806i \(-0.564078\pi\)
−0.199950 + 0.979806i \(0.564078\pi\)
\(954\) 0 0
\(955\) 7.72802e11i 0.929084i
\(956\) 7.86911e11 + 4.02223e11i 0.942093 + 0.481543i
\(957\) 0 0
\(958\) −6.31785e11 1.03246e12i −0.750080 1.22578i
\(959\) 1.79678e11i 0.212433i
\(960\) 0 0
\(961\) 8.12136e11 0.952215
\(962\) 3.18824e11 1.95095e11i 0.372264 0.227795i
\(963\) 0 0
\(964\) 3.27842e11 6.41391e11i 0.379626 0.742703i
\(965\) −9.27735e11 −1.06983
\(966\) 0 0
\(967\) 1.51059e12i 1.72759i −0.503844 0.863795i \(-0.668081\pi\)
0.503844 0.863795i \(-0.331919\pi\)
\(968\) 1.73256e9 + 2.25691e10i 0.00197327 + 0.0257048i
\(969\) 0 0
\(970\) −1.07926e12 + 6.60421e11i −1.21910 + 0.745991i
\(971\) 2.03838e11i 0.229302i −0.993406 0.114651i \(-0.963425\pi\)
0.993406 0.114651i \(-0.0365750\pi\)
\(972\) 0 0
\(973\) 3.16248e11 0.352839
\(974\) −4.50479e11 7.36174e11i −0.500540 0.817984i
\(975\) 0 0
\(976\) 1.76666e11 + 2.44476e11i 0.194694 + 0.269424i
\(977\) 6.73129e11 0.738789 0.369394 0.929273i \(-0.379565\pi\)
0.369394 + 0.929273i \(0.379565\pi\)
\(978\) 0 0
\(979\) 1.22243e11i 0.133074i
\(980\) −5.24240e11 + 1.02563e12i −0.568363 + 1.11195i
\(981\) 0 0
\(982\) 8.07919e11 + 1.32030e12i 0.868804 + 1.41980i
\(983\) 1.18974e12i 1.27420i 0.770780 + 0.637101i \(0.219867\pi\)
−0.770780 + 0.637101i \(0.780133\pi\)
\(984\) 0 0
\(985\) 7.63663e11 0.811254
\(986\) 2.01969e11 1.23589e11i 0.213687 0.130759i
\(987\) 0 0
\(988\) −5.97026e11 3.05165e11i −0.626564 0.320263i
\(989\) −7.74827e11 −0.809878
\(990\) 0 0
\(991\) 1.02703e11i 0.106485i −0.998582 0.0532424i \(-0.983044\pi\)
0.998582 0.0532424i \(-0.0169556\pi\)
\(992\) 8.16352e10 1.95311e11i 0.0843006 0.201688i
\(993\) 0 0
\(994\) −3.89388e11 + 2.38274e11i −0.398875 + 0.244079i
\(995\) 6.98554e11i 0.712702i
\(996\) 0 0
\(997\) −6.63905e11 −0.671932 −0.335966 0.941874i \(-0.609063\pi\)
−0.335966 + 0.941874i \(0.609063\pi\)
\(998\) −1.01131e11 1.65269e11i −0.101944 0.166597i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 36.9.d.c.19.2 8
3.2 odd 2 12.9.d.a.7.7 8
4.3 odd 2 inner 36.9.d.c.19.1 8
12.11 even 2 12.9.d.a.7.8 yes 8
24.5 odd 2 192.9.g.e.127.1 8
24.11 even 2 192.9.g.e.127.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
12.9.d.a.7.7 8 3.2 odd 2
12.9.d.a.7.8 yes 8 12.11 even 2
36.9.d.c.19.1 8 4.3 odd 2 inner
36.9.d.c.19.2 8 1.1 even 1 trivial
192.9.g.e.127.1 8 24.5 odd 2
192.9.g.e.127.5 8 24.11 even 2