Properties

Label 360.4.q
Level 360360
Weight 44
Character orbit 360.q
Rep. character χ360(121,)\chi_{360}(121,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 7272
Newform subspaces 55
Sturm bound 288288
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 360=23325 360 = 2^{3} \cdot 3^{2} \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 360.q (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 9 9
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 5 5
Sturm bound: 288288
Trace bound: 33
Distinguishing TpT_p: 77

Dimensions

The following table gives the dimensions of various subspaces of M4(360,[χ])M_{4}(360, [\chi]).

Total New Old
Modular forms 448 72 376
Cusp forms 416 72 344
Eisenstein series 32 0 32

Trace form

72q2q3+10q544q9+50q1144q17+180q19268q21900q25+292q2742q29180q31+502q33+840q35+972q39+236q41+594q43++5920q99+O(q100) 72 q - 2 q^{3} + 10 q^{5} - 44 q^{9} + 50 q^{11} - 44 q^{17} + 180 q^{19} - 268 q^{21} - 900 q^{25} + 292 q^{27} - 42 q^{29} - 180 q^{31} + 502 q^{33} + 840 q^{35} + 972 q^{39} + 236 q^{41} + 594 q^{43}+ \cdots + 5920 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(360,[χ])S_{4}^{\mathrm{new}}(360, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
360.4.q.a 360.q 9.c 22 21.24121.241 Q(3)\Q(\sqrt{-3}) None 360.4.q.a 00 99 5-5 2323 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(63ζ6)q35ζ6q5+(2323ζ6)q7+q+(6-3\zeta_{6})q^{3}-5\zeta_{6}q^{5}+(23-23\zeta_{6})q^{7}+\cdots
360.4.q.b 360.q 9.c 1616 21.24121.241 Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots) None 360.4.q.b 00 10-10 40-40 34-34 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1+β1)q3+5β2q5+(4β1+)q7+q+(-1+\beta _{1})q^{3}+5\beta _{2}q^{5}+(-4-\beta _{1}+\cdots)q^{7}+\cdots
360.4.q.c 360.q 9.c 1616 21.24121.241 Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots) None 360.4.q.c 00 00 40-40 31-31 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(β1β7)q3+(5+5β1)q5+q+(-\beta _{1}-\beta _{7})q^{3}+(-5+5\beta _{1})q^{5}+\cdots
360.4.q.d 360.q 9.c 1818 21.24121.241 Q[x]/(x18)\mathbb{Q}[x]/(x^{18} - \cdots) None 360.4.q.d 00 7-7 4545 2020 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qβ4q3+(5+5β2)q5+(2β2β16+)q7+q-\beta _{4}q^{3}+(5+5\beta _{2})q^{5}+(-2\beta _{2}-\beta _{16}+\cdots)q^{7}+\cdots
360.4.q.e 360.q 9.c 2020 21.24121.241 Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots) None 360.4.q.e 00 66 5050 2222 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+β4q3+(5+5β3)q5+(2β3β5+)q7+q+\beta _{4}q^{3}+(5+5\beta _{3})q^{5}+(-2\beta _{3}-\beta _{5}+\cdots)q^{7}+\cdots

Decomposition of S4old(360,[χ])S_{4}^{\mathrm{old}}(360, [\chi]) into lower level spaces