Properties

Label 360.4.q
Level $360$
Weight $4$
Character orbit 360.q
Rep. character $\chi_{360}(121,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $72$
Newform subspaces $5$
Sturm bound $288$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 360.q (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 5 \)
Sturm bound: \(288\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(360, [\chi])\).

Total New Old
Modular forms 448 72 376
Cusp forms 416 72 344
Eisenstein series 32 0 32

Trace form

\( 72 q - 2 q^{3} + 10 q^{5} - 44 q^{9} + 50 q^{11} - 44 q^{17} + 180 q^{19} - 268 q^{21} - 900 q^{25} + 292 q^{27} - 42 q^{29} - 180 q^{31} + 502 q^{33} + 840 q^{35} + 972 q^{39} + 236 q^{41} + 594 q^{43}+ \cdots + 5920 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(360, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
360.4.q.a 360.q 9.c $2$ $21.241$ \(\Q(\sqrt{-3}) \) None 360.4.q.a \(0\) \(9\) \(-5\) \(23\) $\mathrm{SU}(2)[C_{3}]$ \(q+(6-3\zeta_{6})q^{3}-5\zeta_{6}q^{5}+(23-23\zeta_{6})q^{7}+\cdots\)
360.4.q.b 360.q 9.c $16$ $21.241$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 360.4.q.b \(0\) \(-10\) \(-40\) \(-34\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{1})q^{3}+5\beta _{2}q^{5}+(-4-\beta _{1}+\cdots)q^{7}+\cdots\)
360.4.q.c 360.q 9.c $16$ $21.241$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 360.4.q.c \(0\) \(0\) \(-40\) \(-31\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}-\beta _{7})q^{3}+(-5+5\beta _{1})q^{5}+\cdots\)
360.4.q.d 360.q 9.c $18$ $21.241$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 360.4.q.d \(0\) \(-7\) \(45\) \(20\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{4}q^{3}+(5+5\beta _{2})q^{5}+(-2\beta _{2}-\beta _{16}+\cdots)q^{7}+\cdots\)
360.4.q.e 360.q 9.c $20$ $21.241$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 360.4.q.e \(0\) \(6\) \(50\) \(22\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{4}q^{3}+(5+5\beta _{3})q^{5}+(-2\beta _{3}-\beta _{5}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(360, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(360, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)