Defining parameters
Level: | \( N \) | \(=\) | \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 360.q (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(288\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(360, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 448 | 72 | 376 |
Cusp forms | 416 | 72 | 344 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(360, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
360.4.q.a | $2$ | $21.241$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(9\) | \(-5\) | \(23\) | \(q+(6-3\zeta_{6})q^{3}-5\zeta_{6}q^{5}+(23-23\zeta_{6})q^{7}+\cdots\) |
360.4.q.b | $16$ | $21.241$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(-10\) | \(-40\) | \(-34\) | \(q+(-1+\beta _{1})q^{3}+5\beta _{2}q^{5}+(-4-\beta _{1}+\cdots)q^{7}+\cdots\) |
360.4.q.c | $16$ | $21.241$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(-40\) | \(-31\) | \(q+(-\beta _{1}-\beta _{7})q^{3}+(-5+5\beta _{1})q^{5}+\cdots\) |
360.4.q.d | $18$ | $21.241$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(-7\) | \(45\) | \(20\) | \(q-\beta _{4}q^{3}+(5+5\beta _{2})q^{5}+(-2\beta _{2}-\beta _{16}+\cdots)q^{7}+\cdots\) |
360.4.q.e | $20$ | $21.241$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(6\) | \(50\) | \(22\) | \(q+\beta _{4}q^{3}+(5+5\beta _{3})q^{5}+(-2\beta _{3}-\beta _{5}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(360, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(360, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)