Defining parameters
Level: | \( N \) | \(=\) | \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 360.w (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 40 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(288\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(360, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 448 | 184 | 264 |
Cusp forms | 416 | 176 | 240 |
Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(360, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(360, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(360, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)