Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3600,2,Mod(1,3600)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3600, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3600.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 3600.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 40) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3600.2.a.bb | 1 | |
3.b | odd | 2 | 1 | 400.2.a.g | 1 | ||
4.b | odd | 2 | 1 | 1800.2.a.j | 1 | ||
5.b | even | 2 | 1 | 3600.2.a.k | 1 | ||
5.c | odd | 4 | 2 | 720.2.f.e | 2 | ||
12.b | even | 2 | 1 | 200.2.a.b | 1 | ||
15.d | odd | 2 | 1 | 400.2.a.b | 1 | ||
15.e | even | 4 | 2 | 80.2.c.a | 2 | ||
20.d | odd | 2 | 1 | 1800.2.a.s | 1 | ||
20.e | even | 4 | 2 | 360.2.f.c | 2 | ||
24.f | even | 2 | 1 | 1600.2.a.v | 1 | ||
24.h | odd | 2 | 1 | 1600.2.a.d | 1 | ||
40.i | odd | 4 | 2 | 2880.2.f.i | 2 | ||
40.k | even | 4 | 2 | 2880.2.f.h | 2 | ||
60.h | even | 2 | 1 | 200.2.a.d | 1 | ||
60.l | odd | 4 | 2 | 40.2.c.a | ✓ | 2 | |
84.h | odd | 2 | 1 | 9800.2.a.bf | 1 | ||
120.i | odd | 2 | 1 | 1600.2.a.u | 1 | ||
120.m | even | 2 | 1 | 1600.2.a.f | 1 | ||
120.q | odd | 4 | 2 | 320.2.c.c | 2 | ||
120.w | even | 4 | 2 | 320.2.c.b | 2 | ||
240.z | odd | 4 | 2 | 1280.2.f.f | 2 | ||
240.bb | even | 4 | 2 | 1280.2.f.b | 2 | ||
240.bd | odd | 4 | 2 | 1280.2.f.a | 2 | ||
240.bf | even | 4 | 2 | 1280.2.f.e | 2 | ||
420.o | odd | 2 | 1 | 9800.2.a.d | 1 | ||
420.w | even | 4 | 2 | 1960.2.g.b | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
40.2.c.a | ✓ | 2 | 60.l | odd | 4 | 2 | |
80.2.c.a | 2 | 15.e | even | 4 | 2 | ||
200.2.a.b | 1 | 12.b | even | 2 | 1 | ||
200.2.a.d | 1 | 60.h | even | 2 | 1 | ||
320.2.c.b | 2 | 120.w | even | 4 | 2 | ||
320.2.c.c | 2 | 120.q | odd | 4 | 2 | ||
360.2.f.c | 2 | 20.e | even | 4 | 2 | ||
400.2.a.b | 1 | 15.d | odd | 2 | 1 | ||
400.2.a.g | 1 | 3.b | odd | 2 | 1 | ||
720.2.f.e | 2 | 5.c | odd | 4 | 2 | ||
1280.2.f.a | 2 | 240.bd | odd | 4 | 2 | ||
1280.2.f.b | 2 | 240.bb | even | 4 | 2 | ||
1280.2.f.e | 2 | 240.bf | even | 4 | 2 | ||
1280.2.f.f | 2 | 240.z | odd | 4 | 2 | ||
1600.2.a.d | 1 | 24.h | odd | 2 | 1 | ||
1600.2.a.f | 1 | 120.m | even | 2 | 1 | ||
1600.2.a.u | 1 | 120.i | odd | 2 | 1 | ||
1600.2.a.v | 1 | 24.f | even | 2 | 1 | ||
1800.2.a.j | 1 | 4.b | odd | 2 | 1 | ||
1800.2.a.s | 1 | 20.d | odd | 2 | 1 | ||
1960.2.g.b | 2 | 420.w | even | 4 | 2 | ||
2880.2.f.h | 2 | 40.k | even | 4 | 2 | ||
2880.2.f.i | 2 | 40.i | odd | 4 | 2 | ||
3600.2.a.k | 1 | 5.b | even | 2 | 1 | ||
3600.2.a.bb | 1 | 1.a | even | 1 | 1 | trivial | |
9800.2.a.d | 1 | 420.o | odd | 2 | 1 | ||
9800.2.a.bf | 1 | 84.h | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|
|