Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3600,2,Mod(1,3600)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3600, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3600.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3600.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(28.7461447277\) |
Analytic rank: | \(1\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 50) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 3600.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 2.00000 | 0.755929 | 0.377964 | − | 0.925820i | \(-0.376624\pi\) | ||||
0.377964 | + | 0.925820i | \(0.376624\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −3.00000 | −0.904534 | −0.452267 | − | 0.891883i | \(-0.649385\pi\) | ||||
−0.452267 | + | 0.891883i | \(0.649385\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 4.00000 | 1.10940 | 0.554700 | − | 0.832050i | \(-0.312833\pi\) | ||||
0.554700 | + | 0.832050i | \(0.312833\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −3.00000 | −0.727607 | −0.363803 | − | 0.931476i | \(-0.618522\pi\) | ||||
−0.363803 | + | 0.931476i | \(0.618522\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −5.00000 | −1.14708 | −0.573539 | − | 0.819178i | \(-0.694430\pi\) | ||||
−0.573539 | + | 0.819178i | \(0.694430\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −6.00000 | −1.25109 | −0.625543 | − | 0.780189i | \(-0.715123\pi\) | ||||
−0.625543 | + | 0.780189i | \(0.715123\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −2.00000 | −0.359211 | −0.179605 | − | 0.983739i | \(-0.557482\pi\) | ||||
−0.179605 | + | 0.983739i | \(0.557482\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −2.00000 | −0.328798 | −0.164399 | − | 0.986394i | \(-0.552568\pi\) | ||||
−0.164399 | + | 0.986394i | \(0.552568\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 3.00000 | 0.468521 | 0.234261 | − | 0.972174i | \(-0.424733\pi\) | ||||
0.234261 | + | 0.972174i | \(0.424733\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −4.00000 | −0.609994 | −0.304997 | − | 0.952353i | \(-0.598656\pi\) | ||||
−0.304997 | + | 0.952353i | \(0.598656\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −12.0000 | −1.75038 | −0.875190 | − | 0.483779i | \(-0.839264\pi\) | ||||
−0.875190 | + | 0.483779i | \(0.839264\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −3.00000 | −0.428571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 6.00000 | 0.824163 | 0.412082 | − | 0.911147i | \(-0.364802\pi\) | ||||
0.412082 | + | 0.911147i | \(0.364802\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 2.00000 | 0.256074 | 0.128037 | − | 0.991769i | \(-0.459132\pi\) | ||||
0.128037 | + | 0.991769i | \(0.459132\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −13.0000 | −1.58820 | −0.794101 | − | 0.607785i | \(-0.792058\pi\) | ||||
−0.794101 | + | 0.607785i | \(0.792058\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 12.0000 | 1.42414 | 0.712069 | − | 0.702109i | \(-0.247758\pi\) | ||||
0.712069 | + | 0.702109i | \(0.247758\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −11.0000 | −1.28745 | −0.643726 | − | 0.765256i | \(-0.722612\pi\) | ||||
−0.643726 | + | 0.765256i | \(0.722612\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | −6.00000 | −0.683763 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 10.0000 | 1.12509 | 0.562544 | − | 0.826767i | \(-0.309823\pi\) | ||||
0.562544 | + | 0.826767i | \(0.309823\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 9.00000 | 0.987878 | 0.493939 | − | 0.869496i | \(-0.335557\pi\) | ||||
0.493939 | + | 0.869496i | \(0.335557\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −15.0000 | −1.59000 | −0.794998 | − | 0.606612i | \(-0.792528\pi\) | ||||
−0.794998 | + | 0.606612i | \(0.792528\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 8.00000 | 0.838628 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −2.00000 | −0.203069 | −0.101535 | − | 0.994832i | \(-0.532375\pi\) | ||||
−0.101535 | + | 0.994832i | \(0.532375\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 18.0000 | 1.79107 | 0.895533 | − | 0.444994i | \(-0.146794\pi\) | ||||
0.895533 | + | 0.444994i | \(0.146794\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −4.00000 | −0.394132 | −0.197066 | − | 0.980390i | \(-0.563141\pi\) | ||||
−0.197066 | + | 0.980390i | \(0.563141\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 3.00000 | 0.290021 | 0.145010 | − | 0.989430i | \(-0.453678\pi\) | ||||
0.145010 | + | 0.989430i | \(0.453678\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −10.0000 | −0.957826 | −0.478913 | − | 0.877862i | \(-0.658969\pi\) | ||||
−0.478913 | + | 0.877862i | \(0.658969\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −9.00000 | −0.846649 | −0.423324 | − | 0.905978i | \(-0.639137\pi\) | ||||
−0.423324 | + | 0.905978i | \(0.639137\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −6.00000 | −0.550019 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −2.00000 | −0.181818 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 2.00000 | 0.177471 | 0.0887357 | − | 0.996055i | \(-0.471717\pi\) | ||||
0.0887357 | + | 0.996055i | \(0.471717\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 12.0000 | 1.04844 | 0.524222 | − | 0.851581i | \(-0.324356\pi\) | ||||
0.524222 | + | 0.851581i | \(0.324356\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | −10.0000 | −0.867110 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −3.00000 | −0.256307 | −0.128154 | − | 0.991754i | \(-0.540905\pi\) | ||||
−0.128154 | + | 0.991754i | \(0.540905\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −5.00000 | −0.424094 | −0.212047 | − | 0.977259i | \(-0.568013\pi\) | ||||
−0.212047 | + | 0.977259i | \(0.568013\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | −12.0000 | −1.00349 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −2.00000 | −0.162758 | −0.0813788 | − | 0.996683i | \(-0.525932\pi\) | ||||
−0.0813788 | + | 0.996683i | \(0.525932\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −2.00000 | −0.159617 | −0.0798087 | − | 0.996810i | \(-0.525431\pi\) | ||||
−0.0798087 | + | 0.996810i | \(0.525431\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −12.0000 | −0.945732 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 11.0000 | 0.861586 | 0.430793 | − | 0.902451i | \(-0.358234\pi\) | ||||
0.430793 | + | 0.902451i | \(0.358234\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −12.0000 | −0.928588 | −0.464294 | − | 0.885681i | \(-0.653692\pi\) | ||||
−0.464294 | + | 0.885681i | \(0.653692\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 3.00000 | 0.230769 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −24.0000 | −1.82469 | −0.912343 | − | 0.409426i | \(-0.865729\pi\) | ||||
−0.912343 | + | 0.409426i | \(0.865729\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −15.0000 | −1.12115 | −0.560576 | − | 0.828103i | \(-0.689420\pi\) | ||||
−0.560576 | + | 0.828103i | \(0.689420\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 2.00000 | 0.148659 | 0.0743294 | − | 0.997234i | \(-0.476318\pi\) | ||||
0.0743294 | + | 0.997234i | \(0.476318\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 9.00000 | 0.658145 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −18.0000 | −1.30243 | −0.651217 | − | 0.758891i | \(-0.725741\pi\) | ||||
−0.651217 | + | 0.758891i | \(0.725741\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 19.0000 | 1.36765 | 0.683825 | − | 0.729646i | \(-0.260315\pi\) | ||||
0.683825 | + | 0.729646i | \(0.260315\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −18.0000 | −1.28245 | −0.641223 | − | 0.767354i | \(-0.721573\pi\) | ||||
−0.641223 | + | 0.767354i | \(0.721573\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −20.0000 | −1.41776 | −0.708881 | − | 0.705328i | \(-0.750800\pi\) | ||||
−0.708881 | + | 0.705328i | \(0.750800\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 15.0000 | 1.03757 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 13.0000 | 0.894957 | 0.447478 | − | 0.894295i | \(-0.352322\pi\) | ||||
0.447478 | + | 0.894295i | \(0.352322\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | −4.00000 | −0.271538 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −12.0000 | −0.807207 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −4.00000 | −0.267860 | −0.133930 | − | 0.990991i | \(-0.542760\pi\) | ||||
−0.133930 | + | 0.990991i | \(0.542760\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | −12.0000 | −0.796468 | −0.398234 | − | 0.917284i | \(-0.630377\pi\) | ||||
−0.398234 | + | 0.917284i | \(0.630377\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 20.0000 | 1.32164 | 0.660819 | − | 0.750546i | \(-0.270209\pi\) | ||||
0.660819 | + | 0.750546i | \(0.270209\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 6.00000 | 0.393073 | 0.196537 | − | 0.980497i | \(-0.437031\pi\) | ||||
0.196537 | + | 0.980497i | \(0.437031\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 17.0000 | 1.09507 | 0.547533 | − | 0.836784i | \(-0.315567\pi\) | ||||
0.547533 | + | 0.836784i | \(0.315567\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −20.0000 | −1.27257 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 27.0000 | 1.70422 | 0.852112 | − | 0.523359i | \(-0.175321\pi\) | ||||
0.852112 | + | 0.523359i | \(0.175321\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 18.0000 | 1.13165 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −18.0000 | −1.12281 | −0.561405 | − | 0.827541i | \(-0.689739\pi\) | ||||
−0.561405 | + | 0.827541i | \(0.689739\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −4.00000 | −0.248548 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −6.00000 | −0.369976 | −0.184988 | − | 0.982741i | \(-0.559225\pi\) | ||||
−0.184988 | + | 0.982741i | \(0.559225\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −2.00000 | −0.121491 | −0.0607457 | − | 0.998153i | \(-0.519348\pi\) | ||||
−0.0607457 | + | 0.998153i | \(0.519348\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −32.0000 | −1.92269 | −0.961347 | − | 0.275340i | \(-0.911209\pi\) | ||||
−0.961347 | + | 0.275340i | \(0.911209\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 18.0000 | 1.07379 | 0.536895 | − | 0.843649i | \(-0.319597\pi\) | ||||
0.536895 | + | 0.843649i | \(0.319597\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 11.0000 | 0.653882 | 0.326941 | − | 0.945045i | \(-0.393982\pi\) | ||||
0.326941 | + | 0.945045i | \(0.393982\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 6.00000 | 0.354169 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −8.00000 | −0.470588 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 6.00000 | 0.350524 | 0.175262 | − | 0.984522i | \(-0.443923\pi\) | ||||
0.175262 | + | 0.984522i | \(0.443923\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −24.0000 | −1.38796 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −8.00000 | −0.461112 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 17.0000 | 0.970241 | 0.485121 | − | 0.874447i | \(-0.338776\pi\) | ||||
0.485121 | + | 0.874447i | \(0.338776\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −18.0000 | −1.02069 | −0.510343 | − | 0.859971i | \(-0.670482\pi\) | ||||
−0.510343 | + | 0.859971i | \(0.670482\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −26.0000 | −1.46961 | −0.734803 | − | 0.678280i | \(-0.762726\pi\) | ||||
−0.734803 | + | 0.678280i | \(0.762726\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 12.0000 | 0.673987 | 0.336994 | − | 0.941507i | \(-0.390590\pi\) | ||||
0.336994 | + | 0.941507i | \(0.390590\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 15.0000 | 0.834622 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −24.0000 | −1.32316 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −17.0000 | −0.934405 | −0.467202 | − | 0.884150i | \(-0.654738\pi\) | ||||
−0.467202 | + | 0.884150i | \(0.654738\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 13.0000 | 0.708155 | 0.354078 | − | 0.935216i | \(-0.384795\pi\) | ||||
0.354078 | + | 0.935216i | \(0.384795\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 6.00000 | 0.324918 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −20.0000 | −1.07990 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 3.00000 | 0.161048 | 0.0805242 | − | 0.996753i | \(-0.474341\pi\) | ||||
0.0805242 | + | 0.996753i | \(0.474341\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −10.0000 | −0.535288 | −0.267644 | − | 0.963518i | \(-0.586245\pi\) | ||||
−0.267644 | + | 0.963518i | \(0.586245\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 6.00000 | 0.319348 | 0.159674 | − | 0.987170i | \(-0.448956\pi\) | ||||
0.159674 | + | 0.987170i | \(0.448956\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 30.0000 | 1.58334 | 0.791670 | − | 0.610949i | \(-0.209212\pi\) | ||||
0.791670 | + | 0.610949i | \(0.209212\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 6.00000 | 0.315789 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −28.0000 | −1.46159 | −0.730794 | − | 0.682598i | \(-0.760850\pi\) | ||||
−0.730794 | + | 0.682598i | \(0.760850\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 12.0000 | 0.623009 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −26.0000 | −1.34623 | −0.673114 | − | 0.739538i | \(-0.735044\pi\) | ||||
−0.673114 | + | 0.739538i | \(0.735044\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 25.0000 | 1.28416 | 0.642082 | − | 0.766636i | \(-0.278071\pi\) | ||||
0.642082 | + | 0.766636i | \(0.278071\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −6.00000 | −0.306586 | −0.153293 | − | 0.988181i | \(-0.548988\pi\) | ||||
−0.153293 | + | 0.988181i | \(0.548988\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −30.0000 | −1.52106 | −0.760530 | − | 0.649303i | \(-0.775061\pi\) | ||||
−0.760530 | + | 0.649303i | \(0.775061\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 18.0000 | 0.910299 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 28.0000 | 1.40528 | 0.702640 | − | 0.711546i | \(-0.252005\pi\) | ||||
0.702640 | + | 0.711546i | \(0.252005\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 3.00000 | 0.149813 | 0.0749064 | − | 0.997191i | \(-0.476134\pi\) | ||||
0.0749064 | + | 0.997191i | \(0.476134\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | −8.00000 | −0.398508 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 6.00000 | 0.297409 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 5.00000 | 0.247234 | 0.123617 | − | 0.992330i | \(-0.460551\pi\) | ||||
0.123617 | + | 0.992330i | \(0.460551\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −15.0000 | −0.732798 | −0.366399 | − | 0.930458i | \(-0.619409\pi\) | ||||
−0.366399 | + | 0.930458i | \(0.619409\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −28.0000 | −1.36464 | −0.682318 | − | 0.731055i | \(-0.739028\pi\) | ||||
−0.682318 | + | 0.731055i | \(0.739028\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 4.00000 | 0.193574 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −18.0000 | −0.867029 | −0.433515 | − | 0.901146i | \(-0.642727\pi\) | ||||
−0.433515 | + | 0.901146i | \(0.642727\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 19.0000 | 0.913082 | 0.456541 | − | 0.889702i | \(-0.349088\pi\) | ||||
0.456541 | + | 0.889702i | \(0.349088\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 30.0000 | 1.43509 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 40.0000 | 1.90910 | 0.954548 | − | 0.298057i | \(-0.0963387\pi\) | ||||
0.954548 | + | 0.298057i | \(0.0963387\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 9.00000 | 0.427603 | 0.213801 | − | 0.976877i | \(-0.431415\pi\) | ||||
0.213801 | + | 0.976877i | \(0.431415\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 15.0000 | 0.707894 | 0.353947 | − | 0.935266i | \(-0.384839\pi\) | ||||
0.353947 | + | 0.935266i | \(0.384839\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | −9.00000 | −0.423793 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −17.0000 | −0.795226 | −0.397613 | − | 0.917553i | \(-0.630161\pi\) | ||||
−0.397613 | + | 0.917553i | \(0.630161\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −12.0000 | −0.558896 | −0.279448 | − | 0.960161i | \(-0.590151\pi\) | ||||
−0.279448 | + | 0.960161i | \(0.590151\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −4.00000 | −0.185896 | −0.0929479 | − | 0.995671i | \(-0.529629\pi\) | ||||
−0.0929479 | + | 0.995671i | \(0.529629\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −12.0000 | −0.555294 | −0.277647 | − | 0.960683i | \(-0.589555\pi\) | ||||
−0.277647 | + | 0.960683i | \(0.589555\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −26.0000 | −1.20057 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 12.0000 | 0.551761 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 30.0000 | 1.37073 | 0.685367 | − | 0.728197i | \(-0.259642\pi\) | ||||
0.685367 | + | 0.728197i | \(0.259642\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −8.00000 | −0.364769 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 2.00000 | 0.0906287 | 0.0453143 | − | 0.998973i | \(-0.485571\pi\) | ||||
0.0453143 | + | 0.998973i | \(0.485571\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 12.0000 | 0.541552 | 0.270776 | − | 0.962642i | \(-0.412720\pi\) | ||||
0.270776 | + | 0.962642i | \(0.412720\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 24.0000 | 1.07655 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −20.0000 | −0.895323 | −0.447661 | − | 0.894203i | \(-0.647743\pi\) | ||||
−0.447661 | + | 0.894203i | \(0.647743\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −36.0000 | −1.60516 | −0.802580 | − | 0.596544i | \(-0.796540\pi\) | ||||
−0.802580 | + | 0.596544i | \(0.796540\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 30.0000 | 1.32973 | 0.664863 | − | 0.746965i | \(-0.268490\pi\) | ||||
0.664863 | + | 0.746965i | \(0.268490\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −22.0000 | −0.973223 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 36.0000 | 1.58328 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 3.00000 | 0.131432 | 0.0657162 | − | 0.997838i | \(-0.479067\pi\) | ||||
0.0657162 | + | 0.997838i | \(0.479067\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 41.0000 | 1.79280 | 0.896402 | − | 0.443241i | \(-0.146171\pi\) | ||||
0.896402 | + | 0.443241i | \(0.146171\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 6.00000 | 0.261364 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 13.0000 | 0.565217 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 12.0000 | 0.519778 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 9.00000 | 0.387657 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 32.0000 | 1.37579 | 0.687894 | − | 0.725811i | \(-0.258536\pi\) | ||||
0.687894 | + | 0.725811i | \(0.258536\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 17.0000 | 0.726868 | 0.363434 | − | 0.931620i | \(-0.381604\pi\) | ||||
0.363434 | + | 0.931620i | \(0.381604\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 20.0000 | 0.850487 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 12.0000 | 0.508456 | 0.254228 | − | 0.967144i | \(-0.418179\pi\) | ||||
0.254228 | + | 0.967144i | \(0.418179\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −16.0000 | −0.676728 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 24.0000 | 1.01148 | 0.505740 | − | 0.862686i | \(-0.331220\pi\) | ||||
0.505740 | + | 0.862686i | \(0.331220\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 15.0000 | 0.628833 | 0.314416 | − | 0.949285i | \(-0.398191\pi\) | ||||
0.314416 | + | 0.949285i | \(0.398191\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 28.0000 | 1.17176 | 0.585882 | − | 0.810397i | \(-0.300748\pi\) | ||||
0.585882 | + | 0.810397i | \(0.300748\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 13.0000 | 0.541197 | 0.270599 | − | 0.962692i | \(-0.412778\pi\) | ||||
0.270599 | + | 0.962692i | \(0.412778\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 18.0000 | 0.746766 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −18.0000 | −0.745484 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 33.0000 | 1.36206 | 0.681028 | − | 0.732257i | \(-0.261533\pi\) | ||||
0.681028 | + | 0.732257i | \(0.261533\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 10.0000 | 0.412043 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −9.00000 | −0.369586 | −0.184793 | − | 0.982777i | \(-0.559161\pi\) | ||||
−0.184793 | + | 0.982777i | \(0.559161\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 30.0000 | 1.22577 | 0.612883 | − | 0.790173i | \(-0.290010\pi\) | ||||
0.612883 | + | 0.790173i | \(0.290010\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −13.0000 | −0.530281 | −0.265141 | − | 0.964210i | \(-0.585418\pi\) | ||||
−0.265141 | + | 0.964210i | \(0.585418\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 32.0000 | 1.29884 | 0.649420 | − | 0.760430i | \(-0.275012\pi\) | ||||
0.649420 | + | 0.760430i | \(0.275012\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −48.0000 | −1.94187 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 34.0000 | 1.37325 | 0.686624 | − | 0.727013i | \(-0.259092\pi\) | ||||
0.686624 | + | 0.727013i | \(0.259092\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −18.0000 | −0.724653 | −0.362326 | − | 0.932051i | \(-0.618017\pi\) | ||||
−0.362326 | + | 0.932051i | \(0.618017\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −20.0000 | −0.803868 | −0.401934 | − | 0.915669i | \(-0.631662\pi\) | ||||
−0.401934 | + | 0.915669i | \(0.631662\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | −30.0000 | −1.20192 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 6.00000 | 0.239236 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −2.00000 | −0.0796187 | −0.0398094 | − | 0.999207i | \(-0.512675\pi\) | ||||
−0.0398094 | + | 0.999207i | \(0.512675\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −12.0000 | −0.475457 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −42.0000 | −1.65890 | −0.829450 | − | 0.558581i | \(-0.811346\pi\) | ||||
−0.829450 | + | 0.558581i | \(0.811346\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −4.00000 | −0.157745 | −0.0788723 | − | 0.996885i | \(-0.525132\pi\) | ||||
−0.0788723 | + | 0.996885i | \(0.525132\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −12.0000 | −0.471769 | −0.235884 | − | 0.971781i | \(-0.575799\pi\) | ||||
−0.235884 | + | 0.971781i | \(0.575799\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 6.00000 | 0.234798 | 0.117399 | − | 0.993085i | \(-0.462544\pi\) | ||||
0.117399 | + | 0.993085i | \(0.462544\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 15.0000 | 0.584317 | 0.292159 | − | 0.956370i | \(-0.405627\pi\) | ||||
0.292159 | + | 0.956370i | \(0.405627\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 32.0000 | 1.24466 | 0.622328 | − | 0.782757i | \(-0.286187\pi\) | ||||
0.622328 | + | 0.782757i | \(0.286187\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −6.00000 | −0.231627 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −26.0000 | −1.00223 | −0.501113 | − | 0.865382i | \(-0.667076\pi\) | ||||
−0.501113 | + | 0.865382i | \(0.667076\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −48.0000 | −1.84479 | −0.922395 | − | 0.386248i | \(-0.873771\pi\) | ||||
−0.922395 | + | 0.386248i | \(0.873771\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −4.00000 | −0.153506 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 39.0000 | 1.49229 | 0.746147 | − | 0.665782i | \(-0.231902\pi\) | ||||
0.746147 | + | 0.665782i | \(0.231902\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 24.0000 | 0.914327 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −17.0000 | −0.646710 | −0.323355 | − | 0.946278i | \(-0.604811\pi\) | ||||
−0.323355 | + | 0.946278i | \(0.604811\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | −9.00000 | −0.340899 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −12.0000 | −0.453234 | −0.226617 | − | 0.973984i | \(-0.572767\pi\) | ||||
−0.226617 | + | 0.973984i | \(0.572767\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 10.0000 | 0.377157 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 36.0000 | 1.35392 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 20.0000 | 0.751116 | 0.375558 | − | 0.926799i | \(-0.377451\pi\) | ||||
0.375558 | + | 0.926799i | \(0.377451\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 12.0000 | 0.449404 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −30.0000 | −1.11881 | −0.559406 | − | 0.828894i | \(-0.688971\pi\) | ||||
−0.559406 | + | 0.828894i | \(0.688971\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −8.00000 | −0.297936 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 32.0000 | 1.18681 | 0.593407 | − | 0.804902i | \(-0.297782\pi\) | ||||
0.593407 | + | 0.804902i | \(0.297782\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 12.0000 | 0.443836 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 4.00000 | 0.147743 | 0.0738717 | − | 0.997268i | \(-0.476464\pi\) | ||||
0.0738717 | + | 0.997268i | \(0.476464\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 39.0000 | 1.43658 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −20.0000 | −0.735712 | −0.367856 | − | 0.929883i | \(-0.619908\pi\) | ||||
−0.367856 | + | 0.929883i | \(0.619908\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −6.00000 | −0.220119 | −0.110059 | − | 0.993925i | \(-0.535104\pi\) | ||||
−0.110059 | + | 0.993925i | \(0.535104\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 6.00000 | 0.219235 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −32.0000 | −1.16770 | −0.583848 | − | 0.811863i | \(-0.698454\pi\) | ||||
−0.583848 | + | 0.811863i | \(0.698454\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −32.0000 | −1.16306 | −0.581530 | − | 0.813525i | \(-0.697546\pi\) | ||||
−0.581530 | + | 0.813525i | \(0.697546\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 3.00000 | 0.108750 | 0.0543750 | − | 0.998521i | \(-0.482683\pi\) | ||||
0.0543750 | + | 0.998521i | \(0.482683\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | −20.0000 | −0.724049 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 5.00000 | 0.180305 | 0.0901523 | − | 0.995928i | \(-0.471265\pi\) | ||||
0.0901523 | + | 0.995928i | \(0.471265\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −24.0000 | −0.863220 | −0.431610 | − | 0.902060i | \(-0.642054\pi\) | ||||
−0.431610 | + | 0.902060i | \(0.642054\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −15.0000 | −0.537431 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −36.0000 | −1.28818 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −28.0000 | −0.998092 | −0.499046 | − | 0.866575i | \(-0.666316\pi\) | ||||
−0.499046 | + | 0.866575i | \(0.666316\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −18.0000 | −0.640006 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 8.00000 | 0.284088 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 42.0000 | 1.48772 | 0.743858 | − | 0.668338i | \(-0.232994\pi\) | ||||
0.743858 | + | 0.668338i | \(0.232994\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 36.0000 | 1.27359 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 33.0000 | 1.16454 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 30.0000 | 1.05474 | 0.527372 | − | 0.849635i | \(-0.323177\pi\) | ||||
0.527372 | + | 0.849635i | \(0.323177\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 28.0000 | 0.983213 | 0.491606 | − | 0.870817i | \(-0.336410\pi\) | ||||
0.491606 | + | 0.870817i | \(0.336410\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 20.0000 | 0.699711 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −42.0000 | −1.46581 | −0.732905 | − | 0.680331i | \(-0.761836\pi\) | ||||
−0.732905 | + | 0.680331i | \(0.761836\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −4.00000 | −0.139431 | −0.0697156 | − | 0.997567i | \(-0.522209\pi\) | ||||
−0.0697156 | + | 0.997567i | \(0.522209\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 33.0000 | 1.14752 | 0.573761 | − | 0.819023i | \(-0.305484\pi\) | ||||
0.573761 | + | 0.819023i | \(0.305484\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 20.0000 | 0.694629 | 0.347314 | − | 0.937749i | \(-0.387094\pi\) | ||||
0.347314 | + | 0.937749i | \(0.387094\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 9.00000 | 0.311832 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −29.0000 | −1.00000 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | −4.00000 | −0.137442 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 12.0000 | 0.411355 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | −26.0000 | −0.890223 | −0.445112 | − | 0.895475i | \(-0.646836\pi\) | ||||
−0.445112 | + | 0.895475i | \(0.646836\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −3.00000 | −0.102478 | −0.0512390 | − | 0.998686i | \(-0.516317\pi\) | ||||
−0.0512390 | + | 0.998686i | \(0.516317\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −5.00000 | −0.170598 | −0.0852989 | − | 0.996355i | \(-0.527185\pi\) | ||||
−0.0852989 | + | 0.996355i | \(0.527185\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 24.0000 | 0.816970 | 0.408485 | − | 0.912765i | \(-0.366057\pi\) | ||||
0.408485 | + | 0.912765i | \(0.366057\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | −30.0000 | −1.01768 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −52.0000 | −1.76195 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 28.0000 | 0.945493 | 0.472746 | − | 0.881199i | \(-0.343263\pi\) | ||||
0.472746 | + | 0.881199i | \(0.343263\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 18.0000 | 0.606435 | 0.303218 | − | 0.952921i | \(-0.401939\pi\) | ||||
0.303218 | + | 0.952921i | \(0.401939\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 41.0000 | 1.37976 | 0.689880 | − | 0.723924i | \(-0.257663\pi\) | ||||
0.689880 | + | 0.723924i | \(0.257663\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −12.0000 | −0.402921 | −0.201460 | − | 0.979497i | \(-0.564569\pi\) | ||||
−0.201460 | + | 0.979497i | \(0.564569\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 4.00000 | 0.134156 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 60.0000 | 2.00782 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −18.0000 | −0.599667 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −28.0000 | −0.929725 | −0.464862 | − | 0.885383i | \(-0.653896\pi\) | ||||
−0.464862 | + | 0.885383i | \(0.653896\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 12.0000 | 0.397578 | 0.198789 | − | 0.980042i | \(-0.436299\pi\) | ||||
0.198789 | + | 0.980042i | \(0.436299\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | −27.0000 | −0.893570 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 24.0000 | 0.792550 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 10.0000 | 0.329870 | 0.164935 | − | 0.986304i | \(-0.447259\pi\) | ||||
0.164935 | + | 0.986304i | \(0.447259\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 48.0000 | 1.57994 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −30.0000 | −0.984268 | −0.492134 | − | 0.870519i | \(-0.663783\pi\) | ||||
−0.492134 | + | 0.870519i | \(0.663783\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 15.0000 | 0.491605 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 13.0000 | 0.424691 | 0.212346 | − | 0.977195i | \(-0.431890\pi\) | ||||
0.212346 | + | 0.977195i | \(0.431890\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −12.0000 | −0.391189 | −0.195594 | − | 0.980685i | \(-0.562664\pi\) | ||||
−0.195594 | + | 0.980685i | \(0.562664\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | −18.0000 | −0.586161 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 48.0000 | 1.55979 | 0.779895 | − | 0.625910i | \(-0.215272\pi\) | ||||
0.779895 | + | 0.625910i | \(0.215272\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −44.0000 | −1.42830 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −39.0000 | −1.26333 | −0.631667 | − | 0.775240i | \(-0.717629\pi\) | ||||
−0.631667 | + | 0.775240i | \(0.717629\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −6.00000 | −0.193750 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −27.0000 | −0.870968 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 32.0000 | 1.02905 | 0.514525 | − | 0.857475i | \(-0.327968\pi\) | ||||
0.514525 | + | 0.857475i | \(0.327968\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −3.00000 | −0.0962746 | −0.0481373 | − | 0.998841i | \(-0.515328\pi\) | ||||
−0.0481373 | + | 0.998841i | \(0.515328\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | −10.0000 | −0.320585 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 57.0000 | 1.82359 | 0.911796 | − | 0.410644i | \(-0.134696\pi\) | ||||
0.911796 | + | 0.410644i | \(0.134696\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 45.0000 | 1.43821 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −6.00000 | −0.191370 | −0.0956851 | − | 0.995412i | \(-0.530504\pi\) | ||||
−0.0956851 | + | 0.995412i | \(0.530504\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 24.0000 | 0.763156 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 58.0000 | 1.84243 | 0.921215 | − | 0.389053i | \(-0.127198\pi\) | ||||
0.921215 | + | 0.389053i | \(0.127198\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 28.0000 | 0.886769 | 0.443384 | − | 0.896332i | \(-0.353778\pi\) | ||||
0.443384 | + | 0.896332i | \(0.353778\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))