Properties

Label 3600.2.f.k
Level $3600$
Weight $2$
Character orbit 3600.f
Analytic conductor $28.746$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3600,2,Mod(2449,3600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3600.2449");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3600.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.7461447277\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 5 \)
Twist minimal: no (minimal twist has level 225)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 5i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{7} + \beta q^{13} - q^{19} + 7 q^{31} + 2 \beta q^{37} - \beta q^{43} - 18 q^{49} - 13 q^{61} + \beta q^{67} - 2 \beta q^{73} - 4 q^{79} - 25 q^{91} - \beta q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{19} + 14 q^{31} - 36 q^{49} - 26 q^{61} - 8 q^{79} - 50 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(2801\) \(3151\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2449.1
1.00000i
1.00000i
0 0 0 0 0 5.00000i 0 0 0
2449.2 0 0 0 0 0 5.00000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3600.2.f.k 2
3.b odd 2 1 CM 3600.2.f.k 2
4.b odd 2 1 225.2.b.c 2
5.b even 2 1 inner 3600.2.f.k 2
5.c odd 4 1 3600.2.a.b 1
5.c odd 4 1 3600.2.a.br 1
12.b even 2 1 225.2.b.c 2
15.d odd 2 1 inner 3600.2.f.k 2
15.e even 4 1 3600.2.a.b 1
15.e even 4 1 3600.2.a.br 1
20.d odd 2 1 225.2.b.c 2
20.e even 4 1 225.2.a.c 1
20.e even 4 1 225.2.a.d yes 1
60.h even 2 1 225.2.b.c 2
60.l odd 4 1 225.2.a.c 1
60.l odd 4 1 225.2.a.d yes 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
225.2.a.c 1 20.e even 4 1
225.2.a.c 1 60.l odd 4 1
225.2.a.d yes 1 20.e even 4 1
225.2.a.d yes 1 60.l odd 4 1
225.2.b.c 2 4.b odd 2 1
225.2.b.c 2 12.b even 2 1
225.2.b.c 2 20.d odd 2 1
225.2.b.c 2 60.h even 2 1
3600.2.a.b 1 5.c odd 4 1
3600.2.a.b 1 15.e even 4 1
3600.2.a.br 1 5.c odd 4 1
3600.2.a.br 1 15.e even 4 1
3600.2.f.k 2 1.a even 1 1 trivial
3600.2.f.k 2 3.b odd 2 1 CM
3600.2.f.k 2 5.b even 2 1 inner
3600.2.f.k 2 15.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3600, [\chi])\):

\( T_{7}^{2} + 25 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{13}^{2} + 25 \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 25 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 25 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( (T + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T - 7)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 100 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 25 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T + 13)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 25 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 100 \) Copy content Toggle raw display
$79$ \( (T + 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 25 \) Copy content Toggle raw display
show more
show less