Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3600,2,Mod(3599,3600)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3600, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3600.3599");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3600.o (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(28.7461447277\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | \(\Q(\zeta_{24})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - x^{4} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{29}]\) |
Coefficient ring index: | \( 2^{11}\cdot 3^{2} \) |
Twist minimal: | no (minimal twist has level 720) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 3599.2 | ||
Root | \(-0.965926 - 0.258819i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 3600.3599 |
Dual form | 3600.2.o.c.3599.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3600\mathbb{Z}\right)^\times\).
\(n\) | \(577\) | \(901\) | \(2801\) | \(3151\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(-1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −2.44949 | −0.925820 | −0.462910 | − | 0.886405i | \(-0.653195\pi\) | ||||
−0.462910 | + | 0.886405i | \(0.653195\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −1.01461 | −0.305917 | −0.152958 | − | 0.988233i | \(-0.548880\pi\) | ||||
−0.152958 | + | 0.988233i | \(0.548880\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 2.24264i | 0.621997i | 0.950410 | + | 0.310998i | \(0.100663\pi\) | ||||
−0.950410 | + | 0.310998i | \(0.899337\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 4.89898i | 1.12390i | 0.827170 | + | 0.561951i | \(0.189949\pi\) | ||||
−0.827170 | + | 0.561951i | \(0.810051\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | − 8.36308i | − 1.74382i | −0.489664 | − | 0.871911i | \(-0.662880\pi\) | ||||
0.489664 | − | 0.871911i | \(-0.337120\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 6.00000i | 1.11417i | 0.830455 | + | 0.557086i | \(0.188081\pi\) | ||||
−0.830455 | + | 0.557086i | \(0.811919\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | − 8.36308i | − 1.50205i | −0.660272 | − | 0.751027i | \(-0.729559\pi\) | ||||
0.660272 | − | 0.751027i | \(-0.270441\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 6.24264i | − 1.02628i | −0.858304 | − | 0.513142i | \(-0.828481\pi\) | ||||
0.858304 | − | 0.513142i | \(-0.171519\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 4.24264i | 0.662589i | 0.943527 | + | 0.331295i | \(0.107485\pi\) | ||||
−0.943527 | + | 0.331295i | \(0.892515\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −2.02922 | −0.309454 | −0.154727 | − | 0.987957i | \(-0.549450\pi\) | ||||
−0.154727 | + | 0.987957i | \(0.549450\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 2.02922i | 0.295993i | 0.988988 | + | 0.147996i | \(0.0472824\pi\) | ||||
−0.988988 | + | 0.147996i | \(0.952718\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −1.00000 | −0.142857 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 8.48528 | 1.16554 | 0.582772 | − | 0.812636i | \(-0.301968\pi\) | ||||
0.582772 | + | 0.812636i | \(0.301968\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 1.01461 | 0.132091 | 0.0660456 | − | 0.997817i | \(-0.478962\pi\) | ||||
0.0660456 | + | 0.997817i | \(0.478962\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 10.4853 | 1.34250 | 0.671251 | − | 0.741230i | \(-0.265757\pi\) | ||||
0.671251 | + | 0.741230i | \(0.265757\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −6.92820 | −0.846415 | −0.423207 | − | 0.906033i | \(-0.639096\pi\) | ||||
−0.423207 | + | 0.906033i | \(0.639096\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 16.7262 | 1.98503 | 0.992515 | − | 0.122122i | \(-0.0389698\pi\) | ||||
0.992515 | + | 0.122122i | \(0.0389698\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | − 10.4853i | − 1.22721i | −0.789613 | − | 0.613605i | \(-0.789719\pi\) | ||||
0.789613 | − | 0.613605i | \(-0.210281\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 2.48528 | 0.283224 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | − 1.43488i | − 0.161436i | −0.996737 | − | 0.0807182i | \(-0.974279\pi\) | ||||
0.996737 | − | 0.0807182i | \(-0.0257214\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | − 14.6969i | − 1.61320i | −0.591099 | − | 0.806599i | \(-0.701306\pi\) | ||||
0.591099 | − | 0.806599i | \(-0.298694\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | − 16.2426i | − 1.72172i | −0.508845 | − | 0.860858i | \(-0.669927\pi\) | ||||
0.508845 | − | 0.860858i | \(-0.330073\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | − 5.49333i | − 0.575857i | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 10.4853i | 1.06462i | 0.846550 | + | 0.532310i | \(0.178676\pi\) | ||||
−0.846550 | + | 0.532310i | \(0.821324\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 2.48528i | 0.247295i | 0.992326 | + | 0.123647i | \(0.0394592\pi\) | ||||
−0.992326 | + | 0.123647i | \(0.960541\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −16.3059 | −1.60667 | −0.803334 | − | 0.595529i | \(-0.796943\pi\) | ||||
−0.803334 | + | 0.595529i | \(0.796943\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 18.7554i | − 1.81315i | −0.422043 | − | 0.906576i | \(-0.638687\pi\) | ||||
0.422043 | − | 0.906576i | \(-0.361313\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −6.48528 | −0.621177 | −0.310589 | − | 0.950544i | \(-0.600526\pi\) | ||||
−0.310589 | + | 0.950544i | \(0.600526\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 8.48528 | 0.798228 | 0.399114 | − | 0.916901i | \(-0.369318\pi\) | ||||
0.399114 | + | 0.916901i | \(0.369318\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −9.97056 | −0.906415 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 7.34847 | 0.652071 | 0.326036 | − | 0.945357i | \(-0.394287\pi\) | ||||
0.326036 | + | 0.945357i | \(0.394287\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 13.6823 | 1.19543 | 0.597715 | − | 0.801709i | \(-0.296075\pi\) | ||||
0.597715 | + | 0.801709i | \(0.296075\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | − 12.0000i | − 1.04053i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 3.51472 | 0.300283 | 0.150141 | − | 0.988665i | \(-0.452027\pi\) | ||||
0.150141 | + | 0.988665i | \(0.452027\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | − 13.2621i | − 1.12487i | −0.826840 | − | 0.562437i | \(-0.809864\pi\) | ||||
0.826840 | − | 0.562437i | \(-0.190136\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | − 2.27541i | − 0.190279i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 2.48528i | 0.203602i | 0.994805 | + | 0.101801i | \(0.0324605\pi\) | ||||
−0.994805 | + | 0.101801i | \(0.967539\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | − 0.594346i | − 0.0483672i | −0.999708 | − | 0.0241836i | \(-0.992301\pi\) | ||||
0.999708 | − | 0.0241836i | \(-0.00769863\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | − 18.2426i | − 1.45592i | −0.685619 | − | 0.727961i | \(-0.740468\pi\) | ||||
0.685619 | − | 0.727961i | \(-0.259532\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 20.4853i | 1.61447i | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −21.6251 | −1.69381 | −0.846906 | − | 0.531743i | \(-0.821537\pi\) | ||||
−0.846906 | + | 0.531743i | \(0.821537\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | − 8.36308i | − 0.647155i | −0.946202 | − | 0.323577i | \(-0.895114\pi\) | ||||
0.946202 | − | 0.323577i | \(-0.104886\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 7.97056 | 0.613120 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 20.4853 | 1.55747 | 0.778734 | − | 0.627355i | \(-0.215862\pi\) | ||||
0.778734 | + | 0.627355i | \(0.215862\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −19.7700 | −1.47768 | −0.738840 | − | 0.673881i | \(-0.764626\pi\) | ||||
−0.738840 | + | 0.673881i | \(0.764626\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 1.51472 | 0.112588 | 0.0562941 | − | 0.998414i | \(-0.482072\pi\) | ||||
0.0562941 | + | 0.998414i | \(0.482072\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 14.6969 | 1.06343 | 0.531717 | − | 0.846922i | \(-0.321547\pi\) | ||||
0.531717 | + | 0.846922i | \(0.321547\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | − 10.0000i | − 0.719816i | −0.932988 | − | 0.359908i | \(-0.882808\pi\) | ||||
0.932988 | − | 0.359908i | \(-0.117192\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 22.9706 | 1.63658 | 0.818292 | − | 0.574802i | \(-0.194921\pi\) | ||||
0.818292 | + | 0.574802i | \(0.194921\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 3.46410i | 0.245564i | 0.992434 | + | 0.122782i | \(0.0391815\pi\) | ||||
−0.992434 | + | 0.122782i | \(0.960818\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | − 14.6969i | − 1.03152i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | − 4.97056i | − 0.343821i | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | − 3.46410i | − 0.238479i | −0.992866 | − | 0.119239i | \(-0.961954\pi\) | ||||
0.992866 | − | 0.119239i | \(-0.0380456\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 20.4853i | 1.39063i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −9.37769 | −0.627977 | −0.313988 | − | 0.949427i | \(-0.601665\pi\) | ||||
−0.313988 | + | 0.949427i | \(0.601665\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 4.05845i | 0.269369i | 0.990889 | + | 0.134684i | \(0.0430020\pi\) | ||||
−0.990889 | + | 0.134684i | \(0.956998\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 14.0000 | 0.925146 | 0.462573 | − | 0.886581i | \(-0.346926\pi\) | ||||
0.462573 | + | 0.886581i | \(0.346926\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −24.0000 | −1.57229 | −0.786146 | − | 0.618041i | \(-0.787927\pi\) | ||||
−0.786146 | + | 0.618041i | \(0.787927\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 2.02922 | 0.131260 | 0.0656298 | − | 0.997844i | \(-0.479094\pi\) | ||||
0.0656298 | + | 0.997844i | \(0.479094\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 20.9706 | 1.35083 | 0.675416 | − | 0.737437i | \(-0.263964\pi\) | ||||
0.675416 | + | 0.737437i | \(0.263964\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −10.9867 | −0.699064 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 19.7700 | 1.24787 | 0.623936 | − | 0.781476i | \(-0.285533\pi\) | ||||
0.623936 | + | 0.781476i | \(0.285533\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 8.48528i | 0.533465i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −20.4853 | −1.27784 | −0.638918 | − | 0.769275i | \(-0.720618\pi\) | ||||
−0.638918 | + | 0.769275i | \(0.720618\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 15.2913i | 0.950154i | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | − 29.1477i | − 1.79732i | −0.438642 | − | 0.898662i | \(-0.644540\pi\) | ||||
0.438642 | − | 0.898662i | \(-0.355460\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 22.9706i | 1.40054i | 0.713878 | + | 0.700270i | \(0.246937\pi\) | ||||
−0.713878 | + | 0.700270i | \(0.753063\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | − 13.2621i | − 0.805613i | −0.915285 | − | 0.402806i | \(-0.868035\pi\) | ||||
0.915285 | − | 0.402806i | \(-0.131965\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | − 5.75736i | − 0.345926i | −0.984928 | − | 0.172963i | \(-0.944666\pi\) | ||||
0.984928 | − | 0.172963i | \(-0.0553341\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 4.24264i | 0.253095i | 0.991961 | + | 0.126547i | \(0.0403896\pi\) | ||||
−0.991961 | + | 0.126547i | \(0.959610\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −4.05845 | −0.241250 | −0.120625 | − | 0.992698i | \(-0.538490\pi\) | ||||
−0.120625 | + | 0.992698i | \(0.538490\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | − 10.3923i | − 0.613438i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −17.0000 | −1.00000 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 10.9706 | 0.640907 | 0.320454 | − | 0.947264i | \(-0.396165\pi\) | ||||
0.320454 | + | 0.947264i | \(0.396165\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 18.7554 | 1.08465 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 4.97056 | 0.286498 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 4.05845 | 0.231628 | 0.115814 | − | 0.993271i | \(-0.463052\pi\) | ||||
0.115814 | + | 0.993271i | \(0.463052\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −18.7554 | −1.06352 | −0.531760 | − | 0.846895i | \(-0.678469\pi\) | ||||
−0.531760 | + | 0.846895i | \(0.678469\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 14.0000i | 0.791327i | 0.918396 | + | 0.395663i | \(0.129485\pi\) | ||||
−0.918396 | + | 0.395663i | \(0.870515\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −1.02944 | −0.0578190 | −0.0289095 | − | 0.999582i | \(-0.509203\pi\) | ||||
−0.0289095 | + | 0.999582i | \(0.509203\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | − 6.08767i | − 0.340844i | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | − 4.97056i | − 0.274036i | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | − 11.8272i | − 0.650081i | −0.945700 | − | 0.325040i | \(-0.894622\pi\) | ||||
0.945700 | − | 0.325040i | \(-0.105378\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | − 23.4558i | − 1.27772i | −0.769322 | − | 0.638861i | \(-0.779406\pi\) | ||||
0.769322 | − | 0.638861i | \(-0.220594\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 8.48528i | 0.459504i | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 19.5959 | 1.05808 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 20.7846i | 1.11578i | 0.829916 | + | 0.557888i | \(0.188388\pi\) | ||||
−0.829916 | + | 0.557888i | \(0.811612\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 1.51472 | 0.0810810 | 0.0405405 | − | 0.999178i | \(-0.487092\pi\) | ||||
0.0405405 | + | 0.999178i | \(0.487092\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 12.0000 | 0.638696 | 0.319348 | − | 0.947638i | \(-0.396536\pi\) | ||||
0.319348 | + | 0.947638i | \(0.396536\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −18.7554 | −0.989871 | −0.494936 | − | 0.868930i | \(-0.664808\pi\) | ||||
−0.494936 | + | 0.868930i | \(0.664808\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −5.00000 | −0.263158 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −15.1172 | −0.789112 | −0.394556 | − | 0.918872i | \(-0.629102\pi\) | ||||
−0.394556 | + | 0.918872i | \(0.629102\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −20.7846 | −1.07908 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | − 22.7279i | − 1.17681i | −0.808567 | − | 0.588404i | \(-0.799757\pi\) | ||||
0.808567 | − | 0.588404i | \(-0.200243\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −13.4558 | −0.693011 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 17.3205i | 0.889695i | 0.895606 | + | 0.444847i | \(0.146742\pi\) | ||||
−0.895606 | + | 0.444847i | \(0.853258\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | − 2.02922i | − 0.103688i | −0.998655 | − | 0.0518442i | \(-0.983490\pi\) | ||||
0.998655 | − | 0.0518442i | \(-0.0165099\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 10.9706i | 0.556230i | 0.960548 | + | 0.278115i | \(0.0897096\pi\) | ||||
−0.960548 | + | 0.278115i | \(0.910290\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 14.7279i | − 0.739173i | −0.929196 | − | 0.369587i | \(-0.879499\pi\) | ||||
0.929196 | − | 0.369587i | \(-0.120501\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | − 19.7574i | − 0.986635i | −0.869849 | − | 0.493318i | \(-0.835784\pi\) | ||||
0.869849 | − | 0.493318i | \(-0.164216\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 18.7554 | 0.934272 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 6.33386i | 0.313958i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −14.9706 | −0.740247 | −0.370123 | − | 0.928983i | \(-0.620685\pi\) | ||||
−0.370123 | + | 0.928983i | \(0.620685\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | −2.48528 | −0.122293 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 17.7408 | 0.866694 | 0.433347 | − | 0.901227i | \(-0.357333\pi\) | ||||
0.433347 | + | 0.901227i | \(0.357333\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −6.97056 | −0.339724 | −0.169862 | − | 0.985468i | \(-0.554332\pi\) | ||||
−0.169862 | + | 0.985468i | \(0.554332\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | −25.6836 | −1.24292 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −2.02922 | −0.0977443 | −0.0488721 | − | 0.998805i | \(-0.515563\pi\) | ||||
−0.0488721 | + | 0.998805i | \(0.515563\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 27.4558i | 1.31944i | 0.751510 | + | 0.659722i | \(0.229326\pi\) | ||||
−0.751510 | + | 0.659722i | \(0.770674\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 40.9706 | 1.95989 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 23.0600i | 1.10059i | 0.834969 | + | 0.550297i | \(0.185486\pi\) | ||||
−0.834969 | + | 0.550297i | \(0.814514\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 16.7262i | 0.794684i | 0.917671 | + | 0.397342i | \(0.130067\pi\) | ||||
−0.917671 | + | 0.397342i | \(0.869933\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | − 24.7279i | − 1.16698i | −0.812119 | − | 0.583491i | \(-0.801686\pi\) | ||||
0.812119 | − | 0.583491i | \(-0.198314\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | − 4.30463i | − 0.202697i | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 34.4853i | 1.61315i | 0.591129 | + | 0.806577i | \(0.298682\pi\) | ||||
−0.591129 | + | 0.806577i | \(0.701318\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | − 31.4558i | − 1.46504i | −0.680743 | − | 0.732522i | \(-0.738343\pi\) | ||||
0.680743 | − | 0.732522i | \(-0.261657\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 4.47871 | 0.208143 | 0.104072 | − | 0.994570i | \(-0.466813\pi\) | ||||
0.104072 | + | 0.994570i | \(0.466813\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 2.02922i | − 0.0939013i | −0.998897 | − | 0.0469506i | \(-0.985050\pi\) | ||||
0.998897 | − | 0.0469506i | \(-0.0149503\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 16.9706 | 0.783628 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 2.05887 | 0.0946672 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 20.7846 | 0.949673 | 0.474837 | − | 0.880074i | \(-0.342507\pi\) | ||||
0.474837 | + | 0.880074i | \(0.342507\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 14.0000 | 0.638345 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 20.3643 | 0.922796 | 0.461398 | − | 0.887193i | \(-0.347348\pi\) | ||||
0.461398 | + | 0.887193i | \(0.347348\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 3.04384 | 0.137366 | 0.0686832 | − | 0.997639i | \(-0.478120\pi\) | ||||
0.0686832 | + | 0.997639i | \(0.478120\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | −40.9706 | −1.83778 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | − 39.5400i | − 1.77005i | −0.465540 | − | 0.885027i | \(-0.654140\pi\) | ||||
0.465540 | − | 0.885027i | \(-0.345860\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 35.4815i | 1.58204i | 0.611788 | + | 0.791022i | \(0.290451\pi\) | ||||
−0.611788 | + | 0.791022i | \(0.709549\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 2.48528i | 0.110158i | 0.998482 | + | 0.0550791i | \(0.0175411\pi\) | ||||
−0.998482 | + | 0.0550791i | \(0.982459\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 25.6836i | 1.13618i | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | − 2.05887i | − 0.0905492i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | − 9.21320i | − 0.403638i | −0.979423 | − | 0.201819i | \(-0.935315\pi\) | ||||
0.979423 | − | 0.201819i | \(-0.0646852\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 25.6836 | 1.12306 | 0.561532 | − | 0.827455i | \(-0.310212\pi\) | ||||
0.561532 | + | 0.827455i | \(0.310212\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −46.9411 | −2.04092 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −9.51472 | −0.412128 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 1.01461 | 0.0437024 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −22.4853 | −0.966718 | −0.483359 | − | 0.875422i | \(-0.660583\pi\) | ||||
−0.483359 | + | 0.875422i | \(0.660583\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 38.3513 | 1.63978 | 0.819892 | − | 0.572519i | \(-0.194034\pi\) | ||||
0.819892 | + | 0.572519i | \(0.194034\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −29.3939 | −1.25222 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 3.51472i | 0.149461i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 8.48528 | 0.359533 | 0.179766 | − | 0.983709i | \(-0.442466\pi\) | ||||
0.179766 | + | 0.983709i | \(0.442466\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | − 4.55082i | − 0.192479i | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 12.6677i | 0.533881i | 0.963713 | + | 0.266940i | \(0.0860126\pi\) | ||||
−0.963713 | + | 0.266940i | \(0.913987\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | − 19.7574i | − 0.828272i | −0.910215 | − | 0.414136i | \(-0.864084\pi\) | ||||
0.910215 | − | 0.414136i | \(-0.135916\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 15.8856i | 0.664793i | 0.943140 | + | 0.332396i | \(0.107857\pi\) | ||||
−0.943140 | + | 0.332396i | \(0.892143\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 13.5147i | 0.562625i | 0.959616 | + | 0.281313i | \(0.0907698\pi\) | ||||
−0.959616 | + | 0.281313i | \(0.909230\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 36.0000i | 1.49353i | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −8.60927 | −0.356559 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 14.6969i | 0.606608i | 0.952894 | + | 0.303304i | \(0.0980897\pi\) | ||||
−0.952894 | + | 0.303304i | \(0.901910\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 40.9706 | 1.68816 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 3.51472 | 0.144332 | 0.0721661 | − | 0.997393i | \(-0.477009\pi\) | ||||
0.0721661 | + | 0.997393i | \(0.477009\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −6.08767 | −0.248736 | −0.124368 | − | 0.992236i | \(-0.539690\pi\) | ||||
−0.124368 | + | 0.992236i | \(0.539690\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −28.0000 | −1.14214 | −0.571072 | − | 0.820900i | \(-0.693472\pi\) | ||||
−0.571072 | + | 0.820900i | \(0.693472\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −25.2633 | −1.02541 | −0.512703 | − | 0.858566i | \(-0.671356\pi\) | ||||
−0.512703 | + | 0.858566i | \(0.671356\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −4.55082 | −0.184106 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | − 19.2132i | − 0.776014i | −0.921656 | − | 0.388007i | \(-0.873164\pi\) | ||||
0.921656 | − | 0.388007i | \(-0.126836\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −45.9411 | −1.84952 | −0.924760 | − | 0.380551i | \(-0.875734\pi\) | ||||
−0.924760 | + | 0.380551i | \(0.875734\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | − 20.1903i | − 0.811515i | −0.913981 | − | 0.405758i | \(-0.867008\pi\) | ||||
0.913981 | − | 0.405758i | \(-0.132992\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 39.7862i | 1.59400i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 18.1610i | 0.722980i | 0.932376 | + | 0.361490i | \(0.117732\pi\) | ||||
−0.932376 | + | 0.361490i | \(0.882268\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | − 2.24264i | − 0.0888567i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 0.727922i | 0.0287512i | 0.999897 | + | 0.0143756i | \(0.00457605\pi\) | ||||
−0.999897 | + | 0.0143756i | \(0.995424\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −14.6969 | −0.579591 | −0.289795 | − | 0.957089i | \(-0.593587\pi\) | ||||
−0.289795 | + | 0.957089i | \(0.593587\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 2.02922i | 0.0797770i | 0.999204 | + | 0.0398885i | \(0.0127003\pi\) | ||||
−0.999204 | + | 0.0398885i | \(0.987300\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −1.02944 | −0.0404089 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −46.9706 | −1.83810 | −0.919050 | − | 0.394141i | \(-0.871042\pi\) | ||||
−0.919050 | + | 0.394141i | \(0.871042\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −32.4377 | −1.26359 | −0.631797 | − | 0.775134i | \(-0.717682\pi\) | ||||
−0.631797 | + | 0.775134i | \(0.717682\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −30.4853 | −1.18574 | −0.592870 | − | 0.805298i | \(-0.702005\pi\) | ||||
−0.592870 | + | 0.805298i | \(0.702005\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 50.1785 | 1.94292 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −10.6385 | −0.410694 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 17.5147i | 0.675143i | 0.941300 | + | 0.337571i | \(0.109605\pi\) | ||||
−0.941300 | + | 0.337571i | \(0.890395\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 39.9411 | 1.53506 | 0.767531 | − | 0.641012i | \(-0.221485\pi\) | ||||
0.767531 | + | 0.641012i | \(0.221485\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | − 25.6836i | − 0.985646i | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 27.3647i | 1.04708i | 0.852001 | + | 0.523540i | \(0.175389\pi\) | ||||
−0.852001 | + | 0.523540i | \(0.824611\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 19.0294i | 0.724964i | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 14.6969i | 0.559098i | 0.960131 | + | 0.279549i | \(0.0901849\pi\) | ||||
−0.960131 | + | 0.279549i | \(0.909815\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | − 31.4558i | − 1.18807i | −0.804439 | − | 0.594035i | \(-0.797534\pi\) | ||||
0.804439 | − | 0.594035i | \(-0.202466\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 30.5826 | 1.15344 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | − 6.08767i | − 0.228950i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 35.9411 | 1.34980 | 0.674899 | − | 0.737910i | \(-0.264187\pi\) | ||||
0.674899 | + | 0.737910i | \(0.264187\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | −69.9411 | −2.61932 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 10.6385 | 0.396749 | 0.198374 | − | 0.980126i | \(-0.436434\pi\) | ||||
0.198374 | + | 0.980126i | \(0.436434\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 39.9411 | 1.48749 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 44.8592 | 1.66374 | 0.831869 | − | 0.554973i | \(-0.187271\pi\) | ||||
0.831869 | + | 0.554973i | \(0.187271\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 26.2426i | 0.969294i | 0.874710 | + | 0.484647i | \(0.161052\pi\) | ||||
−0.874710 | + | 0.484647i | \(0.838948\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 7.02944 | 0.258933 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 35.4815i | 1.30521i | 0.757698 | + | 0.652605i | \(0.226324\pi\) | ||||
−0.757698 | + | 0.652605i | \(0.773676\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 31.4231i | 1.15280i | 0.817167 | + | 0.576401i | \(0.195543\pi\) | ||||
−0.817167 | + | 0.576401i | \(0.804457\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 45.9411i | 1.67865i | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 51.6134i | 1.88340i | 0.336456 | + | 0.941699i | \(0.390772\pi\) | ||||
−0.336456 | + | 0.941699i | \(0.609228\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 35.2132i | 1.27985i | 0.768439 | + | 0.639923i | \(0.221034\pi\) | ||||
−0.768439 | + | 0.639923i | \(0.778966\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | − 41.6985i | − 1.51157i | −0.654820 | − | 0.755784i | \(-0.727256\pi\) | ||||
0.654820 | − | 0.755784i | \(-0.272744\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 15.8856 | 0.575098 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 2.27541i | 0.0821603i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 16.0000 | 0.576975 | 0.288487 | − | 0.957484i | \(-0.406848\pi\) | ||||
0.288487 | + | 0.957484i | \(0.406848\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 10.9706 | 0.394584 | 0.197292 | − | 0.980345i | \(-0.436785\pi\) | ||||
0.197292 | + | 0.980345i | \(0.436785\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −20.7846 | −0.744686 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −16.9706 | −0.607254 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −46.4682 | −1.65641 | −0.828206 | − | 0.560423i | \(-0.810638\pi\) | ||||
−0.828206 | + | 0.560423i | \(0.810638\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −20.7846 | −0.739016 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 23.5147i | 0.835032i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 27.5147 | 0.974621 | 0.487311 | − | 0.873229i | \(-0.337978\pi\) | ||||
0.487311 | + | 0.873229i | \(0.337978\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 10.6385i | 0.375424i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | − 17.6985i | − 0.622246i | −0.950370 | − | 0.311123i | \(-0.899295\pi\) | ||||
0.950370 | − | 0.311123i | \(-0.100705\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 43.8446i | 1.53959i | 0.638289 | + | 0.769797i | \(0.279642\pi\) | ||||
−0.638289 | + | 0.769797i | \(0.720358\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | − 9.94113i | − 0.347796i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 18.0000i | 0.628204i | 0.949389 | + | 0.314102i | \(0.101703\pi\) | ||||
−0.949389 | + | 0.314102i | \(0.898297\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −0.420266 | −0.0146496 | −0.00732478 | − | 0.999973i | \(-0.502332\pi\) | ||||
−0.00732478 | + | 0.999973i | \(0.502332\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 12.6677i | 0.440500i | 0.975444 | + | 0.220250i | \(0.0706873\pi\) | ||||
−0.975444 | + | 0.220250i | \(0.929313\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −6.48528 | −0.225243 | −0.112622 | − | 0.993638i | \(-0.535925\pi\) | ||||
−0.112622 | + | 0.993638i | \(0.535925\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −18.7554 | −0.647508 | −0.323754 | − | 0.946141i | \(-0.604945\pi\) | ||||
−0.323754 | + | 0.946141i | \(0.604945\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −7.00000 | −0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 24.4228 | 0.839177 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −52.2077 | −1.78966 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 26.2426i | − 0.898531i | −0.893398 | − | 0.449265i | \(-0.851686\pi\) | ||||
0.893398 | − | 0.449265i | \(-0.148314\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −28.9706 | −0.989616 | −0.494808 | − | 0.869002i | \(-0.664762\pi\) | ||||
−0.494808 | + | 0.869002i | \(0.664762\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | − 4.65279i | − 0.158751i | −0.996845 | − | 0.0793756i | \(-0.974707\pi\) | ||||
0.996845 | − | 0.0793756i | \(-0.0252927\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 4.30463i | 0.146531i | 0.997312 | + | 0.0732657i | \(0.0233421\pi\) | ||||
−0.997312 | + | 0.0732657i | \(0.976658\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 1.45584i | 0.0493861i | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | − 15.5375i | − 0.526467i | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | − 21.7574i | − 0.734694i | −0.930084 | − | 0.367347i | \(-0.880266\pi\) | ||||
0.930084 | − | 0.367347i | \(-0.119734\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 9.21320i | 0.310401i | 0.987883 | + | 0.155200i | \(0.0496023\pi\) | ||||
−0.987883 | + | 0.155200i | \(0.950398\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 15.8856 | 0.534594 | 0.267297 | − | 0.963614i | \(-0.413870\pi\) | ||||
0.267297 | + | 0.963614i | \(0.413870\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 29.1477i | 0.978684i | 0.872092 | + | 0.489342i | \(0.162763\pi\) | ||||
−0.872092 | + | 0.489342i | \(0.837237\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | −18.0000 | −0.603701 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −9.94113 | −0.332667 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 50.1785 | 1.67355 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 0 | 0 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 3.21792 | 0.106849 | 0.0534246 | − | 0.998572i | \(-0.482986\pi\) | ||||
0.0534246 | + | 0.998572i | \(0.482986\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −25.3354 | −0.839400 | −0.419700 | − | 0.907663i | \(-0.637865\pi\) | ||||
−0.419700 | + | 0.907663i | \(0.637865\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 14.9117i | 0.493505i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | −33.5147 | −1.10675 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | − 8.36308i | − 0.275873i | −0.990441 | − | 0.137936i | \(-0.955953\pi\) | ||||
0.990441 | − | 0.137936i | \(-0.0440469\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 37.5108i | 1.23468i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | − 24.7279i | − 0.811297i | −0.914029 | − | 0.405648i | \(-0.867046\pi\) | ||||
0.914029 | − | 0.405648i | \(-0.132954\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | − 4.89898i | − 0.160558i | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 38.9706i | 1.27311i | 0.771230 | + | 0.636556i | \(0.219642\pi\) | ||||
−0.771230 | + | 0.636556i | \(0.780358\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | − 22.9706i | − 0.748819i | −0.927263 | − | 0.374409i | \(-0.877845\pi\) | ||||
0.927263 | − | 0.374409i | \(-0.122155\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 35.4815 | 1.15544 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | − 20.7846i | − 0.675409i | −0.941252 | − | 0.337705i | \(-0.890350\pi\) | ||||
0.941252 | − | 0.337705i | \(-0.109650\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 23.5147 | 0.763320 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −30.4264 | −0.985608 | −0.492804 | − | 0.870140i | \(-0.664028\pi\) | ||||
−0.492804 | + | 0.870140i | \(0.664028\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −8.60927 | −0.278008 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −38.9411 | −1.25617 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −51.7874 | −1.66537 | −0.832686 | − | 0.553745i | \(-0.813198\pi\) | ||||
−0.832686 | + | 0.553745i | \(0.813198\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −57.2808 | −1.83823 | −0.919114 | − | 0.393992i | \(-0.871094\pi\) | ||||
−0.919114 | + | 0.393992i | \(0.871094\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 32.4853i | 1.04143i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −28.9706 | −0.926850 | −0.463425 | − | 0.886136i | \(-0.653380\pi\) | ||||
−0.463425 | + | 0.886136i | \(0.653380\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 16.4800i | 0.526702i | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − 2.02922i | − 0.0647222i | −0.999476 | − | 0.0323611i | \(-0.989697\pi\) | ||||
0.999476 | − | 0.0323611i | \(-0.0103027\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 16.9706i | 0.539633i | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | − 49.5841i | − 1.57509i | −0.616256 | − | 0.787546i | \(-0.711351\pi\) | ||||
0.616256 | − | 0.787546i | \(-0.288649\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | − 47.2132i | − 1.49526i | −0.664117 | − | 0.747629i | \(-0.731192\pi\) | ||||
0.664117 | − | 0.747629i | \(-0.268808\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 3600.2.o.c.3599.2 | 8 | ||
3.2 | odd | 2 | 3600.2.o.d.3599.4 | 8 | |||
4.3 | odd | 2 | inner | 3600.2.o.c.3599.8 | 8 | ||
5.2 | odd | 4 | 720.2.h.a.431.1 | ✓ | 8 | ||
5.3 | odd | 4 | 3600.2.h.j.1151.6 | 8 | |||
5.4 | even | 2 | 3600.2.o.d.3599.5 | 8 | |||
12.11 | even | 2 | 3600.2.o.d.3599.6 | 8 | |||
15.2 | even | 4 | 720.2.h.a.431.6 | yes | 8 | ||
15.8 | even | 4 | 3600.2.h.j.1151.7 | 8 | |||
15.14 | odd | 2 | inner | 3600.2.o.c.3599.7 | 8 | ||
20.3 | even | 4 | 3600.2.h.j.1151.3 | 8 | |||
20.7 | even | 4 | 720.2.h.a.431.4 | yes | 8 | ||
20.19 | odd | 2 | 3600.2.o.d.3599.3 | 8 | |||
40.27 | even | 4 | 2880.2.h.f.1151.7 | 8 | |||
40.37 | odd | 4 | 2880.2.h.f.1151.6 | 8 | |||
60.23 | odd | 4 | 3600.2.h.j.1151.2 | 8 | |||
60.47 | odd | 4 | 720.2.h.a.431.7 | yes | 8 | ||
60.59 | even | 2 | inner | 3600.2.o.c.3599.1 | 8 | ||
120.77 | even | 4 | 2880.2.h.f.1151.1 | 8 | |||
120.107 | odd | 4 | 2880.2.h.f.1151.4 | 8 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
720.2.h.a.431.1 | ✓ | 8 | 5.2 | odd | 4 | ||
720.2.h.a.431.4 | yes | 8 | 20.7 | even | 4 | ||
720.2.h.a.431.6 | yes | 8 | 15.2 | even | 4 | ||
720.2.h.a.431.7 | yes | 8 | 60.47 | odd | 4 | ||
2880.2.h.f.1151.1 | 8 | 120.77 | even | 4 | |||
2880.2.h.f.1151.4 | 8 | 120.107 | odd | 4 | |||
2880.2.h.f.1151.6 | 8 | 40.37 | odd | 4 | |||
2880.2.h.f.1151.7 | 8 | 40.27 | even | 4 | |||
3600.2.h.j.1151.2 | 8 | 60.23 | odd | 4 | |||
3600.2.h.j.1151.3 | 8 | 20.3 | even | 4 | |||
3600.2.h.j.1151.6 | 8 | 5.3 | odd | 4 | |||
3600.2.h.j.1151.7 | 8 | 15.8 | even | 4 | |||
3600.2.o.c.3599.1 | 8 | 60.59 | even | 2 | inner | ||
3600.2.o.c.3599.2 | 8 | 1.1 | even | 1 | trivial | ||
3600.2.o.c.3599.7 | 8 | 15.14 | odd | 2 | inner | ||
3600.2.o.c.3599.8 | 8 | 4.3 | odd | 2 | inner | ||
3600.2.o.d.3599.3 | 8 | 20.19 | odd | 2 | |||
3600.2.o.d.3599.4 | 8 | 3.2 | odd | 2 | |||
3600.2.o.d.3599.5 | 8 | 5.4 | even | 2 | |||
3600.2.o.d.3599.6 | 8 | 12.11 | even | 2 |