Properties

Label 3600.2.o.c.3599.2
Level $3600$
Weight $2$
Character 3600.3599
Analytic conductor $28.746$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3600,2,Mod(3599,3600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3600.3599");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3600.o (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.7461447277\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 720)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3599.2
Root \(-0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 3600.3599
Dual form 3600.2.o.c.3599.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.44949 q^{7} -1.01461 q^{11} +2.24264i q^{13} +4.89898i q^{19} -8.36308i q^{23} +6.00000i q^{29} -8.36308i q^{31} -6.24264i q^{37} +4.24264i q^{41} -2.02922 q^{43} +2.02922i q^{47} -1.00000 q^{49} +8.48528 q^{53} +1.01461 q^{59} +10.4853 q^{61} -6.92820 q^{67} +16.7262 q^{71} -10.4853i q^{73} +2.48528 q^{77} -1.43488i q^{79} -14.6969i q^{83} -16.2426i q^{89} -5.49333i q^{91} +10.4853i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{49} + 16 q^{61} - 48 q^{77}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(2801\) \(3151\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.44949 −0.925820 −0.462910 0.886405i \(-0.653195\pi\)
−0.462910 + 0.886405i \(0.653195\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.01461 −0.305917 −0.152958 0.988233i \(-0.548880\pi\)
−0.152958 + 0.988233i \(0.548880\pi\)
\(12\) 0 0
\(13\) 2.24264i 0.621997i 0.950410 + 0.310998i \(0.100663\pi\)
−0.950410 + 0.310998i \(0.899337\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 4.89898i 1.12390i 0.827170 + 0.561951i \(0.189949\pi\)
−0.827170 + 0.561951i \(0.810051\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 8.36308i − 1.74382i −0.489664 0.871911i \(-0.662880\pi\)
0.489664 0.871911i \(-0.337120\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.00000i 1.11417i 0.830455 + 0.557086i \(0.188081\pi\)
−0.830455 + 0.557086i \(0.811919\pi\)
\(30\) 0 0
\(31\) − 8.36308i − 1.50205i −0.660272 0.751027i \(-0.729559\pi\)
0.660272 0.751027i \(-0.270441\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 6.24264i − 1.02628i −0.858304 0.513142i \(-0.828481\pi\)
0.858304 0.513142i \(-0.171519\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.24264i 0.662589i 0.943527 + 0.331295i \(0.107485\pi\)
−0.943527 + 0.331295i \(0.892515\pi\)
\(42\) 0 0
\(43\) −2.02922 −0.309454 −0.154727 0.987957i \(-0.549450\pi\)
−0.154727 + 0.987957i \(0.549450\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.02922i 0.295993i 0.988988 + 0.147996i \(0.0472824\pi\)
−0.988988 + 0.147996i \(0.952718\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.48528 1.16554 0.582772 0.812636i \(-0.301968\pi\)
0.582772 + 0.812636i \(0.301968\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.01461 0.132091 0.0660456 0.997817i \(-0.478962\pi\)
0.0660456 + 0.997817i \(0.478962\pi\)
\(60\) 0 0
\(61\) 10.4853 1.34250 0.671251 0.741230i \(-0.265757\pi\)
0.671251 + 0.741230i \(0.265757\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −6.92820 −0.846415 −0.423207 0.906033i \(-0.639096\pi\)
−0.423207 + 0.906033i \(0.639096\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 16.7262 1.98503 0.992515 0.122122i \(-0.0389698\pi\)
0.992515 + 0.122122i \(0.0389698\pi\)
\(72\) 0 0
\(73\) − 10.4853i − 1.22721i −0.789613 0.613605i \(-0.789719\pi\)
0.789613 0.613605i \(-0.210281\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.48528 0.283224
\(78\) 0 0
\(79\) − 1.43488i − 0.161436i −0.996737 0.0807182i \(-0.974279\pi\)
0.996737 0.0807182i \(-0.0257214\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 14.6969i − 1.61320i −0.591099 0.806599i \(-0.701306\pi\)
0.591099 0.806599i \(-0.298694\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 16.2426i − 1.72172i −0.508845 0.860858i \(-0.669927\pi\)
0.508845 0.860858i \(-0.330073\pi\)
\(90\) 0 0
\(91\) − 5.49333i − 0.575857i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.4853i 1.06462i 0.846550 + 0.532310i \(0.178676\pi\)
−0.846550 + 0.532310i \(0.821324\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.48528i 0.247295i 0.992326 + 0.123647i \(0.0394592\pi\)
−0.992326 + 0.123647i \(0.960541\pi\)
\(102\) 0 0
\(103\) −16.3059 −1.60667 −0.803334 0.595529i \(-0.796943\pi\)
−0.803334 + 0.595529i \(0.796943\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 18.7554i − 1.81315i −0.422043 0.906576i \(-0.638687\pi\)
0.422043 0.906576i \(-0.361313\pi\)
\(108\) 0 0
\(109\) −6.48528 −0.621177 −0.310589 0.950544i \(-0.600526\pi\)
−0.310589 + 0.950544i \(0.600526\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.48528 0.798228 0.399114 0.916901i \(-0.369318\pi\)
0.399114 + 0.916901i \(0.369318\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −9.97056 −0.906415
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 7.34847 0.652071 0.326036 0.945357i \(-0.394287\pi\)
0.326036 + 0.945357i \(0.394287\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 13.6823 1.19543 0.597715 0.801709i \(-0.296075\pi\)
0.597715 + 0.801709i \(0.296075\pi\)
\(132\) 0 0
\(133\) − 12.0000i − 1.04053i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.51472 0.300283 0.150141 0.988665i \(-0.452027\pi\)
0.150141 + 0.988665i \(0.452027\pi\)
\(138\) 0 0
\(139\) − 13.2621i − 1.12487i −0.826840 0.562437i \(-0.809864\pi\)
0.826840 0.562437i \(-0.190136\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 2.27541i − 0.190279i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.48528i 0.203602i 0.994805 + 0.101801i \(0.0324605\pi\)
−0.994805 + 0.101801i \(0.967539\pi\)
\(150\) 0 0
\(151\) − 0.594346i − 0.0483672i −0.999708 0.0241836i \(-0.992301\pi\)
0.999708 0.0241836i \(-0.00769863\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 18.2426i − 1.45592i −0.685619 0.727961i \(-0.740468\pi\)
0.685619 0.727961i \(-0.259532\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 20.4853i 1.61447i
\(162\) 0 0
\(163\) −21.6251 −1.69381 −0.846906 0.531743i \(-0.821537\pi\)
−0.846906 + 0.531743i \(0.821537\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 8.36308i − 0.647155i −0.946202 0.323577i \(-0.895114\pi\)
0.946202 0.323577i \(-0.104886\pi\)
\(168\) 0 0
\(169\) 7.97056 0.613120
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 20.4853 1.55747 0.778734 0.627355i \(-0.215862\pi\)
0.778734 + 0.627355i \(0.215862\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −19.7700 −1.47768 −0.738840 0.673881i \(-0.764626\pi\)
−0.738840 + 0.673881i \(0.764626\pi\)
\(180\) 0 0
\(181\) 1.51472 0.112588 0.0562941 0.998414i \(-0.482072\pi\)
0.0562941 + 0.998414i \(0.482072\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 14.6969 1.06343 0.531717 0.846922i \(-0.321547\pi\)
0.531717 + 0.846922i \(0.321547\pi\)
\(192\) 0 0
\(193\) − 10.0000i − 0.719816i −0.932988 0.359908i \(-0.882808\pi\)
0.932988 0.359908i \(-0.117192\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 22.9706 1.63658 0.818292 0.574802i \(-0.194921\pi\)
0.818292 + 0.574802i \(0.194921\pi\)
\(198\) 0 0
\(199\) 3.46410i 0.245564i 0.992434 + 0.122782i \(0.0391815\pi\)
−0.992434 + 0.122782i \(0.960818\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 14.6969i − 1.03152i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 4.97056i − 0.343821i
\(210\) 0 0
\(211\) − 3.46410i − 0.238479i −0.992866 0.119239i \(-0.961954\pi\)
0.992866 0.119239i \(-0.0380456\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 20.4853i 1.39063i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −9.37769 −0.627977 −0.313988 0.949427i \(-0.601665\pi\)
−0.313988 + 0.949427i \(0.601665\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.05845i 0.269369i 0.990889 + 0.134684i \(0.0430020\pi\)
−0.990889 + 0.134684i \(0.956998\pi\)
\(228\) 0 0
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −24.0000 −1.57229 −0.786146 0.618041i \(-0.787927\pi\)
−0.786146 + 0.618041i \(0.787927\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.02922 0.131260 0.0656298 0.997844i \(-0.479094\pi\)
0.0656298 + 0.997844i \(0.479094\pi\)
\(240\) 0 0
\(241\) 20.9706 1.35083 0.675416 0.737437i \(-0.263964\pi\)
0.675416 + 0.737437i \(0.263964\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −10.9867 −0.699064
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.7700 1.24787 0.623936 0.781476i \(-0.285533\pi\)
0.623936 + 0.781476i \(0.285533\pi\)
\(252\) 0 0
\(253\) 8.48528i 0.533465i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −20.4853 −1.27784 −0.638918 0.769275i \(-0.720618\pi\)
−0.638918 + 0.769275i \(0.720618\pi\)
\(258\) 0 0
\(259\) 15.2913i 0.950154i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 29.1477i − 1.79732i −0.438642 0.898662i \(-0.644540\pi\)
0.438642 0.898662i \(-0.355460\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 22.9706i 1.40054i 0.713878 + 0.700270i \(0.246937\pi\)
−0.713878 + 0.700270i \(0.753063\pi\)
\(270\) 0 0
\(271\) − 13.2621i − 0.805613i −0.915285 0.402806i \(-0.868035\pi\)
0.915285 0.402806i \(-0.131965\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 5.75736i − 0.345926i −0.984928 0.172963i \(-0.944666\pi\)
0.984928 0.172963i \(-0.0553341\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4.24264i 0.253095i 0.991961 + 0.126547i \(0.0403896\pi\)
−0.991961 + 0.126547i \(0.959610\pi\)
\(282\) 0 0
\(283\) −4.05845 −0.241250 −0.120625 0.992698i \(-0.538490\pi\)
−0.120625 + 0.992698i \(0.538490\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 10.3923i − 0.613438i
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 10.9706 0.640907 0.320454 0.947264i \(-0.396165\pi\)
0.320454 + 0.947264i \(0.396165\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 18.7554 1.08465
\(300\) 0 0
\(301\) 4.97056 0.286498
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 4.05845 0.231628 0.115814 0.993271i \(-0.463052\pi\)
0.115814 + 0.993271i \(0.463052\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −18.7554 −1.06352 −0.531760 0.846895i \(-0.678469\pi\)
−0.531760 + 0.846895i \(0.678469\pi\)
\(312\) 0 0
\(313\) 14.0000i 0.791327i 0.918396 + 0.395663i \(0.129485\pi\)
−0.918396 + 0.395663i \(0.870515\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.02944 −0.0578190 −0.0289095 0.999582i \(-0.509203\pi\)
−0.0289095 + 0.999582i \(0.509203\pi\)
\(318\) 0 0
\(319\) − 6.08767i − 0.340844i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 4.97056i − 0.274036i
\(330\) 0 0
\(331\) − 11.8272i − 0.650081i −0.945700 0.325040i \(-0.894622\pi\)
0.945700 0.325040i \(-0.105378\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 23.4558i − 1.27772i −0.769322 0.638861i \(-0.779406\pi\)
0.769322 0.638861i \(-0.220594\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8.48528i 0.459504i
\(342\) 0 0
\(343\) 19.5959 1.05808
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 20.7846i 1.11578i 0.829916 + 0.557888i \(0.188388\pi\)
−0.829916 + 0.557888i \(0.811612\pi\)
\(348\) 0 0
\(349\) 1.51472 0.0810810 0.0405405 0.999178i \(-0.487092\pi\)
0.0405405 + 0.999178i \(0.487092\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.0000 0.638696 0.319348 0.947638i \(-0.396536\pi\)
0.319348 + 0.947638i \(0.396536\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −18.7554 −0.989871 −0.494936 0.868930i \(-0.664808\pi\)
−0.494936 + 0.868930i \(0.664808\pi\)
\(360\) 0 0
\(361\) −5.00000 −0.263158
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −15.1172 −0.789112 −0.394556 0.918872i \(-0.629102\pi\)
−0.394556 + 0.918872i \(0.629102\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −20.7846 −1.07908
\(372\) 0 0
\(373\) − 22.7279i − 1.17681i −0.808567 0.588404i \(-0.799757\pi\)
0.808567 0.588404i \(-0.200243\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −13.4558 −0.693011
\(378\) 0 0
\(379\) 17.3205i 0.889695i 0.895606 + 0.444847i \(0.146742\pi\)
−0.895606 + 0.444847i \(0.853258\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 2.02922i − 0.103688i −0.998655 0.0518442i \(-0.983490\pi\)
0.998655 0.0518442i \(-0.0165099\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 10.9706i 0.556230i 0.960548 + 0.278115i \(0.0897096\pi\)
−0.960548 + 0.278115i \(0.910290\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 14.7279i − 0.739173i −0.929196 0.369587i \(-0.879499\pi\)
0.929196 0.369587i \(-0.120501\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 19.7574i − 0.986635i −0.869849 0.493318i \(-0.835784\pi\)
0.869849 0.493318i \(-0.164216\pi\)
\(402\) 0 0
\(403\) 18.7554 0.934272
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.33386i 0.313958i
\(408\) 0 0
\(409\) −14.9706 −0.740247 −0.370123 0.928983i \(-0.620685\pi\)
−0.370123 + 0.928983i \(0.620685\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.48528 −0.122293
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 17.7408 0.866694 0.433347 0.901227i \(-0.357333\pi\)
0.433347 + 0.901227i \(0.357333\pi\)
\(420\) 0 0
\(421\) −6.97056 −0.339724 −0.169862 0.985468i \(-0.554332\pi\)
−0.169862 + 0.985468i \(0.554332\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −25.6836 −1.24292
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2.02922 −0.0977443 −0.0488721 0.998805i \(-0.515563\pi\)
−0.0488721 + 0.998805i \(0.515563\pi\)
\(432\) 0 0
\(433\) 27.4558i 1.31944i 0.751510 + 0.659722i \(0.229326\pi\)
−0.751510 + 0.659722i \(0.770674\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 40.9706 1.95989
\(438\) 0 0
\(439\) 23.0600i 1.10059i 0.834969 + 0.550297i \(0.185486\pi\)
−0.834969 + 0.550297i \(0.814514\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 16.7262i 0.794684i 0.917671 + 0.397342i \(0.130067\pi\)
−0.917671 + 0.397342i \(0.869933\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 24.7279i − 1.16698i −0.812119 0.583491i \(-0.801686\pi\)
0.812119 0.583491i \(-0.198314\pi\)
\(450\) 0 0
\(451\) − 4.30463i − 0.202697i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 34.4853i 1.61315i 0.591129 + 0.806577i \(0.298682\pi\)
−0.591129 + 0.806577i \(0.701318\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 31.4558i − 1.46504i −0.680743 0.732522i \(-0.738343\pi\)
0.680743 0.732522i \(-0.261657\pi\)
\(462\) 0 0
\(463\) 4.47871 0.208143 0.104072 0.994570i \(-0.466813\pi\)
0.104072 + 0.994570i \(0.466813\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 2.02922i − 0.0939013i −0.998897 0.0469506i \(-0.985050\pi\)
0.998897 0.0469506i \(-0.0149503\pi\)
\(468\) 0 0
\(469\) 16.9706 0.783628
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.05887 0.0946672
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 20.7846 0.949673 0.474837 0.880074i \(-0.342507\pi\)
0.474837 + 0.880074i \(0.342507\pi\)
\(480\) 0 0
\(481\) 14.0000 0.638345
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 20.3643 0.922796 0.461398 0.887193i \(-0.347348\pi\)
0.461398 + 0.887193i \(0.347348\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3.04384 0.137366 0.0686832 0.997639i \(-0.478120\pi\)
0.0686832 + 0.997639i \(0.478120\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −40.9706 −1.83778
\(498\) 0 0
\(499\) − 39.5400i − 1.77005i −0.465540 0.885027i \(-0.654140\pi\)
0.465540 0.885027i \(-0.345860\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 35.4815i 1.58204i 0.611788 + 0.791022i \(0.290451\pi\)
−0.611788 + 0.791022i \(0.709549\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2.48528i 0.110158i 0.998482 + 0.0550791i \(0.0175411\pi\)
−0.998482 + 0.0550791i \(0.982459\pi\)
\(510\) 0 0
\(511\) 25.6836i 1.13618i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 2.05887i − 0.0905492i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 9.21320i − 0.403638i −0.979423 0.201819i \(-0.935315\pi\)
0.979423 0.201819i \(-0.0646852\pi\)
\(522\) 0 0
\(523\) 25.6836 1.12306 0.561532 0.827455i \(-0.310212\pi\)
0.561532 + 0.827455i \(0.310212\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −46.9411 −2.04092
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −9.51472 −0.412128
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.01461 0.0437024
\(540\) 0 0
\(541\) −22.4853 −0.966718 −0.483359 0.875422i \(-0.660583\pi\)
−0.483359 + 0.875422i \(0.660583\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 38.3513 1.63978 0.819892 0.572519i \(-0.194034\pi\)
0.819892 + 0.572519i \(0.194034\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −29.3939 −1.25222
\(552\) 0 0
\(553\) 3.51472i 0.149461i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8.48528 0.359533 0.179766 0.983709i \(-0.442466\pi\)
0.179766 + 0.983709i \(0.442466\pi\)
\(558\) 0 0
\(559\) − 4.55082i − 0.192479i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 12.6677i 0.533881i 0.963713 + 0.266940i \(0.0860126\pi\)
−0.963713 + 0.266940i \(0.913987\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 19.7574i − 0.828272i −0.910215 0.414136i \(-0.864084\pi\)
0.910215 0.414136i \(-0.135916\pi\)
\(570\) 0 0
\(571\) 15.8856i 0.664793i 0.943140 + 0.332396i \(0.107857\pi\)
−0.943140 + 0.332396i \(0.892143\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 13.5147i 0.562625i 0.959616 + 0.281313i \(0.0907698\pi\)
−0.959616 + 0.281313i \(0.909230\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 36.0000i 1.49353i
\(582\) 0 0
\(583\) −8.60927 −0.356559
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.6969i 0.606608i 0.952894 + 0.303304i \(0.0980897\pi\)
−0.952894 + 0.303304i \(0.901910\pi\)
\(588\) 0 0
\(589\) 40.9706 1.68816
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 3.51472 0.144332 0.0721661 0.997393i \(-0.477009\pi\)
0.0721661 + 0.997393i \(0.477009\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −6.08767 −0.248736 −0.124368 0.992236i \(-0.539690\pi\)
−0.124368 + 0.992236i \(0.539690\pi\)
\(600\) 0 0
\(601\) −28.0000 −1.14214 −0.571072 0.820900i \(-0.693472\pi\)
−0.571072 + 0.820900i \(0.693472\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −25.2633 −1.02541 −0.512703 0.858566i \(-0.671356\pi\)
−0.512703 + 0.858566i \(0.671356\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.55082 −0.184106
\(612\) 0 0
\(613\) − 19.2132i − 0.776014i −0.921656 0.388007i \(-0.873164\pi\)
0.921656 0.388007i \(-0.126836\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −45.9411 −1.84952 −0.924760 0.380551i \(-0.875734\pi\)
−0.924760 + 0.380551i \(0.875734\pi\)
\(618\) 0 0
\(619\) − 20.1903i − 0.811515i −0.913981 0.405758i \(-0.867008\pi\)
0.913981 0.405758i \(-0.132992\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 39.7862i 1.59400i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 18.1610i 0.722980i 0.932376 + 0.361490i \(0.117732\pi\)
−0.932376 + 0.361490i \(0.882268\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 2.24264i − 0.0888567i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.727922i 0.0287512i 0.999897 + 0.0143756i \(0.00457605\pi\)
−0.999897 + 0.0143756i \(0.995424\pi\)
\(642\) 0 0
\(643\) −14.6969 −0.579591 −0.289795 0.957089i \(-0.593587\pi\)
−0.289795 + 0.957089i \(0.593587\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2.02922i 0.0797770i 0.999204 + 0.0398885i \(0.0127003\pi\)
−0.999204 + 0.0398885i \(0.987300\pi\)
\(648\) 0 0
\(649\) −1.02944 −0.0404089
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −46.9706 −1.83810 −0.919050 0.394141i \(-0.871042\pi\)
−0.919050 + 0.394141i \(0.871042\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −32.4377 −1.26359 −0.631797 0.775134i \(-0.717682\pi\)
−0.631797 + 0.775134i \(0.717682\pi\)
\(660\) 0 0
\(661\) −30.4853 −1.18574 −0.592870 0.805298i \(-0.702005\pi\)
−0.592870 + 0.805298i \(0.702005\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 50.1785 1.94292
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −10.6385 −0.410694
\(672\) 0 0
\(673\) 17.5147i 0.675143i 0.941300 + 0.337571i \(0.109605\pi\)
−0.941300 + 0.337571i \(0.890395\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 39.9411 1.53506 0.767531 0.641012i \(-0.221485\pi\)
0.767531 + 0.641012i \(0.221485\pi\)
\(678\) 0 0
\(679\) − 25.6836i − 0.985646i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 27.3647i 1.04708i 0.852001 + 0.523540i \(0.175389\pi\)
−0.852001 + 0.523540i \(0.824611\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 19.0294i 0.724964i
\(690\) 0 0
\(691\) 14.6969i 0.559098i 0.960131 + 0.279549i \(0.0901849\pi\)
−0.960131 + 0.279549i \(0.909815\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 31.4558i − 1.18807i −0.804439 0.594035i \(-0.797534\pi\)
0.804439 0.594035i \(-0.202466\pi\)
\(702\) 0 0
\(703\) 30.5826 1.15344
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 6.08767i − 0.228950i
\(708\) 0 0
\(709\) 35.9411 1.34980 0.674899 0.737910i \(-0.264187\pi\)
0.674899 + 0.737910i \(0.264187\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −69.9411 −2.61932
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 10.6385 0.396749 0.198374 0.980126i \(-0.436434\pi\)
0.198374 + 0.980126i \(0.436434\pi\)
\(720\) 0 0
\(721\) 39.9411 1.48749
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 44.8592 1.66374 0.831869 0.554973i \(-0.187271\pi\)
0.831869 + 0.554973i \(0.187271\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 26.2426i 0.969294i 0.874710 + 0.484647i \(0.161052\pi\)
−0.874710 + 0.484647i \(0.838948\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.02944 0.258933
\(738\) 0 0
\(739\) 35.4815i 1.30521i 0.757698 + 0.652605i \(0.226324\pi\)
−0.757698 + 0.652605i \(0.773676\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 31.4231i 1.15280i 0.817167 + 0.576401i \(0.195543\pi\)
−0.817167 + 0.576401i \(0.804457\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 45.9411i 1.67865i
\(750\) 0 0
\(751\) 51.6134i 1.88340i 0.336456 + 0.941699i \(0.390772\pi\)
−0.336456 + 0.941699i \(0.609228\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 35.2132i 1.27985i 0.768439 + 0.639923i \(0.221034\pi\)
−0.768439 + 0.639923i \(0.778966\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 41.6985i − 1.51157i −0.654820 0.755784i \(-0.727256\pi\)
0.654820 0.755784i \(-0.272744\pi\)
\(762\) 0 0
\(763\) 15.8856 0.575098
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.27541i 0.0821603i
\(768\) 0 0
\(769\) 16.0000 0.576975 0.288487 0.957484i \(-0.406848\pi\)
0.288487 + 0.957484i \(0.406848\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 10.9706 0.394584 0.197292 0.980345i \(-0.436785\pi\)
0.197292 + 0.980345i \(0.436785\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −20.7846 −0.744686
\(780\) 0 0
\(781\) −16.9706 −0.607254
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −46.4682 −1.65641 −0.828206 0.560423i \(-0.810638\pi\)
−0.828206 + 0.560423i \(0.810638\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −20.7846 −0.739016
\(792\) 0 0
\(793\) 23.5147i 0.835032i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 27.5147 0.974621 0.487311 0.873229i \(-0.337978\pi\)
0.487311 + 0.873229i \(0.337978\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 10.6385i 0.375424i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 17.6985i − 0.622246i −0.950370 0.311123i \(-0.899295\pi\)
0.950370 0.311123i \(-0.100705\pi\)
\(810\) 0 0
\(811\) 43.8446i 1.53959i 0.638289 + 0.769797i \(0.279642\pi\)
−0.638289 + 0.769797i \(0.720358\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 9.94113i − 0.347796i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 18.0000i 0.628204i 0.949389 + 0.314102i \(0.101703\pi\)
−0.949389 + 0.314102i \(0.898297\pi\)
\(822\) 0 0
\(823\) −0.420266 −0.0146496 −0.00732478 0.999973i \(-0.502332\pi\)
−0.00732478 + 0.999973i \(0.502332\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.6677i 0.440500i 0.975444 + 0.220250i \(0.0706873\pi\)
−0.975444 + 0.220250i \(0.929313\pi\)
\(828\) 0 0
\(829\) −6.48528 −0.225243 −0.112622 0.993638i \(-0.535925\pi\)
−0.112622 + 0.993638i \(0.535925\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −18.7554 −0.647508 −0.323754 0.946141i \(-0.604945\pi\)
−0.323754 + 0.946141i \(0.604945\pi\)
\(840\) 0 0
\(841\) −7.00000 −0.241379
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 24.4228 0.839177
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −52.2077 −1.78966
\(852\) 0 0
\(853\) − 26.2426i − 0.898531i −0.893398 0.449265i \(-0.851686\pi\)
0.893398 0.449265i \(-0.148314\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −28.9706 −0.989616 −0.494808 0.869002i \(-0.664762\pi\)
−0.494808 + 0.869002i \(0.664762\pi\)
\(858\) 0 0
\(859\) − 4.65279i − 0.158751i −0.996845 0.0793756i \(-0.974707\pi\)
0.996845 0.0793756i \(-0.0252927\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 4.30463i 0.146531i 0.997312 + 0.0732657i \(0.0233421\pi\)
−0.997312 + 0.0732657i \(0.976658\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.45584i 0.0493861i
\(870\) 0 0
\(871\) − 15.5375i − 0.526467i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 21.7574i − 0.734694i −0.930084 0.367347i \(-0.880266\pi\)
0.930084 0.367347i \(-0.119734\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 9.21320i 0.310401i 0.987883 + 0.155200i \(0.0496023\pi\)
−0.987883 + 0.155200i \(0.950398\pi\)
\(882\) 0 0
\(883\) 15.8856 0.534594 0.267297 0.963614i \(-0.413870\pi\)
0.267297 + 0.963614i \(0.413870\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 29.1477i 0.978684i 0.872092 + 0.489342i \(0.162763\pi\)
−0.872092 + 0.489342i \(0.837237\pi\)
\(888\) 0 0
\(889\) −18.0000 −0.603701
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −9.94113 −0.332667
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 50.1785 1.67355
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 3.21792 0.106849 0.0534246 0.998572i \(-0.482986\pi\)
0.0534246 + 0.998572i \(0.482986\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −25.3354 −0.839400 −0.419700 0.907663i \(-0.637865\pi\)
−0.419700 + 0.907663i \(0.637865\pi\)
\(912\) 0 0
\(913\) 14.9117i 0.493505i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −33.5147 −1.10675
\(918\) 0 0
\(919\) − 8.36308i − 0.275873i −0.990441 0.137936i \(-0.955953\pi\)
0.990441 0.137936i \(-0.0440469\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 37.5108i 1.23468i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 24.7279i − 0.811297i −0.914029 0.405648i \(-0.867046\pi\)
0.914029 0.405648i \(-0.132954\pi\)
\(930\) 0 0
\(931\) − 4.89898i − 0.160558i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 38.9706i 1.27311i 0.771230 + 0.636556i \(0.219642\pi\)
−0.771230 + 0.636556i \(0.780358\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 22.9706i − 0.748819i −0.927263 0.374409i \(-0.877845\pi\)
0.927263 0.374409i \(-0.122155\pi\)
\(942\) 0 0
\(943\) 35.4815 1.15544
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 20.7846i − 0.675409i −0.941252 0.337705i \(-0.890350\pi\)
0.941252 0.337705i \(-0.109650\pi\)
\(948\) 0 0
\(949\) 23.5147 0.763320
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −30.4264 −0.985608 −0.492804 0.870140i \(-0.664028\pi\)
−0.492804 + 0.870140i \(0.664028\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −8.60927 −0.278008
\(960\) 0 0
\(961\) −38.9411 −1.25617
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −51.7874 −1.66537 −0.832686 0.553745i \(-0.813198\pi\)
−0.832686 + 0.553745i \(0.813198\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −57.2808 −1.83823 −0.919114 0.393992i \(-0.871094\pi\)
−0.919114 + 0.393992i \(0.871094\pi\)
\(972\) 0 0
\(973\) 32.4853i 1.04143i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −28.9706 −0.926850 −0.463425 0.886136i \(-0.653380\pi\)
−0.463425 + 0.886136i \(0.653380\pi\)
\(978\) 0 0
\(979\) 16.4800i 0.526702i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 2.02922i − 0.0647222i −0.999476 0.0323611i \(-0.989697\pi\)
0.999476 0.0323611i \(-0.0103027\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 16.9706i 0.539633i
\(990\) 0 0
\(991\) − 49.5841i − 1.57509i −0.616256 0.787546i \(-0.711351\pi\)
0.616256 0.787546i \(-0.288649\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 47.2132i − 1.49526i −0.664117 0.747629i \(-0.731192\pi\)
0.664117 0.747629i \(-0.268808\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3600.2.o.c.3599.2 8
3.2 odd 2 3600.2.o.d.3599.4 8
4.3 odd 2 inner 3600.2.o.c.3599.8 8
5.2 odd 4 720.2.h.a.431.1 8
5.3 odd 4 3600.2.h.j.1151.6 8
5.4 even 2 3600.2.o.d.3599.5 8
12.11 even 2 3600.2.o.d.3599.6 8
15.2 even 4 720.2.h.a.431.6 yes 8
15.8 even 4 3600.2.h.j.1151.7 8
15.14 odd 2 inner 3600.2.o.c.3599.7 8
20.3 even 4 3600.2.h.j.1151.3 8
20.7 even 4 720.2.h.a.431.4 yes 8
20.19 odd 2 3600.2.o.d.3599.3 8
40.27 even 4 2880.2.h.f.1151.7 8
40.37 odd 4 2880.2.h.f.1151.6 8
60.23 odd 4 3600.2.h.j.1151.2 8
60.47 odd 4 720.2.h.a.431.7 yes 8
60.59 even 2 inner 3600.2.o.c.3599.1 8
120.77 even 4 2880.2.h.f.1151.1 8
120.107 odd 4 2880.2.h.f.1151.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
720.2.h.a.431.1 8 5.2 odd 4
720.2.h.a.431.4 yes 8 20.7 even 4
720.2.h.a.431.6 yes 8 15.2 even 4
720.2.h.a.431.7 yes 8 60.47 odd 4
2880.2.h.f.1151.1 8 120.77 even 4
2880.2.h.f.1151.4 8 120.107 odd 4
2880.2.h.f.1151.6 8 40.37 odd 4
2880.2.h.f.1151.7 8 40.27 even 4
3600.2.h.j.1151.2 8 60.23 odd 4
3600.2.h.j.1151.3 8 20.3 even 4
3600.2.h.j.1151.6 8 5.3 odd 4
3600.2.h.j.1151.7 8 15.8 even 4
3600.2.o.c.3599.1 8 60.59 even 2 inner
3600.2.o.c.3599.2 8 1.1 even 1 trivial
3600.2.o.c.3599.7 8 15.14 odd 2 inner
3600.2.o.c.3599.8 8 4.3 odd 2 inner
3600.2.o.d.3599.3 8 20.19 odd 2
3600.2.o.d.3599.4 8 3.2 odd 2
3600.2.o.d.3599.5 8 5.4 even 2
3600.2.o.d.3599.6 8 12.11 even 2