Properties

Label 361.10.a.b.1.3
Level $361$
Weight $10$
Character 361.1
Self dual yes
Analytic conductor $185.928$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [361,10,Mod(1,361)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(361, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("361.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 361 = 19^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 361.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(185.927936855\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 2124x^{4} - 384x^{3} + 1071312x^{2} + 1260144x - 135644992 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 19)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(12.6748\) of defining polynomial
Character \(\chi\) \(=\) 361.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.67485 q^{2} -204.622 q^{3} -467.446 q^{4} -2305.86 q^{5} +1365.82 q^{6} -8934.31 q^{7} +6537.66 q^{8} +22187.1 q^{9} +15391.2 q^{10} +76011.2 q^{11} +95649.8 q^{12} +105878. q^{13} +59635.2 q^{14} +471829. q^{15} +195695. q^{16} -118507. q^{17} -148096. q^{18} +1.07786e6 q^{20} +1.82816e6 q^{21} -507363. q^{22} +464530. q^{23} -1.33775e6 q^{24} +3.36385e6 q^{25} -706722. q^{26} -512401. q^{27} +4.17631e6 q^{28} +4.26351e6 q^{29} -3.14939e6 q^{30} +3.30855e6 q^{31} -4.65351e6 q^{32} -1.55536e7 q^{33} +791015. q^{34} +2.06012e7 q^{35} -1.03713e7 q^{36} +5.43488e6 q^{37} -2.16650e7 q^{39} -1.50749e7 q^{40} +3.60719e6 q^{41} -1.22027e7 q^{42} -2.52643e7 q^{43} -3.55312e7 q^{44} -5.11604e7 q^{45} -3.10067e6 q^{46} +2.04296e7 q^{47} -4.00434e7 q^{48} +3.94683e7 q^{49} -2.24532e7 q^{50} +2.42491e7 q^{51} -4.94925e7 q^{52} -3.66196e7 q^{53} +3.42020e6 q^{54} -1.75271e8 q^{55} -5.84095e7 q^{56} -2.84583e7 q^{58} +6.15867e7 q^{59} -2.20555e8 q^{60} +1.82995e8 q^{61} -2.20840e7 q^{62} -1.98227e8 q^{63} -6.91342e7 q^{64} -2.44140e8 q^{65} +1.03818e8 q^{66} +2.11382e8 q^{67} +5.53956e7 q^{68} -9.50531e7 q^{69} -1.37510e8 q^{70} +3.66751e8 q^{71} +1.45052e8 q^{72} +3.38405e8 q^{73} -3.62770e7 q^{74} -6.88318e8 q^{75} -6.79108e8 q^{77} +1.44611e8 q^{78} +2.31930e8 q^{79} -4.51244e8 q^{80} -3.31861e8 q^{81} -2.40774e7 q^{82} +4.29926e8 q^{83} -8.54565e8 q^{84} +2.73260e8 q^{85} +1.68636e8 q^{86} -8.72407e8 q^{87} +4.96935e8 q^{88} +9.51115e8 q^{89} +3.41488e8 q^{90} -9.45951e8 q^{91} -2.17143e8 q^{92} -6.77001e8 q^{93} -1.36364e8 q^{94} +9.52211e8 q^{96} -2.29994e8 q^{97} -2.63445e8 q^{98} +1.68647e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 33 q^{2} + 155 q^{3} + 1365 q^{4} - 3612 q^{5} + 5581 q^{6} + 4085 q^{7} + 23511 q^{8} + 17625 q^{9} + 93884 q^{10} - 69312 q^{11} + 460165 q^{12} + 191747 q^{13} + 644691 q^{14} + 326428 q^{15} + 13905 q^{16}+ \cdots + 1045331674 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −6.67485 −0.294989 −0.147495 0.989063i \(-0.547121\pi\)
−0.147495 + 0.989063i \(0.547121\pi\)
\(3\) −204.622 −1.45850 −0.729250 0.684247i \(-0.760131\pi\)
−0.729250 + 0.684247i \(0.760131\pi\)
\(4\) −467.446 −0.912981
\(5\) −2305.86 −1.64994 −0.824969 0.565179i \(-0.808807\pi\)
−0.824969 + 0.565179i \(0.808807\pi\)
\(6\) 1365.82 0.430242
\(7\) −8934.31 −1.40644 −0.703218 0.710974i \(-0.748254\pi\)
−0.703218 + 0.710974i \(0.748254\pi\)
\(8\) 6537.66 0.564309
\(9\) 22187.1 1.12722
\(10\) 15391.2 0.486714
\(11\) 76011.2 1.56535 0.782673 0.622433i \(-0.213856\pi\)
0.782673 + 0.622433i \(0.213856\pi\)
\(12\) 95649.8 1.33158
\(13\) 105878. 1.02816 0.514082 0.857741i \(-0.328133\pi\)
0.514082 + 0.857741i \(0.328133\pi\)
\(14\) 59635.2 0.414884
\(15\) 471829. 2.40643
\(16\) 195695. 0.746516
\(17\) −118507. −0.344130 −0.172065 0.985086i \(-0.555044\pi\)
−0.172065 + 0.985086i \(0.555044\pi\)
\(18\) −148096. −0.332519
\(19\) 0 0
\(20\) 1.07786e6 1.50636
\(21\) 1.82816e6 2.05129
\(22\) −507363. −0.461761
\(23\) 464530. 0.346130 0.173065 0.984910i \(-0.444633\pi\)
0.173065 + 0.984910i \(0.444633\pi\)
\(24\) −1.33775e6 −0.823045
\(25\) 3.36385e6 1.72229
\(26\) −706722. −0.303297
\(27\) −512401. −0.185555
\(28\) 4.17631e6 1.28405
\(29\) 4.26351e6 1.11938 0.559688 0.828704i \(-0.310921\pi\)
0.559688 + 0.828704i \(0.310921\pi\)
\(30\) −3.14939e6 −0.709873
\(31\) 3.30855e6 0.643442 0.321721 0.946834i \(-0.395739\pi\)
0.321721 + 0.946834i \(0.395739\pi\)
\(32\) −4.65351e6 −0.784524
\(33\) −1.55536e7 −2.28306
\(34\) 791015. 0.101515
\(35\) 2.06012e7 2.32053
\(36\) −1.03713e7 −1.02913
\(37\) 5.43488e6 0.476740 0.238370 0.971174i \(-0.423387\pi\)
0.238370 + 0.971174i \(0.423387\pi\)
\(38\) 0 0
\(39\) −2.16650e7 −1.49958
\(40\) −1.50749e7 −0.931075
\(41\) 3.60719e6 0.199361 0.0996807 0.995019i \(-0.468218\pi\)
0.0996807 + 0.995019i \(0.468218\pi\)
\(42\) −1.22027e7 −0.605108
\(43\) −2.52643e7 −1.12694 −0.563469 0.826137i \(-0.690534\pi\)
−0.563469 + 0.826137i \(0.690534\pi\)
\(44\) −3.55312e7 −1.42913
\(45\) −5.11604e7 −1.85985
\(46\) −3.10067e6 −0.102105
\(47\) 2.04296e7 0.610687 0.305343 0.952242i \(-0.401229\pi\)
0.305343 + 0.952242i \(0.401229\pi\)
\(48\) −4.00434e7 −1.08879
\(49\) 3.94683e7 0.978062
\(50\) −2.24532e7 −0.508058
\(51\) 2.42491e7 0.501914
\(52\) −4.94925e7 −0.938694
\(53\) −3.66196e7 −0.637489 −0.318744 0.947841i \(-0.603261\pi\)
−0.318744 + 0.947841i \(0.603261\pi\)
\(54\) 3.42020e6 0.0547368
\(55\) −1.75271e8 −2.58272
\(56\) −5.84095e7 −0.793665
\(57\) 0 0
\(58\) −2.84583e7 −0.330204
\(59\) 6.15867e7 0.661687 0.330843 0.943686i \(-0.392667\pi\)
0.330843 + 0.943686i \(0.392667\pi\)
\(60\) −2.20555e8 −2.19703
\(61\) 1.82995e8 1.69221 0.846107 0.533013i \(-0.178940\pi\)
0.846107 + 0.533013i \(0.178940\pi\)
\(62\) −2.20840e7 −0.189809
\(63\) −1.98227e8 −1.58537
\(64\) −6.91342e7 −0.515090
\(65\) −2.44140e8 −1.69641
\(66\) 1.03818e8 0.673478
\(67\) 2.11382e8 1.28154 0.640768 0.767735i \(-0.278616\pi\)
0.640768 + 0.767735i \(0.278616\pi\)
\(68\) 5.53956e7 0.314185
\(69\) −9.50531e7 −0.504830
\(70\) −1.37510e8 −0.684532
\(71\) 3.66751e8 1.71281 0.856404 0.516306i \(-0.172693\pi\)
0.856404 + 0.516306i \(0.172693\pi\)
\(72\) 1.45052e8 0.636103
\(73\) 3.38405e8 1.39471 0.697354 0.716727i \(-0.254360\pi\)
0.697354 + 0.716727i \(0.254360\pi\)
\(74\) −3.62770e7 −0.140633
\(75\) −6.88318e8 −2.51196
\(76\) 0 0
\(77\) −6.79108e8 −2.20156
\(78\) 1.44611e8 0.442359
\(79\) 2.31930e8 0.669939 0.334969 0.942229i \(-0.391274\pi\)
0.334969 + 0.942229i \(0.391274\pi\)
\(80\) −4.51244e8 −1.23170
\(81\) −3.31861e8 −0.856591
\(82\) −2.40774e7 −0.0588095
\(83\) 4.29926e8 0.994357 0.497179 0.867648i \(-0.334369\pi\)
0.497179 + 0.867648i \(0.334369\pi\)
\(84\) −8.54565e8 −1.87279
\(85\) 2.73260e8 0.567794
\(86\) 1.68636e8 0.332435
\(87\) −8.72407e8 −1.63261
\(88\) 4.96935e8 0.883340
\(89\) 9.51115e8 1.60686 0.803430 0.595399i \(-0.203006\pi\)
0.803430 + 0.595399i \(0.203006\pi\)
\(90\) 3.41488e8 0.548635
\(91\) −9.45951e8 −1.44605
\(92\) −2.17143e8 −0.316010
\(93\) −6.77001e8 −0.938461
\(94\) −1.36364e8 −0.180146
\(95\) 0 0
\(96\) 9.52211e8 1.14423
\(97\) −2.29994e8 −0.263781 −0.131890 0.991264i \(-0.542105\pi\)
−0.131890 + 0.991264i \(0.542105\pi\)
\(98\) −2.63445e8 −0.288518
\(99\) 1.68647e9 1.76450
\(100\) −1.57242e9 −1.57242
\(101\) 5.35844e8 0.512380 0.256190 0.966626i \(-0.417533\pi\)
0.256190 + 0.966626i \(0.417533\pi\)
\(102\) −1.61859e8 −0.148059
\(103\) −4.79490e8 −0.419771 −0.209885 0.977726i \(-0.567309\pi\)
−0.209885 + 0.977726i \(0.567309\pi\)
\(104\) 6.92197e8 0.580202
\(105\) −4.21547e9 −3.38449
\(106\) 2.44430e8 0.188052
\(107\) 1.29774e9 0.957108 0.478554 0.878058i \(-0.341161\pi\)
0.478554 + 0.878058i \(0.341161\pi\)
\(108\) 2.39520e8 0.169408
\(109\) 1.27800e9 0.867185 0.433593 0.901109i \(-0.357246\pi\)
0.433593 + 0.901109i \(0.357246\pi\)
\(110\) 1.16991e9 0.761876
\(111\) −1.11210e9 −0.695326
\(112\) −1.74840e9 −1.04993
\(113\) −3.72652e8 −0.215006 −0.107503 0.994205i \(-0.534285\pi\)
−0.107503 + 0.994205i \(0.534285\pi\)
\(114\) 0 0
\(115\) −1.07114e9 −0.571092
\(116\) −1.99296e9 −1.02197
\(117\) 2.34914e9 1.15897
\(118\) −4.11082e8 −0.195191
\(119\) 1.05878e9 0.483997
\(120\) 3.08466e9 1.35797
\(121\) 3.41976e9 1.45031
\(122\) −1.22147e9 −0.499185
\(123\) −7.38109e8 −0.290769
\(124\) −1.54657e9 −0.587451
\(125\) −3.25294e9 −1.19174
\(126\) 1.32313e9 0.467667
\(127\) −4.35656e9 −1.48603 −0.743013 0.669277i \(-0.766604\pi\)
−0.743013 + 0.669277i \(0.766604\pi\)
\(128\) 2.84406e9 0.936470
\(129\) 5.16964e9 1.64364
\(130\) 1.62960e9 0.500422
\(131\) −1.83771e9 −0.545200 −0.272600 0.962128i \(-0.587883\pi\)
−0.272600 + 0.962128i \(0.587883\pi\)
\(132\) 7.27046e9 2.08439
\(133\) 0 0
\(134\) −1.41094e9 −0.378039
\(135\) 1.18152e9 0.306154
\(136\) −7.74757e8 −0.194196
\(137\) −1.41943e9 −0.344247 −0.172124 0.985075i \(-0.555063\pi\)
−0.172124 + 0.985075i \(0.555063\pi\)
\(138\) 6.34465e8 0.148920
\(139\) 3.62124e9 0.822793 0.411397 0.911456i \(-0.365041\pi\)
0.411397 + 0.911456i \(0.365041\pi\)
\(140\) −9.62998e9 −2.11860
\(141\) −4.18034e9 −0.890687
\(142\) −2.44801e9 −0.505260
\(143\) 8.04794e9 1.60943
\(144\) 4.34190e9 0.841490
\(145\) −9.83104e9 −1.84690
\(146\) −2.25880e9 −0.411424
\(147\) −8.07608e9 −1.42650
\(148\) −2.54051e9 −0.435255
\(149\) −4.51486e9 −0.750423 −0.375211 0.926939i \(-0.622430\pi\)
−0.375211 + 0.926939i \(0.622430\pi\)
\(150\) 4.59442e9 0.741003
\(151\) −3.40803e9 −0.533467 −0.266733 0.963770i \(-0.585944\pi\)
−0.266733 + 0.963770i \(0.585944\pi\)
\(152\) 0 0
\(153\) −2.62933e9 −0.387912
\(154\) 4.53294e9 0.649437
\(155\) −7.62903e9 −1.06164
\(156\) 1.01272e10 1.36909
\(157\) 5.43812e9 0.714332 0.357166 0.934041i \(-0.383743\pi\)
0.357166 + 0.934041i \(0.383743\pi\)
\(158\) −1.54810e9 −0.197625
\(159\) 7.49318e9 0.929778
\(160\) 1.07303e10 1.29441
\(161\) −4.15026e9 −0.486809
\(162\) 2.21512e9 0.252685
\(163\) 1.25182e10 1.38898 0.694492 0.719500i \(-0.255629\pi\)
0.694492 + 0.719500i \(0.255629\pi\)
\(164\) −1.68617e9 −0.182013
\(165\) 3.58643e10 3.76690
\(166\) −2.86969e9 −0.293325
\(167\) 1.43828e9 0.143093 0.0715465 0.997437i \(-0.477207\pi\)
0.0715465 + 0.997437i \(0.477207\pi\)
\(168\) 1.19519e10 1.15756
\(169\) 6.05733e8 0.0571204
\(170\) −1.82397e9 −0.167493
\(171\) 0 0
\(172\) 1.18097e10 1.02887
\(173\) −5.79291e9 −0.491688 −0.245844 0.969309i \(-0.579065\pi\)
−0.245844 + 0.969309i \(0.579065\pi\)
\(174\) 5.82318e9 0.481603
\(175\) −3.00537e10 −2.42229
\(176\) 1.48750e10 1.16856
\(177\) −1.26020e10 −0.965071
\(178\) −6.34855e9 −0.474007
\(179\) 2.28942e10 1.66681 0.833406 0.552661i \(-0.186387\pi\)
0.833406 + 0.552661i \(0.186387\pi\)
\(180\) 2.39147e10 1.69801
\(181\) 8.50176e9 0.588783 0.294391 0.955685i \(-0.404883\pi\)
0.294391 + 0.955685i \(0.404883\pi\)
\(182\) 6.31408e9 0.426568
\(183\) −3.74448e10 −2.46810
\(184\) 3.03694e9 0.195324
\(185\) −1.25320e10 −0.786592
\(186\) 4.51888e9 0.276836
\(187\) −9.00784e9 −0.538683
\(188\) −9.54972e9 −0.557546
\(189\) 4.57795e9 0.260971
\(190\) 0 0
\(191\) −1.83546e10 −0.997920 −0.498960 0.866625i \(-0.666285\pi\)
−0.498960 + 0.866625i \(0.666285\pi\)
\(192\) 1.41464e10 0.751259
\(193\) 1.79372e10 0.930566 0.465283 0.885162i \(-0.345953\pi\)
0.465283 + 0.885162i \(0.345953\pi\)
\(194\) 1.53517e9 0.0778126
\(195\) 4.99565e10 2.47421
\(196\) −1.84493e10 −0.892952
\(197\) −1.55392e10 −0.735074 −0.367537 0.930009i \(-0.619799\pi\)
−0.367537 + 0.930009i \(0.619799\pi\)
\(198\) −1.12569e10 −0.520507
\(199\) 3.81671e9 0.172524 0.0862621 0.996272i \(-0.472508\pi\)
0.0862621 + 0.996272i \(0.472508\pi\)
\(200\) 2.19917e10 0.971906
\(201\) −4.32533e10 −1.86912
\(202\) −3.57668e9 −0.151147
\(203\) −3.80915e10 −1.57433
\(204\) −1.13351e10 −0.458238
\(205\) −8.31766e9 −0.328934
\(206\) 3.20052e9 0.123828
\(207\) 1.03066e10 0.390166
\(208\) 2.07198e10 0.767541
\(209\) 0 0
\(210\) 2.81376e10 0.998390
\(211\) 5.81601e9 0.202001 0.101001 0.994886i \(-0.467796\pi\)
0.101001 + 0.994886i \(0.467796\pi\)
\(212\) 1.71177e10 0.582015
\(213\) −7.50453e10 −2.49813
\(214\) −8.66222e9 −0.282337
\(215\) 5.82560e10 1.85938
\(216\) −3.34990e9 −0.104711
\(217\) −2.95596e10 −0.904960
\(218\) −8.53046e9 −0.255810
\(219\) −6.92450e10 −2.03418
\(220\) 8.19298e10 2.35798
\(221\) −1.25473e10 −0.353822
\(222\) 7.42307e9 0.205114
\(223\) 5.10133e10 1.38137 0.690687 0.723154i \(-0.257308\pi\)
0.690687 + 0.723154i \(0.257308\pi\)
\(224\) 4.15759e10 1.10338
\(225\) 7.46342e10 1.94141
\(226\) 2.48739e9 0.0634244
\(227\) −5.88744e10 −1.47167 −0.735834 0.677162i \(-0.763210\pi\)
−0.735834 + 0.677162i \(0.763210\pi\)
\(228\) 0 0
\(229\) 7.84154e10 1.88426 0.942132 0.335243i \(-0.108819\pi\)
0.942132 + 0.335243i \(0.108819\pi\)
\(230\) 7.14970e9 0.168466
\(231\) 1.38960e11 3.21098
\(232\) 2.78733e10 0.631674
\(233\) 1.69774e10 0.377372 0.188686 0.982037i \(-0.439577\pi\)
0.188686 + 0.982037i \(0.439577\pi\)
\(234\) −1.56801e10 −0.341884
\(235\) −4.71076e10 −1.00759
\(236\) −2.87885e10 −0.604108
\(237\) −4.74580e10 −0.977106
\(238\) −7.06717e9 −0.142774
\(239\) 3.66064e10 0.725716 0.362858 0.931844i \(-0.381801\pi\)
0.362858 + 0.931844i \(0.381801\pi\)
\(240\) 9.23344e10 1.79644
\(241\) 2.36351e10 0.451316 0.225658 0.974207i \(-0.427547\pi\)
0.225658 + 0.974207i \(0.427547\pi\)
\(242\) −2.28264e10 −0.427826
\(243\) 7.79916e10 1.43489
\(244\) −8.55404e10 −1.54496
\(245\) −9.10083e10 −1.61374
\(246\) 4.92677e9 0.0857737
\(247\) 0 0
\(248\) 2.16301e10 0.363100
\(249\) −8.79723e10 −1.45027
\(250\) 2.17129e10 0.351550
\(251\) −3.94031e10 −0.626612 −0.313306 0.949652i \(-0.601437\pi\)
−0.313306 + 0.949652i \(0.601437\pi\)
\(252\) 9.26604e10 1.44741
\(253\) 3.53095e10 0.541813
\(254\) 2.90793e10 0.438362
\(255\) −5.59149e10 −0.828127
\(256\) 1.64130e10 0.238841
\(257\) −5.99175e10 −0.856751 −0.428375 0.903601i \(-0.640914\pi\)
−0.428375 + 0.903601i \(0.640914\pi\)
\(258\) −3.45066e10 −0.484856
\(259\) −4.85569e10 −0.670505
\(260\) 1.14123e11 1.54879
\(261\) 9.45950e10 1.26179
\(262\) 1.22664e10 0.160828
\(263\) 9.34155e10 1.20398 0.601989 0.798505i \(-0.294375\pi\)
0.601989 + 0.798505i \(0.294375\pi\)
\(264\) −1.01684e11 −1.28835
\(265\) 8.44396e10 1.05182
\(266\) 0 0
\(267\) −1.94619e11 −2.34361
\(268\) −9.88096e10 −1.17002
\(269\) −2.63361e10 −0.306667 −0.153333 0.988175i \(-0.549001\pi\)
−0.153333 + 0.988175i \(0.549001\pi\)
\(270\) −7.88649e9 −0.0903123
\(271\) −6.96232e10 −0.784137 −0.392069 0.919936i \(-0.628240\pi\)
−0.392069 + 0.919936i \(0.628240\pi\)
\(272\) −2.31911e10 −0.256899
\(273\) 1.93562e11 2.10906
\(274\) 9.47446e9 0.101549
\(275\) 2.55690e11 2.69598
\(276\) 4.44322e10 0.460901
\(277\) 1.58893e10 0.162160 0.0810802 0.996708i \(-0.474163\pi\)
0.0810802 + 0.996708i \(0.474163\pi\)
\(278\) −2.41712e10 −0.242715
\(279\) 7.34072e10 0.725303
\(280\) 1.34684e11 1.30950
\(281\) 6.63158e10 0.634510 0.317255 0.948340i \(-0.397239\pi\)
0.317255 + 0.948340i \(0.397239\pi\)
\(282\) 2.79031e10 0.262743
\(283\) 1.14819e11 1.06408 0.532040 0.846719i \(-0.321425\pi\)
0.532040 + 0.846719i \(0.321425\pi\)
\(284\) −1.71436e11 −1.56376
\(285\) 0 0
\(286\) −5.37188e10 −0.474766
\(287\) −3.22277e10 −0.280389
\(288\) −1.03248e11 −0.884333
\(289\) −1.04544e11 −0.881574
\(290\) 6.56207e10 0.544816
\(291\) 4.70618e10 0.384725
\(292\) −1.58186e11 −1.27334
\(293\) 7.78874e9 0.0617395 0.0308697 0.999523i \(-0.490172\pi\)
0.0308697 + 0.999523i \(0.490172\pi\)
\(294\) 5.39066e10 0.420804
\(295\) −1.42010e11 −1.09174
\(296\) 3.55314e10 0.269029
\(297\) −3.89482e10 −0.290458
\(298\) 3.01360e10 0.221367
\(299\) 4.91837e10 0.355878
\(300\) 3.21752e11 2.29338
\(301\) 2.25720e11 1.58497
\(302\) 2.27481e10 0.157367
\(303\) −1.09645e11 −0.747306
\(304\) 0 0
\(305\) −4.21961e11 −2.79205
\(306\) 1.75504e10 0.114430
\(307\) 1.28574e11 0.826097 0.413048 0.910709i \(-0.364464\pi\)
0.413048 + 0.910709i \(0.364464\pi\)
\(308\) 3.17447e11 2.00998
\(309\) 9.81142e10 0.612236
\(310\) 5.09227e10 0.313172
\(311\) −1.18442e11 −0.717933 −0.358966 0.933350i \(-0.616871\pi\)
−0.358966 + 0.933350i \(0.616871\pi\)
\(312\) −1.41639e11 −0.846225
\(313\) −6.29440e10 −0.370685 −0.185342 0.982674i \(-0.559339\pi\)
−0.185342 + 0.982674i \(0.559339\pi\)
\(314\) −3.62986e10 −0.210720
\(315\) 4.57083e11 2.61576
\(316\) −1.08415e11 −0.611642
\(317\) 2.91415e11 1.62086 0.810430 0.585836i \(-0.199234\pi\)
0.810430 + 0.585836i \(0.199234\pi\)
\(318\) −5.00158e10 −0.274275
\(319\) 3.24074e11 1.75221
\(320\) 1.59414e11 0.849866
\(321\) −2.65546e11 −1.39594
\(322\) 2.77024e10 0.143604
\(323\) 0 0
\(324\) 1.55127e11 0.782051
\(325\) 3.56159e11 1.77080
\(326\) −8.35571e10 −0.409736
\(327\) −2.61507e11 −1.26479
\(328\) 2.35825e10 0.112502
\(329\) −1.82524e11 −0.858892
\(330\) −2.39389e11 −1.11120
\(331\) −1.96067e11 −0.897798 −0.448899 0.893582i \(-0.648184\pi\)
−0.448899 + 0.893582i \(0.648184\pi\)
\(332\) −2.00967e11 −0.907829
\(333\) 1.20584e11 0.537393
\(334\) −9.60028e9 −0.0422109
\(335\) −4.87416e11 −2.11445
\(336\) 3.57760e11 1.53132
\(337\) −1.46927e11 −0.620538 −0.310269 0.950649i \(-0.600419\pi\)
−0.310269 + 0.950649i \(0.600419\pi\)
\(338\) −4.04318e9 −0.0168499
\(339\) 7.62527e10 0.313586
\(340\) −1.27734e11 −0.518385
\(341\) 2.51487e11 1.00721
\(342\) 0 0
\(343\) 7.90939e9 0.0308546
\(344\) −1.65170e11 −0.635942
\(345\) 2.19179e11 0.832938
\(346\) 3.86668e10 0.145043
\(347\) −2.39730e11 −0.887645 −0.443822 0.896115i \(-0.646378\pi\)
−0.443822 + 0.896115i \(0.646378\pi\)
\(348\) 4.07803e11 1.49054
\(349\) 2.99376e11 1.08020 0.540098 0.841602i \(-0.318387\pi\)
0.540098 + 0.841602i \(0.318387\pi\)
\(350\) 2.00604e11 0.714551
\(351\) −5.42522e10 −0.190781
\(352\) −3.53719e11 −1.22805
\(353\) −2.24547e11 −0.769701 −0.384850 0.922979i \(-0.625747\pi\)
−0.384850 + 0.922979i \(0.625747\pi\)
\(354\) 8.41163e10 0.284686
\(355\) −8.45675e11 −2.82603
\(356\) −4.44595e11 −1.46703
\(357\) −2.16649e11 −0.705910
\(358\) −1.52815e11 −0.491692
\(359\) −1.04257e11 −0.331267 −0.165633 0.986187i \(-0.552967\pi\)
−0.165633 + 0.986187i \(0.552967\pi\)
\(360\) −3.34469e11 −1.04953
\(361\) 0 0
\(362\) −5.67479e10 −0.173685
\(363\) −6.99757e11 −2.11528
\(364\) 4.42181e11 1.32021
\(365\) −7.80313e11 −2.30118
\(366\) 2.49939e11 0.728062
\(367\) −2.80297e11 −0.806530 −0.403265 0.915083i \(-0.632125\pi\)
−0.403265 + 0.915083i \(0.632125\pi\)
\(368\) 9.09061e10 0.258391
\(369\) 8.00331e10 0.224725
\(370\) 8.36495e10 0.232036
\(371\) 3.27171e11 0.896587
\(372\) 3.16462e11 0.856797
\(373\) 2.80055e10 0.0749124 0.0374562 0.999298i \(-0.488075\pi\)
0.0374562 + 0.999298i \(0.488075\pi\)
\(374\) 6.01260e10 0.158906
\(375\) 6.65622e11 1.73815
\(376\) 1.33561e11 0.344616
\(377\) 4.51413e11 1.15090
\(378\) −3.05571e10 −0.0769838
\(379\) 6.77032e11 1.68552 0.842758 0.538292i \(-0.180930\pi\)
0.842758 + 0.538292i \(0.180930\pi\)
\(380\) 0 0
\(381\) 8.91447e11 2.16737
\(382\) 1.22514e11 0.294376
\(383\) 1.90210e11 0.451689 0.225844 0.974163i \(-0.427486\pi\)
0.225844 + 0.974163i \(0.427486\pi\)
\(384\) −5.81957e11 −1.36584
\(385\) 1.56593e12 3.63244
\(386\) −1.19728e11 −0.274507
\(387\) −5.60544e11 −1.27031
\(388\) 1.07510e11 0.240827
\(389\) 8.42755e11 1.86607 0.933036 0.359784i \(-0.117150\pi\)
0.933036 + 0.359784i \(0.117150\pi\)
\(390\) −3.33452e11 −0.729865
\(391\) −5.50500e10 −0.119114
\(392\) 2.58030e11 0.551929
\(393\) 3.76035e11 0.795174
\(394\) 1.03722e11 0.216839
\(395\) −5.34798e11 −1.10536
\(396\) −7.88335e11 −1.61095
\(397\) 3.69683e11 0.746917 0.373459 0.927647i \(-0.378172\pi\)
0.373459 + 0.927647i \(0.378172\pi\)
\(398\) −2.54759e10 −0.0508928
\(399\) 0 0
\(400\) 6.58288e11 1.28572
\(401\) 1.48924e11 0.287617 0.143809 0.989606i \(-0.454065\pi\)
0.143809 + 0.989606i \(0.454065\pi\)
\(402\) 2.88709e11 0.551371
\(403\) 3.50304e11 0.661564
\(404\) −2.50478e11 −0.467793
\(405\) 7.65224e11 1.41332
\(406\) 2.54255e11 0.464411
\(407\) 4.13112e11 0.746264
\(408\) 1.58532e11 0.283235
\(409\) 1.01326e12 1.79046 0.895232 0.445600i \(-0.147010\pi\)
0.895232 + 0.445600i \(0.147010\pi\)
\(410\) 5.55191e10 0.0970320
\(411\) 2.90446e11 0.502084
\(412\) 2.24136e11 0.383243
\(413\) −5.50234e11 −0.930620
\(414\) −6.87950e10 −0.115095
\(415\) −9.91348e11 −1.64063
\(416\) −4.92706e11 −0.806619
\(417\) −7.40985e11 −1.20004
\(418\) 0 0
\(419\) 4.76920e11 0.755931 0.377966 0.925820i \(-0.376624\pi\)
0.377966 + 0.925820i \(0.376624\pi\)
\(420\) 1.97050e12 3.08998
\(421\) 8.54935e11 1.32637 0.663183 0.748457i \(-0.269205\pi\)
0.663183 + 0.748457i \(0.269205\pi\)
\(422\) −3.88210e10 −0.0595883
\(423\) 4.53273e11 0.688381
\(424\) −2.39407e11 −0.359741
\(425\) −3.98639e11 −0.592693
\(426\) 5.00916e11 0.736922
\(427\) −1.63494e12 −2.37999
\(428\) −6.06624e11 −0.873821
\(429\) −1.64679e12 −2.34736
\(430\) −3.88850e11 −0.548497
\(431\) 4.31075e11 0.601735 0.300867 0.953666i \(-0.402724\pi\)
0.300867 + 0.953666i \(0.402724\pi\)
\(432\) −1.00274e11 −0.138520
\(433\) −1.83795e11 −0.251269 −0.125634 0.992077i \(-0.540097\pi\)
−0.125634 + 0.992077i \(0.540097\pi\)
\(434\) 1.97306e11 0.266954
\(435\) 2.01165e12 2.69370
\(436\) −5.97397e11 −0.791724
\(437\) 0 0
\(438\) 4.62200e11 0.600062
\(439\) −9.40513e11 −1.20858 −0.604289 0.796765i \(-0.706543\pi\)
−0.604289 + 0.796765i \(0.706543\pi\)
\(440\) −1.14586e12 −1.45745
\(441\) 8.75689e11 1.10249
\(442\) 8.37514e10 0.104374
\(443\) −8.33396e11 −1.02810 −0.514049 0.857761i \(-0.671855\pi\)
−0.514049 + 0.857761i \(0.671855\pi\)
\(444\) 5.19845e11 0.634820
\(445\) −2.19314e12 −2.65122
\(446\) −3.40506e11 −0.407491
\(447\) 9.23839e11 1.09449
\(448\) 6.17666e11 0.724441
\(449\) 2.09414e11 0.243163 0.121581 0.992581i \(-0.461203\pi\)
0.121581 + 0.992581i \(0.461203\pi\)
\(450\) −4.98172e11 −0.572695
\(451\) 2.74187e11 0.312070
\(452\) 1.74195e11 0.196296
\(453\) 6.97358e11 0.778061
\(454\) 3.92978e11 0.434127
\(455\) 2.18123e12 2.38589
\(456\) 0 0
\(457\) −1.13033e12 −1.21222 −0.606112 0.795379i \(-0.707272\pi\)
−0.606112 + 0.795379i \(0.707272\pi\)
\(458\) −5.23411e11 −0.555838
\(459\) 6.07230e10 0.0638552
\(460\) 5.00701e11 0.521397
\(461\) −6.77650e11 −0.698797 −0.349399 0.936974i \(-0.613614\pi\)
−0.349399 + 0.936974i \(0.613614\pi\)
\(462\) −9.27539e11 −0.947204
\(463\) 6.18893e11 0.625894 0.312947 0.949771i \(-0.398684\pi\)
0.312947 + 0.949771i \(0.398684\pi\)
\(464\) 8.34345e11 0.835632
\(465\) 1.56107e12 1.54840
\(466\) −1.13322e11 −0.111321
\(467\) 1.10573e12 1.07578 0.537890 0.843015i \(-0.319222\pi\)
0.537890 + 0.843015i \(0.319222\pi\)
\(468\) −1.09810e12 −1.05812
\(469\) −1.88855e12 −1.80240
\(470\) 3.14436e11 0.297230
\(471\) −1.11276e12 −1.04185
\(472\) 4.02632e11 0.373396
\(473\) −1.92037e12 −1.76405
\(474\) 3.16775e11 0.288236
\(475\) 0 0
\(476\) −4.94921e11 −0.441881
\(477\) −8.12485e11 −0.718592
\(478\) −2.44342e11 −0.214079
\(479\) −1.45718e11 −0.126475 −0.0632374 0.997999i \(-0.520143\pi\)
−0.0632374 + 0.997999i \(0.520143\pi\)
\(480\) −2.19566e12 −1.88790
\(481\) 5.75436e11 0.490167
\(482\) −1.57761e11 −0.133133
\(483\) 8.49234e11 0.710012
\(484\) −1.59855e12 −1.32411
\(485\) 5.30333e11 0.435222
\(486\) −5.20582e11 −0.423278
\(487\) −1.18303e12 −0.953051 −0.476526 0.879161i \(-0.658104\pi\)
−0.476526 + 0.879161i \(0.658104\pi\)
\(488\) 1.19636e12 0.954932
\(489\) −2.56150e12 −2.02583
\(490\) 6.07467e11 0.476036
\(491\) −9.48949e11 −0.736845 −0.368422 0.929658i \(-0.620102\pi\)
−0.368422 + 0.929658i \(0.620102\pi\)
\(492\) 3.45027e11 0.265466
\(493\) −5.05254e11 −0.385211
\(494\) 0 0
\(495\) −3.88876e12 −2.91131
\(496\) 6.47465e11 0.480340
\(497\) −3.27667e12 −2.40896
\(498\) 5.87202e11 0.427814
\(499\) −2.14745e12 −1.55050 −0.775249 0.631656i \(-0.782376\pi\)
−0.775249 + 0.631656i \(0.782376\pi\)
\(500\) 1.52057e12 1.08803
\(501\) −2.94303e11 −0.208701
\(502\) 2.63010e11 0.184844
\(503\) 1.70992e12 1.19102 0.595512 0.803347i \(-0.296949\pi\)
0.595512 + 0.803347i \(0.296949\pi\)
\(504\) −1.29594e12 −0.894637
\(505\) −1.23558e12 −0.845395
\(506\) −2.35686e11 −0.159829
\(507\) −1.23946e11 −0.0833101
\(508\) 2.03646e12 1.35671
\(509\) 6.70208e11 0.442568 0.221284 0.975209i \(-0.428975\pi\)
0.221284 + 0.975209i \(0.428975\pi\)
\(510\) 3.73224e11 0.244289
\(511\) −3.02341e12 −1.96157
\(512\) −1.56571e12 −1.00693
\(513\) 0 0
\(514\) 3.99940e11 0.252732
\(515\) 1.10564e12 0.692595
\(516\) −2.41653e12 −1.50061
\(517\) 1.55288e12 0.955937
\(518\) 3.24110e11 0.197792
\(519\) 1.18536e12 0.717127
\(520\) −1.59611e12 −0.957297
\(521\) 1.19280e12 0.709245 0.354623 0.935010i \(-0.384609\pi\)
0.354623 + 0.935010i \(0.384609\pi\)
\(522\) −6.31407e11 −0.372214
\(523\) −2.45031e12 −1.43207 −0.716035 0.698065i \(-0.754045\pi\)
−0.716035 + 0.698065i \(0.754045\pi\)
\(524\) 8.59030e11 0.497757
\(525\) 6.14965e12 3.53292
\(526\) −6.23535e11 −0.355161
\(527\) −3.92085e11 −0.221428
\(528\) −3.04375e12 −1.70434
\(529\) −1.58536e12 −0.880194
\(530\) −5.63622e11 −0.310275
\(531\) 1.36643e12 0.745869
\(532\) 0 0
\(533\) 3.81923e11 0.204976
\(534\) 1.29905e12 0.691339
\(535\) −2.99240e12 −1.57917
\(536\) 1.38194e12 0.723182
\(537\) −4.68466e12 −2.43105
\(538\) 1.75790e11 0.0904635
\(539\) 3.00003e12 1.53101
\(540\) −5.52299e11 −0.279513
\(541\) −3.32515e12 −1.66888 −0.834438 0.551102i \(-0.814207\pi\)
−0.834438 + 0.551102i \(0.814207\pi\)
\(542\) 4.64724e11 0.231312
\(543\) −1.73965e12 −0.858740
\(544\) 5.51473e11 0.269978
\(545\) −2.94689e12 −1.43080
\(546\) −1.29200e12 −0.622150
\(547\) 1.97053e12 0.941112 0.470556 0.882370i \(-0.344053\pi\)
0.470556 + 0.882370i \(0.344053\pi\)
\(548\) 6.63506e11 0.314291
\(549\) 4.06014e12 1.90750
\(550\) −1.70670e12 −0.795287
\(551\) 0 0
\(552\) −6.21425e11 −0.284880
\(553\) −2.07214e12 −0.942226
\(554\) −1.06058e11 −0.0478356
\(555\) 2.56433e12 1.14724
\(556\) −1.69274e12 −0.751195
\(557\) −2.11594e12 −0.931439 −0.465720 0.884932i \(-0.654204\pi\)
−0.465720 + 0.884932i \(0.654204\pi\)
\(558\) −4.89982e11 −0.213957
\(559\) −2.67495e12 −1.15868
\(560\) 4.03155e12 1.73231
\(561\) 1.84320e12 0.785670
\(562\) −4.42648e11 −0.187174
\(563\) 3.09779e12 1.29946 0.649732 0.760163i \(-0.274881\pi\)
0.649732 + 0.760163i \(0.274881\pi\)
\(564\) 1.95408e12 0.813181
\(565\) 8.59281e11 0.354746
\(566\) −7.66399e11 −0.313893
\(567\) 2.96495e12 1.20474
\(568\) 2.39769e12 0.966554
\(569\) −4.16039e12 −1.66391 −0.831953 0.554846i \(-0.812777\pi\)
−0.831953 + 0.554846i \(0.812777\pi\)
\(570\) 0 0
\(571\) 9.42885e11 0.371190 0.185595 0.982626i \(-0.440579\pi\)
0.185595 + 0.982626i \(0.440579\pi\)
\(572\) −3.76198e12 −1.46938
\(573\) 3.75576e12 1.45547
\(574\) 2.15115e11 0.0827118
\(575\) 1.56261e12 0.596137
\(576\) −1.53389e12 −0.580621
\(577\) 1.91777e12 0.720285 0.360142 0.932897i \(-0.382728\pi\)
0.360142 + 0.932897i \(0.382728\pi\)
\(578\) 6.97816e11 0.260055
\(579\) −3.67035e12 −1.35723
\(580\) 4.59548e12 1.68618
\(581\) −3.84109e12 −1.39850
\(582\) −3.14130e11 −0.113490
\(583\) −2.78350e12 −0.997891
\(584\) 2.21237e12 0.787047
\(585\) −5.41678e12 −1.91223
\(586\) −5.19887e10 −0.0182125
\(587\) 1.72476e12 0.599592 0.299796 0.954003i \(-0.403081\pi\)
0.299796 + 0.954003i \(0.403081\pi\)
\(588\) 3.77514e12 1.30237
\(589\) 0 0
\(590\) 9.47896e11 0.322052
\(591\) 3.17967e12 1.07211
\(592\) 1.06358e12 0.355894
\(593\) −1.87438e12 −0.622459 −0.311229 0.950335i \(-0.600741\pi\)
−0.311229 + 0.950335i \(0.600741\pi\)
\(594\) 2.59973e11 0.0856821
\(595\) −2.44139e12 −0.798565
\(596\) 2.11045e12 0.685122
\(597\) −7.80982e11 −0.251627
\(598\) −3.28294e11 −0.104980
\(599\) −4.13876e12 −1.31356 −0.656780 0.754082i \(-0.728082\pi\)
−0.656780 + 0.754082i \(0.728082\pi\)
\(600\) −4.49999e12 −1.41752
\(601\) −3.75120e12 −1.17283 −0.586415 0.810011i \(-0.699461\pi\)
−0.586415 + 0.810011i \(0.699461\pi\)
\(602\) −1.50664e12 −0.467548
\(603\) 4.68995e12 1.44458
\(604\) 1.59307e12 0.487045
\(605\) −7.88547e12 −2.39292
\(606\) 7.31867e11 0.220448
\(607\) 5.07062e12 1.51605 0.758023 0.652228i \(-0.226166\pi\)
0.758023 + 0.652228i \(0.226166\pi\)
\(608\) 0 0
\(609\) 7.79435e12 2.29616
\(610\) 2.81652e12 0.823624
\(611\) 2.16305e12 0.627886
\(612\) 1.22907e12 0.354156
\(613\) −3.48244e12 −0.996119 −0.498059 0.867143i \(-0.665954\pi\)
−0.498059 + 0.867143i \(0.665954\pi\)
\(614\) −8.58213e11 −0.243690
\(615\) 1.70198e12 0.479750
\(616\) −4.43977e12 −1.24236
\(617\) 2.13066e12 0.591876 0.295938 0.955207i \(-0.404368\pi\)
0.295938 + 0.955207i \(0.404368\pi\)
\(618\) −6.54897e11 −0.180603
\(619\) 6.28642e12 1.72106 0.860529 0.509401i \(-0.170133\pi\)
0.860529 + 0.509401i \(0.170133\pi\)
\(620\) 3.56616e12 0.969257
\(621\) −2.38026e11 −0.0642262
\(622\) 7.90582e11 0.211783
\(623\) −8.49756e12 −2.25995
\(624\) −4.23973e12 −1.11946
\(625\) 9.30780e11 0.243998
\(626\) 4.20142e11 0.109348
\(627\) 0 0
\(628\) −2.54203e12 −0.652171
\(629\) −6.44070e11 −0.164061
\(630\) −3.05096e12 −0.771620
\(631\) 5.62080e12 1.41145 0.705726 0.708485i \(-0.250621\pi\)
0.705726 + 0.708485i \(0.250621\pi\)
\(632\) 1.51628e12 0.378053
\(633\) −1.19008e12 −0.294619
\(634\) −1.94515e12 −0.478136
\(635\) 1.00456e13 2.45185
\(636\) −3.50266e12 −0.848869
\(637\) 4.17884e12 1.00561
\(638\) −2.16315e12 −0.516884
\(639\) 8.13715e12 1.93072
\(640\) −6.55799e12 −1.54512
\(641\) −6.97041e11 −0.163079 −0.0815393 0.996670i \(-0.525984\pi\)
−0.0815393 + 0.996670i \(0.525984\pi\)
\(642\) 1.77248e12 0.411788
\(643\) −4.68540e12 −1.08093 −0.540465 0.841366i \(-0.681752\pi\)
−0.540465 + 0.841366i \(0.681752\pi\)
\(644\) 1.94002e12 0.444448
\(645\) −1.19205e13 −2.71190
\(646\) 0 0
\(647\) 4.07646e12 0.914563 0.457281 0.889322i \(-0.348823\pi\)
0.457281 + 0.889322i \(0.348823\pi\)
\(648\) −2.16959e12 −0.483382
\(649\) 4.68128e12 1.03577
\(650\) −2.37731e12 −0.522367
\(651\) 6.04854e12 1.31988
\(652\) −5.85159e12 −1.26812
\(653\) −4.46719e11 −0.0961447 −0.0480724 0.998844i \(-0.515308\pi\)
−0.0480724 + 0.998844i \(0.515308\pi\)
\(654\) 1.74552e12 0.373100
\(655\) 4.23749e12 0.899545
\(656\) 7.05907e11 0.148827
\(657\) 7.50823e12 1.57215
\(658\) 1.21832e12 0.253364
\(659\) 5.24715e12 1.08377 0.541887 0.840451i \(-0.317710\pi\)
0.541887 + 0.840451i \(0.317710\pi\)
\(660\) −1.67646e13 −3.43911
\(661\) −4.75587e11 −0.0968999 −0.0484500 0.998826i \(-0.515428\pi\)
−0.0484500 + 0.998826i \(0.515428\pi\)
\(662\) 1.30872e12 0.264841
\(663\) 2.56745e12 0.516050
\(664\) 2.81071e12 0.561125
\(665\) 0 0
\(666\) −8.04882e11 −0.158525
\(667\) 1.98053e12 0.387449
\(668\) −6.72317e11 −0.130641
\(669\) −1.04384e13 −2.01473
\(670\) 3.25343e12 0.623741
\(671\) 1.39097e13 2.64890
\(672\) −8.50735e12 −1.60928
\(673\) 2.75268e12 0.517235 0.258618 0.965980i \(-0.416733\pi\)
0.258618 + 0.965980i \(0.416733\pi\)
\(674\) 9.80719e11 0.183052
\(675\) −1.72364e12 −0.319580
\(676\) −2.83148e11 −0.0521498
\(677\) −6.68978e12 −1.22395 −0.611974 0.790878i \(-0.709624\pi\)
−0.611974 + 0.790878i \(0.709624\pi\)
\(678\) −5.08975e11 −0.0925045
\(679\) 2.05484e12 0.370991
\(680\) 1.78648e12 0.320411
\(681\) 1.20470e13 2.14643
\(682\) −1.67864e12 −0.297116
\(683\) 8.30964e12 1.46113 0.730565 0.682843i \(-0.239257\pi\)
0.730565 + 0.682843i \(0.239257\pi\)
\(684\) 0 0
\(685\) 3.27299e12 0.567986
\(686\) −5.27940e10 −0.00910177
\(687\) −1.60455e13 −2.74820
\(688\) −4.94410e12 −0.841277
\(689\) −3.87723e12 −0.655443
\(690\) −1.46299e12 −0.245708
\(691\) −5.91591e10 −0.00987120 −0.00493560 0.999988i \(-0.501571\pi\)
−0.00493560 + 0.999988i \(0.501571\pi\)
\(692\) 2.70788e12 0.448902
\(693\) −1.50675e13 −2.48165
\(694\) 1.60016e12 0.261846
\(695\) −8.35006e12 −1.35756
\(696\) −5.70350e12 −0.921297
\(697\) −4.27476e11 −0.0686064
\(698\) −1.99829e12 −0.318647
\(699\) −3.47395e12 −0.550397
\(700\) 1.40485e13 2.21151
\(701\) 1.76503e11 0.0276071 0.0138035 0.999905i \(-0.495606\pi\)
0.0138035 + 0.999905i \(0.495606\pi\)
\(702\) 3.62125e11 0.0562784
\(703\) 0 0
\(704\) −5.25497e12 −0.806294
\(705\) 9.63926e12 1.46958
\(706\) 1.49882e12 0.227054
\(707\) −4.78740e12 −0.720630
\(708\) 5.89075e12 0.881091
\(709\) −2.23398e12 −0.332025 −0.166013 0.986124i \(-0.553089\pi\)
−0.166013 + 0.986124i \(0.553089\pi\)
\(710\) 5.64476e12 0.833648
\(711\) 5.14586e12 0.755171
\(712\) 6.21806e12 0.906766
\(713\) 1.53692e12 0.222715
\(714\) 1.44610e12 0.208236
\(715\) −1.85574e13 −2.65546
\(716\) −1.07018e13 −1.52177
\(717\) −7.49048e12 −1.05846
\(718\) 6.95896e11 0.0977203
\(719\) −1.02723e13 −1.43347 −0.716734 0.697347i \(-0.754364\pi\)
−0.716734 + 0.697347i \(0.754364\pi\)
\(720\) −1.00118e13 −1.38841
\(721\) 4.28391e12 0.590381
\(722\) 0 0
\(723\) −4.83626e12 −0.658245
\(724\) −3.97412e12 −0.537548
\(725\) 1.43418e13 1.92789
\(726\) 4.67077e12 0.623985
\(727\) −1.33972e13 −1.77873 −0.889363 0.457202i \(-0.848852\pi\)
−0.889363 + 0.457202i \(0.848852\pi\)
\(728\) −6.18430e12 −0.816017
\(729\) −9.42678e12 −1.23620
\(730\) 5.20847e12 0.678824
\(731\) 2.99400e12 0.387814
\(732\) 1.75034e13 2.25332
\(733\) 2.35708e12 0.301583 0.150792 0.988566i \(-0.451818\pi\)
0.150792 + 0.988566i \(0.451818\pi\)
\(734\) 1.87094e12 0.237918
\(735\) 1.86223e13 2.35364
\(736\) −2.16170e12 −0.271547
\(737\) 1.60674e13 2.00605
\(738\) −5.34209e11 −0.0662915
\(739\) 6.64587e12 0.819695 0.409847 0.912154i \(-0.365582\pi\)
0.409847 + 0.912154i \(0.365582\pi\)
\(740\) 5.85806e12 0.718143
\(741\) 0 0
\(742\) −2.18382e12 −0.264484
\(743\) −9.38217e12 −1.12942 −0.564708 0.825291i \(-0.691011\pi\)
−0.564708 + 0.825291i \(0.691011\pi\)
\(744\) −4.42600e12 −0.529582
\(745\) 1.04106e13 1.23815
\(746\) −1.86933e11 −0.0220984
\(747\) 9.53883e12 1.12086
\(748\) 4.21068e12 0.491808
\(749\) −1.15944e13 −1.34611
\(750\) −4.44293e12 −0.512735
\(751\) −7.58462e12 −0.870070 −0.435035 0.900413i \(-0.643264\pi\)
−0.435035 + 0.900413i \(0.643264\pi\)
\(752\) 3.99796e12 0.455888
\(753\) 8.06274e12 0.913914
\(754\) −3.01311e12 −0.339504
\(755\) 7.85843e12 0.880186
\(756\) −2.13995e12 −0.238262
\(757\) 2.07498e12 0.229659 0.114829 0.993385i \(-0.463368\pi\)
0.114829 + 0.993385i \(0.463368\pi\)
\(758\) −4.51909e12 −0.497210
\(759\) −7.22510e12 −0.790235
\(760\) 0 0
\(761\) 1.17842e13 1.27371 0.636853 0.770986i \(-0.280236\pi\)
0.636853 + 0.770986i \(0.280236\pi\)
\(762\) −5.95027e12 −0.639351
\(763\) −1.14181e13 −1.21964
\(764\) 8.57981e12 0.911082
\(765\) 6.06285e12 0.640030
\(766\) −1.26962e12 −0.133243
\(767\) 6.52070e12 0.680322
\(768\) −3.35847e12 −0.348350
\(769\) 7.58999e12 0.782660 0.391330 0.920251i \(-0.372015\pi\)
0.391330 + 0.920251i \(0.372015\pi\)
\(770\) −1.04523e13 −1.07153
\(771\) 1.22604e13 1.24957
\(772\) −8.38469e12 −0.849589
\(773\) 1.20443e13 1.21332 0.606658 0.794963i \(-0.292510\pi\)
0.606658 + 0.794963i \(0.292510\pi\)
\(774\) 3.74154e12 0.374728
\(775\) 1.11295e13 1.10820
\(776\) −1.50362e12 −0.148854
\(777\) 9.93580e12 0.977931
\(778\) −5.62526e12 −0.550471
\(779\) 0 0
\(780\) −2.33520e13 −2.25891
\(781\) 2.78772e13 2.68114
\(782\) 3.67451e11 0.0351373
\(783\) −2.18462e12 −0.207706
\(784\) 7.72374e12 0.730139
\(785\) −1.25395e13 −1.17860
\(786\) −2.50998e12 −0.234568
\(787\) −2.47137e12 −0.229642 −0.114821 0.993386i \(-0.536629\pi\)
−0.114821 + 0.993386i \(0.536629\pi\)
\(788\) 7.26375e12 0.671109
\(789\) −1.91149e13 −1.75600
\(790\) 3.56969e12 0.326069
\(791\) 3.32939e12 0.302392
\(792\) 1.10256e13 0.995721
\(793\) 1.93752e13 1.73987
\(794\) −2.46758e12 −0.220333
\(795\) −1.72782e13 −1.53407
\(796\) −1.78411e12 −0.157511
\(797\) −4.88208e12 −0.428591 −0.214295 0.976769i \(-0.568746\pi\)
−0.214295 + 0.976769i \(0.568746\pi\)
\(798\) 0 0
\(799\) −2.42104e12 −0.210156
\(800\) −1.56537e13 −1.35118
\(801\) 2.11025e13 1.81129
\(802\) −9.94045e11 −0.0848441
\(803\) 2.57225e13 2.18320
\(804\) 2.02186e13 1.70647
\(805\) 9.56991e12 0.803205
\(806\) −2.33822e12 −0.195154
\(807\) 5.38895e12 0.447274
\(808\) 3.50316e12 0.289141
\(809\) −3.93058e12 −0.322618 −0.161309 0.986904i \(-0.551572\pi\)
−0.161309 + 0.986904i \(0.551572\pi\)
\(810\) −5.10775e12 −0.416915
\(811\) 3.88693e12 0.315510 0.157755 0.987478i \(-0.449574\pi\)
0.157755 + 0.987478i \(0.449574\pi\)
\(812\) 1.78057e13 1.43733
\(813\) 1.42464e13 1.14366
\(814\) −2.75746e12 −0.220140
\(815\) −2.88652e13 −2.29174
\(816\) 4.74542e12 0.374687
\(817\) 0 0
\(818\) −6.76335e12 −0.528168
\(819\) −2.09879e13 −1.63002
\(820\) 3.88806e12 0.300310
\(821\) 8.47867e12 0.651304 0.325652 0.945490i \(-0.394416\pi\)
0.325652 + 0.945490i \(0.394416\pi\)
\(822\) −1.93868e12 −0.148110
\(823\) 2.05411e13 1.56072 0.780358 0.625333i \(-0.215037\pi\)
0.780358 + 0.625333i \(0.215037\pi\)
\(824\) −3.13474e12 −0.236881
\(825\) −5.23199e13 −3.93209
\(826\) 3.67273e12 0.274523
\(827\) −1.45545e13 −1.08199 −0.540993 0.841027i \(-0.681951\pi\)
−0.540993 + 0.841027i \(0.681951\pi\)
\(828\) −4.81778e12 −0.356214
\(829\) 1.84020e13 1.35322 0.676611 0.736341i \(-0.263448\pi\)
0.676611 + 0.736341i \(0.263448\pi\)
\(830\) 6.61710e12 0.483968
\(831\) −3.25129e12 −0.236511
\(832\) −7.31982e12 −0.529597
\(833\) −4.67726e12 −0.336581
\(834\) 4.94596e12 0.354000
\(835\) −3.31646e12 −0.236094
\(836\) 0 0
\(837\) −1.69530e12 −0.119394
\(838\) −3.18337e12 −0.222992
\(839\) 2.53355e13 1.76523 0.882614 0.470098i \(-0.155781\pi\)
0.882614 + 0.470098i \(0.155781\pi\)
\(840\) −2.75593e13 −1.90990
\(841\) 3.67034e12 0.253002
\(842\) −5.70656e12 −0.391264
\(843\) −1.35697e13 −0.925433
\(844\) −2.71867e12 −0.184423
\(845\) −1.39673e12 −0.0942450
\(846\) −3.02553e12 −0.203065
\(847\) −3.05532e13 −2.03977
\(848\) −7.16627e12 −0.475895
\(849\) −2.34945e13 −1.55196
\(850\) 2.66086e12 0.174838
\(851\) 2.52467e12 0.165014
\(852\) 3.50797e13 2.28075
\(853\) −2.28826e13 −1.47991 −0.739954 0.672658i \(-0.765153\pi\)
−0.739954 + 0.672658i \(0.765153\pi\)
\(854\) 1.09130e13 0.702072
\(855\) 0 0
\(856\) 8.48418e12 0.540105
\(857\) 4.94627e12 0.313231 0.156615 0.987660i \(-0.449942\pi\)
0.156615 + 0.987660i \(0.449942\pi\)
\(858\) 1.09920e13 0.692446
\(859\) −1.13612e13 −0.711959 −0.355980 0.934494i \(-0.615853\pi\)
−0.355980 + 0.934494i \(0.615853\pi\)
\(860\) −2.72315e13 −1.69758
\(861\) 6.59450e12 0.408948
\(862\) −2.87736e12 −0.177505
\(863\) 2.24359e13 1.37688 0.688439 0.725294i \(-0.258296\pi\)
0.688439 + 0.725294i \(0.258296\pi\)
\(864\) 2.38446e12 0.145572
\(865\) 1.33576e13 0.811254
\(866\) 1.22681e12 0.0741217
\(867\) 2.13920e13 1.28578
\(868\) 1.38175e13 0.826212
\(869\) 1.76293e13 1.04869
\(870\) −1.34274e13 −0.794614
\(871\) 2.23807e13 1.31763
\(872\) 8.35513e12 0.489361
\(873\) −5.10290e12 −0.297340
\(874\) 0 0
\(875\) 2.90627e13 1.67610
\(876\) 3.23683e13 1.85717
\(877\) −1.66824e13 −0.952271 −0.476136 0.879372i \(-0.657963\pi\)
−0.476136 + 0.879372i \(0.657963\pi\)
\(878\) 6.27779e12 0.356518
\(879\) −1.59375e12 −0.0900471
\(880\) −3.42996e13 −1.92804
\(881\) 3.25032e13 1.81775 0.908874 0.417070i \(-0.136943\pi\)
0.908874 + 0.417070i \(0.136943\pi\)
\(882\) −5.84509e12 −0.325224
\(883\) 1.40457e13 0.777534 0.388767 0.921336i \(-0.372901\pi\)
0.388767 + 0.921336i \(0.372901\pi\)
\(884\) 5.86519e12 0.323033
\(885\) 2.90584e13 1.59231
\(886\) 5.56279e12 0.303278
\(887\) −7.68674e11 −0.0416952 −0.0208476 0.999783i \(-0.506636\pi\)
−0.0208476 + 0.999783i \(0.506636\pi\)
\(888\) −7.27050e12 −0.392379
\(889\) 3.89228e13 2.09000
\(890\) 1.46388e13 0.782081
\(891\) −2.52251e13 −1.34086
\(892\) −2.38460e13 −1.26117
\(893\) 0 0
\(894\) −6.16649e12 −0.322863
\(895\) −5.27908e13 −2.75014
\(896\) −2.54097e13 −1.31708
\(897\) −1.00641e13 −0.519048
\(898\) −1.39781e12 −0.0717305
\(899\) 1.41060e13 0.720254
\(900\) −3.48875e13 −1.77247
\(901\) 4.33967e12 0.219379
\(902\) −1.83015e12 −0.0920573
\(903\) −4.61872e13 −2.31167
\(904\) −2.43627e12 −0.121330
\(905\) −1.96038e13 −0.971455
\(906\) −4.65476e12 −0.229520
\(907\) −3.11104e13 −1.52642 −0.763208 0.646153i \(-0.776377\pi\)
−0.763208 + 0.646153i \(0.776377\pi\)
\(908\) 2.75206e13 1.34361
\(909\) 1.18888e13 0.577567
\(910\) −1.45594e13 −0.703811
\(911\) −3.18191e13 −1.53058 −0.765289 0.643687i \(-0.777404\pi\)
−0.765289 + 0.643687i \(0.777404\pi\)
\(912\) 0 0
\(913\) 3.26792e13 1.55651
\(914\) 7.54479e12 0.357593
\(915\) 8.63424e13 4.07220
\(916\) −3.66550e13 −1.72030
\(917\) 1.64187e13 0.766788
\(918\) −4.05317e11 −0.0188366
\(919\) −5.77595e12 −0.267118 −0.133559 0.991041i \(-0.542641\pi\)
−0.133559 + 0.991041i \(0.542641\pi\)
\(920\) −7.00275e12 −0.322273
\(921\) −2.63091e13 −1.20486
\(922\) 4.52321e12 0.206138
\(923\) 3.88310e13 1.76105
\(924\) −6.49565e13 −2.93156
\(925\) 1.82821e13 0.821086
\(926\) −4.13102e12 −0.184632
\(927\) −1.06385e13 −0.473175
\(928\) −1.98403e13 −0.878177
\(929\) −1.60303e13 −0.706106 −0.353053 0.935603i \(-0.614857\pi\)
−0.353053 + 0.935603i \(0.614857\pi\)
\(930\) −1.04199e13 −0.456762
\(931\) 0 0
\(932\) −7.93603e12 −0.344534
\(933\) 2.42358e13 1.04711
\(934\) −7.38059e12 −0.317344
\(935\) 2.07708e13 0.888794
\(936\) 1.53579e13 0.654017
\(937\) 3.75207e13 1.59017 0.795084 0.606500i \(-0.207427\pi\)
0.795084 + 0.606500i \(0.207427\pi\)
\(938\) 1.26058e13 0.531688
\(939\) 1.28797e13 0.540644
\(940\) 2.20203e13 0.919915
\(941\) 3.45204e13 1.43523 0.717617 0.696438i \(-0.245233\pi\)
0.717617 + 0.696438i \(0.245233\pi\)
\(942\) 7.42749e12 0.307336
\(943\) 1.67565e12 0.0690049
\(944\) 1.20522e13 0.493960
\(945\) −1.05561e13 −0.430586
\(946\) 1.28182e13 0.520376
\(947\) −2.01077e13 −0.812435 −0.406217 0.913777i \(-0.633152\pi\)
−0.406217 + 0.913777i \(0.633152\pi\)
\(948\) 2.21841e13 0.892080
\(949\) 3.58297e13 1.43399
\(950\) 0 0
\(951\) −5.96299e13 −2.36402
\(952\) 6.92192e12 0.273124
\(953\) −3.88414e13 −1.52538 −0.762689 0.646766i \(-0.776121\pi\)
−0.762689 + 0.646766i \(0.776121\pi\)
\(954\) 5.42321e12 0.211977
\(955\) 4.23232e13 1.64650
\(956\) −1.71115e13 −0.662565
\(957\) −6.63127e13 −2.55560
\(958\) 9.72647e11 0.0373087
\(959\) 1.26816e13 0.484161
\(960\) −3.26195e13 −1.23953
\(961\) −1.54931e13 −0.585982
\(962\) −3.84095e12 −0.144594
\(963\) 2.87931e13 1.07887
\(964\) −1.10481e13 −0.412043
\(965\) −4.13607e13 −1.53537
\(966\) −5.66851e12 −0.209446
\(967\) 1.77102e13 0.651337 0.325668 0.945484i \(-0.394411\pi\)
0.325668 + 0.945484i \(0.394411\pi\)
\(968\) 2.23572e13 0.818424
\(969\) 0 0
\(970\) −3.53989e12 −0.128386
\(971\) −4.88393e12 −0.176312 −0.0881562 0.996107i \(-0.528097\pi\)
−0.0881562 + 0.996107i \(0.528097\pi\)
\(972\) −3.64569e13 −1.31003
\(973\) −3.23533e13 −1.15721
\(974\) 7.89656e12 0.281140
\(975\) −7.28780e13 −2.58271
\(976\) 3.58112e13 1.26327
\(977\) −1.99517e13 −0.700574 −0.350287 0.936642i \(-0.613916\pi\)
−0.350287 + 0.936642i \(0.613916\pi\)
\(978\) 1.70976e13 0.597600
\(979\) 7.22954e13 2.51529
\(980\) 4.25415e13 1.47331
\(981\) 2.83552e13 0.977511
\(982\) 6.33409e12 0.217361
\(983\) 2.96029e13 1.01121 0.505607 0.862764i \(-0.331269\pi\)
0.505607 + 0.862764i \(0.331269\pi\)
\(984\) −4.82551e12 −0.164084
\(985\) 3.58312e13 1.21283
\(986\) 3.37250e12 0.113633
\(987\) 3.73484e13 1.25269
\(988\) 0 0
\(989\) −1.17361e13 −0.390067
\(990\) 2.59569e13 0.858805
\(991\) 3.44145e13 1.13347 0.566735 0.823900i \(-0.308206\pi\)
0.566735 + 0.823900i \(0.308206\pi\)
\(992\) −1.53964e13 −0.504796
\(993\) 4.01196e13 1.30944
\(994\) 2.18713e13 0.710616
\(995\) −8.80078e12 −0.284654
\(996\) 4.11223e13 1.32407
\(997\) −1.37634e13 −0.441162 −0.220581 0.975369i \(-0.570795\pi\)
−0.220581 + 0.975369i \(0.570795\pi\)
\(998\) 1.43339e13 0.457381
\(999\) −2.78484e12 −0.0884616
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 361.10.a.b.1.3 6
19.18 odd 2 19.10.a.a.1.4 6
57.56 even 2 171.10.a.c.1.3 6
76.75 even 2 304.10.a.f.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
19.10.a.a.1.4 6 19.18 odd 2
171.10.a.c.1.3 6 57.56 even 2
304.10.a.f.1.1 6 76.75 even 2
361.10.a.b.1.3 6 1.1 even 1 trivial