Properties

Label 361.2.a.a
Level $361$
Weight $2$
Character orbit 361.a
Self dual yes
Analytic conductor $2.883$
Analytic rank $1$
Dimension $1$
CM discriminant -19
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [361,2,Mod(1,361)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(361, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("361.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 361 = 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 361.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.88259951297\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $N(\mathrm{U}(1))$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{4} - q^{5} + 3 q^{7} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 2 q^{4} - q^{5} + 3 q^{7} - 3 q^{9} - 5 q^{11} + 4 q^{16} - 7 q^{17} + 2 q^{20} - 4 q^{23} - 4 q^{25} - 6 q^{28} - 3 q^{35} + 6 q^{36} - q^{43} + 10 q^{44} + 3 q^{45} + 13 q^{47} + 2 q^{49} + 5 q^{55} + 15 q^{61} - 9 q^{63} - 8 q^{64} + 14 q^{68} - 11 q^{73} - 15 q^{77} - 4 q^{80} + 9 q^{81} - 16 q^{83} + 7 q^{85} + 8 q^{92} + 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 −2.00000 −1.00000 0 3.00000 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(19\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by \(\Q(\sqrt{-19}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 361.2.a.a 1
3.b odd 2 1 3249.2.a.e 1
4.b odd 2 1 5776.2.a.i 1
5.b even 2 1 9025.2.a.f 1
19.b odd 2 1 CM 361.2.a.a 1
19.c even 3 2 361.2.c.b 2
19.d odd 6 2 361.2.c.b 2
19.e even 9 6 361.2.e.c 6
19.f odd 18 6 361.2.e.c 6
57.d even 2 1 3249.2.a.e 1
76.d even 2 1 5776.2.a.i 1
95.d odd 2 1 9025.2.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
361.2.a.a 1 1.a even 1 1 trivial
361.2.a.a 1 19.b odd 2 1 CM
361.2.c.b 2 19.c even 3 2
361.2.c.b 2 19.d odd 6 2
361.2.e.c 6 19.e even 9 6
361.2.e.c 6 19.f odd 18 6
3249.2.a.e 1 3.b odd 2 1
3249.2.a.e 1 57.d even 2 1
5776.2.a.i 1 4.b odd 2 1
5776.2.a.i 1 76.d even 2 1
9025.2.a.f 1 5.b even 2 1
9025.2.a.f 1 95.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(361))\):

\( T_{2} \) Copy content Toggle raw display
\( T_{3} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T - 3 \) Copy content Toggle raw display
$11$ \( T + 5 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T + 7 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T + 4 \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T + 1 \) Copy content Toggle raw display
$47$ \( T - 13 \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T - 15 \) Copy content Toggle raw display
$67$ \( T \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T + 11 \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T + 16 \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less