Properties

Label 363.1.h.a
Level 363363
Weight 11
Character orbit 363.h
Analytic conductor 0.1810.181
Analytic rank 00
Dimension 44
Projective image D2D_{2}
CM/RM discs -3, -11, 33
Inner twists 1616

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,1,Mod(245,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.245"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 363=3112 363 = 3 \cdot 11^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 363.h (of order 1010, degree 44, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.1811605995860.181160599586
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ10)\Q(\zeta_{10})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+x2x+1 x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D2D_{2}
Projective field: Galois closure of Q(3,11)\Q(\sqrt{-3}, \sqrt{-11})
Artin image: C5×D4C_5\times D_4
Artin field: Galois closure of 20.0.14861658978964734748713.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ104q3ζ10q4ζ103q9q12+ζ102q16+ζ104q25ζ102q27+2ζ103q31+ζ104q36+2ζ10q37+2ζ103q97+O(q100) q - \zeta_{10}^{4} q^{3} - \zeta_{10} q^{4} - \zeta_{10}^{3} q^{9} - q^{12} + \zeta_{10}^{2} q^{16} + \zeta_{10}^{4} q^{25} - \zeta_{10}^{2} q^{27} + 2 \zeta_{10}^{3} q^{31} + \zeta_{10}^{4} q^{36} + 2 \zeta_{10} q^{37} + \cdots - 2 \zeta_{10}^{3} q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+q3q4q94q12q16q25+q27+2q31q36+2q37+q48+q49q648q67+q75q812q932q97+O(q100) 4 q + q^{3} - q^{4} - q^{9} - 4 q^{12} - q^{16} - q^{25} + q^{27} + 2 q^{31} - q^{36} + 2 q^{37} + q^{48} + q^{49} - q^{64} - 8 q^{67} + q^{75} - q^{81} - 2 q^{93} - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/363Z)×\left(\mathbb{Z}/363\mathbb{Z}\right)^\times.

nn 122122 244244
χ(n)\chi(n) 1-1 ζ10-\zeta_{10}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
245.1
−0.309017 + 0.951057i
0.809017 + 0.587785i
0.809017 0.587785i
−0.309017 0.951057i
0 −0.309017 0.951057i 0.309017 0.951057i 0 0 0 0 −0.809017 + 0.587785i 0
251.1 0 0.809017 0.587785i −0.809017 0.587785i 0 0 0 0 0.309017 0.951057i 0
269.1 0 0.809017 + 0.587785i −0.809017 + 0.587785i 0 0 0 0 0.309017 + 0.951057i 0
323.1 0 −0.309017 + 0.951057i 0.309017 + 0.951057i 0 0 0 0 −0.809017 0.587785i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
11.b odd 2 1 CM by Q(11)\Q(\sqrt{-11})
33.d even 2 1 RM by Q(33)\Q(\sqrt{33})
11.c even 5 3 inner
11.d odd 10 3 inner
33.f even 10 3 inner
33.h odd 10 3 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 363.1.h.a 4
3.b odd 2 1 CM 363.1.h.a 4
11.b odd 2 1 CM 363.1.h.a 4
11.c even 5 1 363.1.b.a 1
11.c even 5 3 inner 363.1.h.a 4
11.d odd 10 1 363.1.b.a 1
11.d odd 10 3 inner 363.1.h.a 4
33.d even 2 1 RM 363.1.h.a 4
33.f even 10 1 363.1.b.a 1
33.f even 10 3 inner 363.1.h.a 4
33.h odd 10 1 363.1.b.a 1
33.h odd 10 3 inner 363.1.h.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
363.1.b.a 1 11.c even 5 1
363.1.b.a 1 11.d odd 10 1
363.1.b.a 1 33.f even 10 1
363.1.b.a 1 33.h odd 10 1
363.1.h.a 4 1.a even 1 1 trivial
363.1.h.a 4 3.b odd 2 1 CM
363.1.h.a 4 11.b odd 2 1 CM
363.1.h.a 4 11.c even 5 3 inner
363.1.h.a 4 11.d odd 10 3 inner
363.1.h.a 4 33.d even 2 1 RM
363.1.h.a 4 33.f even 10 3 inner
363.1.h.a 4 33.h odd 10 3 inner

Hecke kernels

This newform subspace is the entire newspace S1new(363,[χ])S_{1}^{\mathrm{new}}(363, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4T3+T2++1 T^{4} - T^{3} + T^{2} + \cdots + 1 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T4 T^{4} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 T4 T^{4} Copy content Toggle raw display
2929 T4 T^{4} Copy content Toggle raw display
3131 T42T3++16 T^{4} - 2 T^{3} + \cdots + 16 Copy content Toggle raw display
3737 T42T3++16 T^{4} - 2 T^{3} + \cdots + 16 Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 T4 T^{4} Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 T4 T^{4} Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 T4 T^{4} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 T4+2T3++16 T^{4} + 2 T^{3} + \cdots + 16 Copy content Toggle raw display
show more
show less